(* ========================================================================= *) (* The three forms of curve25519 related via isomorphisms. *) (* ========================================================================= *) needs "EC/edmont.ml";; needs "EC/montwe.ml";; needs "EC/edwards25519.ml";; needs "EC/curve25519.ml";; needs "EC/wei25519.ml";; (* ------------------------------------------------------------------------- *) (* Extra scaling factor. *) (* ------------------------------------------------------------------------- *) (*** https://datatracker.ietf.org/doc/html/draft-ietf-lwig-curve-representations-23 In terms of the other parameters c_25519 = sqrt(-(A_25519+2)/B_25519) ***) let c_25519 = define `c_25519 = 51042569399160536130206135233146329284152202253034631822681833788666877215207`;; (* ------------------------------------------------------------------------- *) (* Mappings between Edwards and Montgomery forms. *) (* ------------------------------------------------------------------------- *) let curve25519_of_edwards25519 = define `curve25519_of_edwards25519 = montgomery_of_edwards (integer_mod_ring p_25519) (&c_25519)`;; let edwards25519_of_curve25519 = define `edwards25519_of_curve25519 = edwards_of_montgomery (integer_mod_ring p_25519) (&c_25519)`;; let MCURVE_OF_ECURVE_25519 = prove (`mcurve_of_ecurve (integer_mod_ring p_25519,&e_25519,&d_25519) (&c_25519) = (integer_mod_ring p_25519,&A_25519,&1)`, REWRITE_TAC[mcurve_of_ecurve; PAIR_EQ] THEN REWRITE_TAC[p_25519; A_25519; e_25519; d_25519; c_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN REWRITE_TAC[]);; let GROUP_ISOMORPHISMS_EDWARDS25519_CURVE25519 = prove (`group_isomorphisms (edwards25519_group,curve25519_group) (curve25519_of_edwards25519,edwards25519_of_curve25519)`, MP_TAC(ISPECL [`integer_mod_ring p_25519`; `&e_25519:int`; `&d_25519:int`; `&c_25519:int`] GROUP_ISOMORPHISMS_EDWARDS_MONTGOMERY_GROUP) THEN REWRITE_TAC[GSYM curve25519_of_edwards25519; GSYM edwards25519_of_curve25519; GSYM curve25519_group; GSYM edwards25519_group; MCURVE_OF_ECURVE_25519] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[EDWARD_NONSINGULAR_25519] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN REWRITE_TAC[INTEGER_MOD_RING_CHAR; GSYM INT_OF_NUM_EQ] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING] THEN REWRITE_TAC[p_25519; e_25519; d_25519; c_25519] THEN CONV_TAC INT_REDUCE_CONV);; let ISOMORPHIC_GROUPS_EDWARDS25519_CURVE25519 = prove (`edwards25519_group isomorphic_group curve25519_group`, MP_TAC GROUP_ISOMORPHISMS_EDWARDS25519_CURVE25519 THEN MESON_TAC[isomorphic_group; GROUP_ISOMORPHISMS_IMP_ISOMORPHISM]);; let ISOMORPHIC_GROUPS_CURVE25519_EDWARDS25519 = prove (`curve25519_group isomorphic_group edwards25519_group`, ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[ISOMORPHIC_GROUPS_EDWARDS25519_CURVE25519]);; let CURVE25519_OF_EDWARDS25519_E25519 = prove (`curve25519_of_edwards25519 E_25519 = C_25519`, REWRITE_TAC[curve25519_of_edwards25519; montgomery_of_edwards; C_25519; E_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; let CURVE25519_OF_EDWARDS25519_EE25519 = prove (`curve25519_of_edwards25519 EE_25519 = CC_25519`, REWRITE_TAC[curve25519_of_edwards25519; montgomery_of_edwards; CC_25519; EE_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; let EDWARDS25519_OF_CURVE25519_C25519 = prove (`edwards25519_of_curve25519 