(* ========================================================================= *) (* edwards25519, an Edwards-coordinate version of curve25519. *) (* ========================================================================= *) needs "EC/edwards.ml";; needs "EC/excluderoots.ml";; needs "EC/computegroup.ml";; add_curve edwards_curve;; add_curvezero edwards_0;; add_curveneg edwards_neg;; add_curveadd edwards_add;; (* ------------------------------------------------------------------------- *) (* Parameters for the edwards25519 curve, mainly from the document *) (* https://datatracker.ietf.org/doc/draft-ietf-lwig-curve-representations/ *) (* Here n_25519 is the large prime factor of the group order, the full *) (* group order being 8 * n_25519. Likewise E_25519 is the generator of the *) (* prime order subgroup and EE_25519 is a generator for the full group. *) (* We use e_25519 instead of a_25519 as the name, as the latter is also used *) (* for the Weierstrass form parameter in the wei25519.ml file. *) (* ------------------------------------------------------------------------- *) let p_25519 = define`p_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819949`;; let n_25519 = define`n_25519 = 7237005577332262213973186563042994240857116359379907606001950938285454250989`;; let e_25519 = define`e_25519 = 57896044618658097711785492504343953926634992332820282019728792003956564819948`;; let d_25519 = define`d_25519 = 37095705934669439343138083508754565189542113879843219016388785533085940283555`;; let E_25519 = define `E_25519 = (&0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a:int,&0x6666666666666666666666666666666666666666666666666666666666666658:int)`;; let EE_25519 = define `EE_25519 = (&31673755162551823185009131889882229316567966938545344397180697279978689160235:int, &44332021396607921014542692927380285321101622747762054416338596910403709737434:int)`;; (* ------------------------------------------------------------------------- *) (* Primality of the field characteristic and (sub)group order. *) (* ------------------------------------------------------------------------- *) let P_25519 = prove (`p_25519 = 2 EXP 255 - 19`, REWRITE_TAC[p_25519] THEN ARITH_TAC);; let N_25519 = prove (`n_25519 = 2 EXP 252 + 27742317777372353535851937790883648493`, REWRITE_TAC[n_25519] THEN ARITH_TAC);; let PRIME_P25519 = prove (`prime p_25519`, REWRITE_TAC[p_25519] THEN (CONV_TAC o PRIME_RULE) ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "37"; "41"; "43"; "47"; "53"; "59"; "83"; "97"; "103"; "107"; "127"; "131"; "173"; "223"; "239"; "353"; "419"; "479"; "487"; "991"; "1723"; "2437"; "3727"; "4153"; "9463"; "32573"; "37853"; "57467"; "65147"; "75707"; "132049"; "430751"; "569003"; "1923133"; "8574133"; "2773320623"; "72106336199"; "1919519569386763"; "31757755568855353"; "75445702479781427272750846543864801"; "74058212732561358302231226437062788676166966415465897661863160754340907"; "57896044618658097711785492504343953926634992332820282019728792003956564819949"]);; let PRIME_N25519 = prove (`prime n_25519`, REWRITE_TAC[n_25519] THEN (CONV_TAC o