(* ========================================================================= *) (* A few extras to support proofs around elliptic curves. *) (* ========================================================================= *) needs "Library/pocklington.ml";; needs "Library/primitive.ml";; needs "Library/grouptheory.ml";; needs "Library/ringtheory.ml";; (* ------------------------------------------------------------------------- *) (* Bounds on size of any curve of the form y^2 = f(x) over finite field. *) (* ------------------------------------------------------------------------- *) let FINITE_QUADRATIC_CURVE = prove (`!(r:A ring) h. integral_domain r /\ FINITE(ring_carrier r) ==> FINITE {x,y | x IN ring_carrier r /\ y IN ring_carrier r /\ ring_pow r y 2 = h x} /\ CARD {x,y | x IN ring_carrier r /\ y IN ring_carrier r /\ ring_pow r y 2 = h x} <= 2 * CARD(ring_carrier r)`, REPEAT GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN MATCH_MP_TAC FINITE_CARD_LE_SUBSET THEN EXISTS_TAC `UNIONS {{x,y | y | y IN ring_carrier r /\ ring_pow r y 2 = h x} |x| (x:A) IN ring_carrier r}` THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_GSPEC; SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN SET_TAC[]; MATCH_MP_TAC FINITE_CARD_LE_UNIONS THEN ASM_REWRITE_TAC[LE_REFL]] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC FINITE_CARD_LE_IMAGE THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> p /\ ~(p ==> ~q)`] THEN REWRITE_TAC[ARITH_RULE `~(n <= 2) <=> 3 <= n`; CHOOSE_SUBSET_EQ] THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN MP_TAC(INTEGRAL_DOMAIN_RULE `!x y:A. integral_domain r ==> (ring_pow r x 2 = ring_pow r y 2 <=> x = y \/ x = ring_neg r y)`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM METIS_TAC[]);; (* ------------------------------------------------------------------------- *) (* Try to dispose of ring characteristic side-conditions. This in general *) (* requires external factorization tools for "multifactor" on large numbers. *) (* ------------------------------------------------------------------------- *) let NOT_RING_CHAR_DIVIDES_TAC = let bops = list_mk_binop `( * ):num->num->num` and patcheck = can (term_match [] `~(ring_char r divides NUMERAL n)`) in W(fun (asl,w) -> if not (patcheck w) then failwith "NOT_RING_CHAR_DIVIDES_TAC" else let n = dest_numeral(rand(rand w)) in let ns = multifactor n in let ntm = bops(map mk_numeral ns) in SUBST1_TAC(SYM(NUM_REDUCE_CONV ntm))) THEN ASM_SIMP_TAC[RING_CHAR_DIVIDES_MUL];; (* ------------------------------------------------------------------------- *) (* Ad-hoc rewrites for equality versus divisibility of characteristic. *) (* ------------------------------------------------------------------------- *) let FIELD_CHAR_NOT2 = prove (`!(f:A ring) P. field f /\ ~(ring_char f = 2) /\ P <=> field f /\ ~(ring_char f divides 2) /\ P`, MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_2]);; let FIELD_CHAR_NOT3 = prove (`!(f:A ring) P. field f /\ ~(ring_char f = 3) /\ P <=> field f /\ ~(ring_char f divides 3) /\ P`, MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_CONV `prime 3`]);; let FIELD_CHAR_NOT23 = prove (`!(f:A ring) P. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ P <=> field f /\ ~(ring_char f divides 2) /\ ~(ring_char f divides 3) /\ P`, MESON_TAC[RING_CHAR_DIVIDES_PRIME; PRIME_2; PRIME_CONV `prime 3`]);; (* ------------------------------------------------------------------------- *) (* An ad-hoc way of confirming the size of a group to be n when there is a *) (* crude bound of < 3 * n and we also know there are no points of order 2. *) (* ------------------------------------------------------------------------- *) let CAUCHY_GROUP_THEOREM_2 = prove (`!G:A group. FINITE(group_carrier G) /\ EVEN(CARD(group_carrier G)) ==> ?x. x IN group_carrier G /\ group_element_order G x = 2`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CAUCHY_GROUP_THEOREM THEN ASM_REWRITE_TAC[PRIME_2; DIVIDES_2]);; let GROUP_ADHOC_ORDER_UNIQUE_LEMMA = prove (`!G (a:A) p. FINITE(group_carrier G) /\ CARD(group_carrier G) < 3 * p /\ (!x. x IN group_carrier G /\ group_inv G x = x ==> x = group_id G) /\ a IN group_carrier G /\ group_element_order G a = p ==> (group_carrier G) HAS_SIZE p`, SIMP_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN MP_TAC (SPECL [`G:A group`; `a:A`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN ASM_REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN ASM_SIMP_TAC[CARD_EQ_0; MULT_CLAUSES; GROUP_CARRIER_NONEMPTY] THEN ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN ASM_CASES_TAC `d = 2` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL [MP_TAC(ISPEC `G:A group` CAUCHY_GROUP_THEOREM_2) THEN ASM_REWRITE_TAC[EVEN_MULT; ARITH; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_2_ALT] THEN ASM_MESON_TAC[]; UNDISCH_TAC `CARD(group_carrier(G:A group)) < 3 * p` THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN ASM_REWRITE_TAC[NOT_LT] THEN GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN ASM_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Use some symmetry to ease algebraic reduction of associativity *) (* ------------------------------------------------------------------------- *) let SYMMETRY_LEMMA = prove (`!P eq add. (!x y. P x /\ P y /\ eq x y ==> eq y x) /\ (!x y. P x /\ P y ==> P(add x y)) /\ (!x y. P x /\ P y ==> add x y = add y x) /\ (!x y z. P x /\ P y /\ P z /\ (eq x y \/ eq (add x y) z) ==> add x (add y z) = add (add x y) z) /\ (!x y z. P x /\ P y /\ P z /\ ~(eq x y) /\ ~(eq y z) /\ ~(eq x z) /\ ~(eq (add x y) z) /\ ~(eq (add y z) x) ==> add x (add y z) = add (add x y) z) ==> !x y z:A. P x /\ P y /\ P z ==> add x (add y z) = add (add x y) z`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(eq:A->A->bool) x y` THEN ASM_SIMP_TAC[] THEN ASM_CASES_TAC `(eq:A->A->bool) y z` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `(eq:A->A->bool) x z` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `(eq:A->A->bool) ((add:A->A->A) x y) z` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `(eq:A->A->bool) ((add:A->A->A) y z) x` THEN ASM_MESON_TAC[]);; let ASSOCIATIVITY_LEMMA = prove (`!P add neg (id:A). P id /\ (!x. P x ==> P(neg x)) /\ (!x y. P x /\ P y ==> P(add x y)) /\ (!x. P x ==> add id x = x) /\ (!x. P x ==> add (neg x) x = id) /\ (!x y. P x /\ P y ==> add x y = add y x) /\ (!x. P x ==> neg(neg x) = x) /\ (!x y. P x /\ P y ==> neg(add x y) = add (neg x) (neg y)) /\ (!x y. P x /\ P y ==> add x (add x y) = add (add x x) y) /\ (!x y. P x /\ P y ==> add (neg x) (add x y) = y) /\ (!x y z u v. P x /\ P y /\ P z /\ P u /\ P v ==> ~(x = id) /\ ~(y = id) /\ ~(z = id) /\ ~(u = id) /\ ~(v = id) /\ ~(y = x \/ y = neg x) /\ ~(z = y \/ z = neg y) /\ ~(z = x \/ z = neg x) /\ ~(z = u \/ z = neg u) /\ ~(x = v \/ x = neg v) ==> add x y = u /\ add y z = v ==> add x v = add u z) ==> !x y z. P x /\ P y /\ P z ==> add x (add y z) = add (add x y) z`, ONCE_REWRITE_TAC[TAUT `p ==> q ==> r /\ s ==> t <=> r ==> s ==> p /\ q ==> t`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM1] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SYMMETRY_LEMMA THEN EXISTS_TAC `\x y. y:A = x \/ y = neg x` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN STRIP_TAC THEN ASM_CASES_TAC `x:A = id` THENL [ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `y:A = id` THENL [ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `z:A = id` THENL [ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC; TRANS_TAC EQ_TRANS `id:A` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN TRANS_TAC EQ_TRANS `(add:A->A->A) x (neg x)` THEN CONJ_TAC THENL [AP_TERM_TAC; ASM_MESON_TAC[]] THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]] THEN TRANS_TAC EQ_TRANS `add (x:A) (add (neg x) (add (add x y) (add x y)))` THEN CONJ_TAC THENL [AP_TERM_TAC; ASM_MESON_TAC[]] THEN TRANS_TAC EQ_TRANS `add (add (neg x) (add x y)) (add x y):A` THEN CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x y:A. P x /\ P y ==> add y (add x x) = add (add y x) x` (fun th -> ASM_SIMP_TAC[th]) THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Formulate existence of roots in finite field as power residue over N. *) (* This is intuitively completely trivial but fiddly in the fine details, *) (* especially since we don't actually assume n is prime and so it's a field. *) (* ------------------------------------------------------------------------- *) let INTEGER_MOD_RING_ROOT_EXISTS = prove (`!n a k. (?b. b IN ring_carrier (integer_mod_ring n) /\ ring_pow (integer_mod_ring n) b k = &a) <=> (n = 0 \/ a < n) /\ (?b. (b EXP k == a) (mod n))`, REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_REM; GSYM INT_OF_NUM_POW] THEN REWRITE_TAC[INT_EXISTS_POS] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_RING_CLAUSES; LE_1] THENL [REWRITE_TAC[IN_UNIV; INT_REM_0; INT_CONG_MOD_0] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `b:int`); MESON_TAC[]] THEN EXISTS_TAC `abs b:int` THEN ASM_REWRITE_TAC[INT_ABS_POS; GSYM INT_ABS_POW; INT_ABS_NUM]; REWRITE_TAC[IN_ELIM_THM; GSYM CONJ_ASSOC] THEN REWRITE_TAC[GSYM INT_EXISTS_POS; INT_OF_NUM_CLAUSES; INT_OF_NUM_REM] THEN REWRITE_TAC[GSYM num_congruent; CONG] THEN ASM_MESON_TAC[MOD_LT; MOD_EXP_MOD; MOD_LT_EQ]]);;