C_25519 = E_25519`, REWRITE_TAC[edwards25519_of_curve25519; edwards_of_montgomery; C_25519; E_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; let EDWARDS25519_OF_CURVE25519_CC25519 = prove (`edwards25519_of_curve25519 CC_25519 = EE_25519`, REWRITE_TAC[edwards25519_of_curve25519; edwards_of_montgomery; CC_25519; EE_25519; PAIR_EQ; p_25519; e_25519; d_25519; c_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; (* ------------------------------------------------------------------------- *) (* Mappings between Montgomery and Weierstrass forms. *) (* ------------------------------------------------------------------------- *) let wei25519_of_curve25519 = define `wei25519_of_curve25519 = weierstrass_of_montgomery (integer_mod_ring p_25519,&A_25519,&1)`;; let curve25519_of_wei25519 = define `curve25519_of_wei25519 = montgomery_of_weierstrass (integer_mod_ring p_25519,&A_25519,&1)`;; let WCURVE_OF_MCURVE_25519 = prove (`wcurve_of_mcurve(integer_mod_ring p_25519,&A_25519,&1) = (integer_mod_ring p_25519,&a_25519,&b_25519)`, REWRITE_TAC[wcurve_of_mcurve; p_25519; PAIR_EQ; a_25519; b_25519; A_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN REWRITE_TAC[]);; let GROUP_ISOMORPHISMS_CURVE25519_WEI25519 = prove (`group_isomorphisms (curve25519_group,wei25519_group) (wei25519_of_curve25519,curve25519_of_wei25519)`, MP_TAC(ISPECL [`integer_mod_ring p_25519`; `&A_25519:int`; `&1:int`] GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP) THEN REWRITE_TAC[GSYM wei25519_of_curve25519; GSYM curve25519_of_wei25519; GSYM wei25519_group; GSYM curve25519_group; WCURVE_OF_MCURVE_25519] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[montgomery_nonsingular] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN REWRITE_TAC[INTEGER_MOD_RING_CHAR; GSYM INT_OF_NUM_EQ] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN REWRITE_TAC[p_25519; A_25519] THEN CONV_TAC INT_REDUCE_CONV);; let ISOMORPHIC_GROUPS_CURVE25519_WEI25519 = prove (`curve25519_group isomorphic_group wei25519_group`, MP_TAC GROUP_ISOMORPHISMS_CURVE25519_WEI25519 THEN MESON_TAC[isomorphic_group; GROUP_ISOMORPHISMS_IMP_ISOMORPHISM]);; let ISOMORPHIC_GROUPS_WEI25519_CURVE25519 = prove (`wei25519_group isomorphic_group curve25519_group`, ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[ISOMORPHIC_GROUPS_CURVE25519_WEI25519]);; let WEI25519_OF_CURVE25519_C25519 = prove (`wei25519_of_curve25519 C_25519 = G_25519`, REWRITE_TAC[wei25519_of_curve25519; weierstrass_of_montgomery; C_25519; G_25519; PAIR_EQ; p_25519; A_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; let WEI25519_OF_CURVE25519_CC25519 = prove (`wei25519_of_curve25519 CC_25519 = GG_25519`, REWRITE_TAC[wei25519_of_curve25519; weierstrass_of_montgomery; CC_25519; GG_25519; PAIR_EQ; p_25519; A_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; let CURVE25519_OF_WEI25519_G25519 = prove (`curve25519_of_wei25519 G_25519 = C_25519`, REWRITE_TAC[curve25519_of_wei25519; montgomery_of_weierstrass; C_25519; G_25519; PAIR_EQ; p_25519; A_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);; let CURVE25519_OF_WEI25519_GG25519 = prove (`curve25519_of_wei25519 GG_25519 = CC_25519`, REWRITE_TAC[curve25519_of_wei25519; montgomery_of_weierstrass; CC_25519; GG_25519; PAIR_EQ; p_25519; A_25519] THEN CONV_TAC(DEPTH_CONV INTEGER_MOD_RING_RED_CONV) THEN CONV_TAC INT_REDUCE_CONV);;