PRIME_RULE) ["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "41"; "43"; "47"; "67"; "73"; "79"; "113"; "269"; "307"; "1361"; "1723"; "2551"; "2851"; "2939"; "3797"; "5879"; "17231"; "22111"; "30703"; "34123"; "41081"; "82163"; "132667"; "137849"; "409477"; "531581"; "1224481"; "14741173"; "58964693"; "292386187"; "213441916511"; "1257559732178653"; "4434155615661930479"; "3044861653679985063343"; "172054593956031949258510691"; "198211423230930754013084525763697"; "19757330305831588566944191468367130476339"; "276602624281642239937218680557139826668747"; "7237005577332262213973186563042994240857116359379907606001950938285454250989"]);; (* ------------------------------------------------------------------------- *) (* Definition of the curve group and proof of its key properties. *) (* ------------------------------------------------------------------------- *) let edwards25519_group = define `edwards25519_group = edwards_group(integer_mod_ring p_25519,&e_25519,&d_25519)`;; let EDWARD_NONSINGULAR_25519 = prove (`edwards_nonsingular (integer_mod_ring p_25519,&e_25519,&d_25519)`, REWRITE_TAC[edwards_nonsingular; INTEGER_MOD_RING_ROOT_EXISTS] THEN SIMP_TAC[INTEGER_MOD_RING; INT_OF_NUM_EQ; e_25519; d_25519; p_25519] THEN CONV_TAC NUM_REDUCE_CONV THEN SIMP_TAC[EULER_CRITERION; REWRITE_RULE[p_25519] PRIME_P25519] THEN CONV_TAC(DEPTH_CONV (NUM_SUB_CONV ORELSEC NUM_DIV_CONV ORELSEC DIVIDES_CONV)) THEN REWRITE_TAC[CONG] THEN CONV_TAC(ONCE_DEPTH_CONV EXP_MOD_CONV) THEN CONV_TAC NUM_REDUCE_CONV);; let EDWARDS25519_GROUP = prove (`group_carrier edwards25519_group = edwards_curve(integer_mod_ring p_25519,&e_25519,&d_25519) /\ group_id edwards25519_group = edwards_0(integer_mod_ring p_25519,&e_25519,&d_25519) /\ group_inv edwards25519_group = edwards_neg(integer_mod_ring p_25519,&e_25519,&d_25519) /\ group_mul edwards25519_group = edwards_add(integer_mod_ring p_25519,&e_25519,&d_25519)`, REWRITE_TAC[edwards25519_group] THEN MATCH_MP_TAC EDWARDS_GROUP THEN REWRITE_TAC[EDWARD_NONSINGULAR_25519] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN REWRITE_TAC[e_25519; d_25519; p_25519] THEN REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER] THEN CONV_TAC INT_REDUCE_CONV);; add_ecgroup [e_25519; d_25519; p_25519] EDWARDS25519_GROUP;; let FINITE_GROUP_CARRIER_EDWARDS25519 = prove (`FINITE(group_carrier edwards25519_group)`, REWRITE_TAC[EDWARDS25519_GROUP] THEN MATCH_MP_TAC FINITE_EDWARDS_CURVE THEN REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN REWRITE_TAC[p_25519] THEN CONV_TAC NUM_REDUCE_CONV);; let GENERATOR_IN_GROUP_CARRIER_EDWARDS25519 = prove (`E_25519 IN group_carrier edwards25519_group`, REWRITE_TAC[E_25519] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_EDWARDS25519_E25519 = prove (`group_element_order edwards25519_group E_25519 = n_25519`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_EDWARDS25519; PRIME_N25519] THEN REWRITE_TAC[E_25519; el 1 (CONJUNCTS EDWARDS25519_GROUP)] THEN REWRITE_TAC[edwards_0; PAIR_EQ; INTEGER_MOD_RING] THEN REWRITE_TAC[n_25519; p_25519] THEN CONV_TAC INT_REDUCE_CONV THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REFL_TAC);; let FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS25519 = prove (`EE_25519 IN group_carrier edwards25519_group`, REWRITE_TAC[EE_25519] THEN CONV_TAC ECGROUP_CARRIER_CONV);; let GROUP_ELEMENT_ORDER_EDWARDS25519_EE25519 = prove (`group_element_order edwards25519_group EE_25519 = 8 * n_25519`, ABBREV_TAC `h = (&14399317868200118260347934320527232580618823971194345261214217575416788799818, &2707385501144840649318225287225658788936804267575313519463743609750303402022) :(int#int)` THEN