(* ========================================================================= *) (* The NIST-recommended elliptic curve P-256, aka secp256r1. *) (* ========================================================================= *) needs "EC/weierstrass.ml";; needs "EC/excluderoots.ml";; needs "EC/computegroup.ml";; add_curve weierstrass_curve;; add_curveneg weierstrass_neg;; add_curveadd weierstrass_add;; (* ------------------------------------------------------------------------- *) (* The NIST curve parameters, copied from the NIST FIPS 186-4 document. *) (* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf *) (* ------------------------------------------------------------------------- *) let p_256 = new_definition `p_256 = 115792089210356248762697446949407573530086143415290314195533631308867097853951`;; let n_256 = new_definition `n_256 = 115792089210356248762697446949407573529996955224135760342422259061068512044369`;; let SEED_256 = new_definition `SEED_256 = 0xc49d360886e704936a6678e1139d26b7819f7e90`;; let c_256 = new_definition `c_256 = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0d`;; let b_256 = new_definition `b_256 = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b`;; let G_256 = new_definition `G_256 = SOME(&0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296:int,&0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5:int)`;; (* ------------------------------------------------------------------------- *) (* Primality of the field characteristic and group order. *) (* ------------------------------------------------------------------------- *) let P_256 = prove (`p_256 = 2 EXP 256 - 2 EXP 224 + 2 EXP 192 + 2 EXP 96 - 1`, REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV);; let PRIME_P256 = time prove (`prime p_256`, REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV THEN (CONV_TAC o PRIME_RULE) ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "23"; "43"; "53"; "107"; "157"; "173"; "181"; "197"; "241"; "257"; "313"; "641"; "661"; "727"; "757"; "919"; "1087"; "1531"; "2411"; "3677"; "3769"; "4349"; "17449"; "18169"; "65537"; "78283"; "490463"; "704251"; "6700417"; "204061199"; "34282281433"; "66417393611"; "11290956913871"; "46076956964474543"; "774023187263532362759620327192479577272145303"; "835945042244614951780389953367877943453916927241"]);; let PRIME_N256 = time prove (`prime n_256`, REWRITE_TAC[n_256] THEN CONV_TAC NUM_REDUCE_CONV THEN (CONV_TAC o PRIME_RULE) ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "29"; "31"; "37"; "41"; "43"; "71"; "97"; "127"; "131"; "151"; "229"; "263"; "311"; "337"; "373"; "727"; "1201"; "1297"; "1511"; "3023"; "3407"; "9547"; "16879"; "17449"; "38189"; "104471"; "126241"; "155317"; "3969899"; "9350987"; "187019741"; "191039911"; "311245691"; "622491383"; "1002328039319"; "208150935158385979"; "2624747550333869278416773953"]);; (* ------------------------------------------------------------------------- *) (* Basic sanity check on the (otherwise unused) c parameter. *) (* ------------------------------------------------------------------------- *) let SANITY_CHECK_256 = prove (`(&b_256 pow 2 * &c_256:int == -- &27) (mod &p_256)`, REWRITE_TAC[G_256; p_256; b_256; c_256] THEN REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);; (* ------------------------------------------------------------------------- *) (* Definition of the curve group and proof of its key properties. *) (* ------------------------------------------------------------------------- *) let p256_group = define `p256_group = weierstrass_group (integer_mod_ring p_256, ring_neg (integer_mod_ring p_256) (&3), &b_256)`;; let P256_GROUP = prove (`group_carrier p256_group = weierstrass_curve (integer_mod_ring p_256,ring_neg (integer_mod_ring p_256) (&3),&b_256) /\ group_id p256_group = NONE /\ group_inv p256_group = weierstrass_neg (integer_mod_ring p_256,ring_neg (integer_mod_ring p_256) (&3),&b_256) /\ group_mul p256_group = weierstrass_add (integer_mod_ring p_256,ring_neg (integer_mod_ring p_256) (&3),&b_256)`, REWRITE_TAC[p256_group] THEN MATCH_MP_TAC WEIERSTRASS_GROUP THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P256] THEN REWRITE_TAC[p_256; b_256; weierstrass_nonsingular] THEN SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN CONV_TAC INT_REDUCE_CONV);; add_ecgroup [p_256; b_256] P256_GROUP;; let NO_ROOTS_P256 = prove (`!x:int. ~((x pow 3 - &3 * x + &b_256 == &0) (mod &p_256))`, EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P256 [p_256;b_256]);; let GENERATOR_IN_GROUP_CARRIER_256 = prove (`G_256 IN group_carrier p256_group`, REWRITE_TAC[G_256] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_G256 = prove (`group_element_order p256_group G_256 = n_256`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_256; PRIME_N256] THEN REWRITE_TAC[G_256; el 1 (CONJUNCTS P256_GROUP); option_DISTINCT] THEN REWRITE_TAC[n_256] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC);; let FINITE_GROUP_CARRIER_256 = prove (`FINITE(group_carrier p256_group)`, REWRITE_TAC[P256_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P256] THEN REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV);; let SIZE_P256_GROUP = prove (`group_carrier p256_group HAS_SIZE n_256`, MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN EXISTS_TAC `G_256:(int#int)option` THEN REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_256; GROUP_ELEMENT_ORDER_G256; FINITE_GROUP_CARRIER_256] THEN REWRITE_TAC[P256_GROUP] THEN CONJ_TAC THENL [W(MP_TAC o PART_MATCH (lhand o rand) CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN REWRITE_TAC[PRIME_P256] THEN ANTS_TAC THENL [REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV; MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN SIMP_TAC[CARD_INTEGER_MOD_RING; p_256; ARITH] THEN REWRITE_TAC[n_256] THEN CONV_TAC NUM_REDUCE_CONV; REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_256; PAIR_EQ] THEN CONV_TAC INT_REDUCE_CONV] THEN ASM_CASES_TAC `y:int = &0` THENL [ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P256) THEN REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN REWRITE_TAC[GSYM INT_REM_EQ; p_256; INT_REM_ZERO]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH `--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN REWRITE_TAC[INT_REM_EQ; INTEGER_RULE `(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE `p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);; let GENERATED_P256_GROUP = prove (`subgroup_generated p256_group {G_256} = p256_group`, SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; GENERATOR_IN_GROUP_CARRIER_256; FINITE_GROUP_CARRIER_256] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_G256; REWRITE_RULE[HAS_SIZE] SIZE_P256_GROUP]);; let CYCLIC_P256_GROUP = prove (`cyclic_group p256_group`, MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P256_GROUP]);; let ABELIAN_P256_GROUP = prove (`abelian_group p256_group`, MESON_TAC[CYCLIC_P256_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;