SUBGOAL_THEN `h IN group_carrier edwards25519_group /\ group_element_order edwards25519_group h = 8` STRIP_ASSUME_TAC THENL [EXPAND_TAC "h" THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [CONV_TAC ECGROUP_CARRIER_CONV; SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_ALT; ARITH]] THEN DISCH_TAC THEN REWRITE_TAC[EDWARDS25519_GROUP; edwards_0; INTEGER_MOD_RING] THEN CONJ_TAC THENL [CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN REWRITE_TAC[p_25519] THEN CONV_TAC INT_REDUCE_CONV; ALL_TAC] THEN REWRITE_TAC[IMP_CONJ_ALT] THEN CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN REPEAT CONJ_TAC THEN CONV_TAC(RAND_CONV(LAND_CONV ECGROUP_POW_CONV)) THEN REWRITE_TAC[PAIR_EQ; p_25519] THEN CONV_TAC INT_REDUCE_CONV; ALL_TAC] THEN SUBGOAL_THEN `EE_25519 = group_mul edwards25519_group h E_25519` SUBST1_TAC THENL [EXPAND_TAC "h" THEN REWRITE_TAC[E_25519; EE_25519] THEN CONV_TAC(RAND_CONV ECGROUP_MUL_CONV) THEN REFL_TAC; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ELEMENT_ORDER_MUL_EQ o lhand o snd) THEN ASM_REWRITE_TAC[GROUP_ELEMENT_ORDER_EDWARDS25519_E25519] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_EDWARDS25519] THEN CONJ_TAC THENL [EXPAND_TAC "h" THEN REWRITE_TAC[E_25519] THEN CONV_TAC(BINOP_CONV ECGROUP_MUL_CONV) THEN REFL_TAC; REWRITE_TAC[n_25519] THEN CONV_TAC COPRIME_CONV]);; let SIZE_EDWARDS25519_GROUP = prove (`group_carrier edwards25519_group HAS_SIZE (8 * n_25519)`, REWRITE_TAC[HAS_SIZE; FINITE_GROUP_CARRIER_EDWARDS25519] THEN MP_TAC(ISPECL [`edwards25519_group`; `EE_25519`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN REWRITE_TAC[FINITE_GROUP_CARRIER_EDWARDS25519; FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS25519] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM; GROUP_ELEMENT_ORDER_EDWARDS25519_EE25519] THEN X_GEN_TAC `d:num` THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (ARITH_RULE `d = 0 \/ d = 1 \/ 2 <= d`) THEN ASM_SIMP_TAC[CARD_EQ_0; FINITE_GROUP_CARRIER_EDWARDS25519; MULT_CLAUSES; GROUP_CARRIER_NONEMPTY] THEN MATCH_MP_TAC(ARITH_RULE `s < 16 * n /\ 2 * n <= d * n ==> s = (8 * n) * d ==> x = 8 * n`) THEN REWRITE_TAC[LE_MULT_RCANCEL; n_25519; ARITH_EQ] THEN ASM_REWRITE_TAC[GSYM n_25519; EDWARDS25519_GROUP] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_BOUND_EDWARDS_CURVE o lhand o snd) THEN REWRITE_TAC[EDWARD_NONSINGULAR_25519] THEN REWRITE_TAC[FIELD_INTEGER_MOD_RING; PRIME_P25519] THEN SIMP_TAC[FINITE_INTEGER_MOD_RING; CARD_INTEGER_MOD_RING; IN_INTEGER_MOD_RING_CARRIER; n_25519; p_25519; d_25519; INTEGER_MOD_RING; e_25519; INT_OF_NUM_CLAUSES; ARITH_EQ] THEN ARITH_TAC);; let GENERATED_EDWARDS25519_GROUP = prove (`subgroup_generated edwards25519_group {EE_25519} = edwards25519_group`, SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; FULLGENERATOR_IN_GROUP_CARRIER_EDWARDS25519; FINITE_GROUP_CARRIER_EDWARDS25519] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_EDWARDS25519_EE25519; REWRITE_RULE[HAS_SIZE] SIZE_EDWARDS25519_GROUP]);; let CYCLIC_EDWARDS25519_GROUP = prove (`cyclic_group edwards25519_group`, MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_EDWARDS25519_GROUP]);; let ABELIAN_EDWARDS25519_GROUP = prove (`abelian_group edwards25519_group`, MESON_TAC[CYCLIC_EDWARDS25519_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;