(* ========================================================================= *) (* Basic definitions and properties of complex numbers. *) (* ========================================================================= *) needs "Library/transc.ml";; prioritize_real();; (* ------------------------------------------------------------------------- *) (* Definition of complex number type. *) (* ------------------------------------------------------------------------- *) let complex_tybij_raw = new_type_definition "complex" ("complex","coords") (prove(`?x:real#real. T`,REWRITE_TAC[]));; let complex_tybij = REWRITE_RULE [] complex_tybij_raw;; (* ------------------------------------------------------------------------- *) (* Real and imaginary parts of a number. *) (* ------------------------------------------------------------------------- *) let RE_DEF = new_definition `Re(z) = FST(coords(z))`;; let IM_DEF = new_definition `Im(z) = SND(coords(z))`;; (* ------------------------------------------------------------------------- *) (* Set up overloading. *) (* ------------------------------------------------------------------------- *) do_list overload_interface ["+",`complex_add:complex->complex->complex`; "-",`complex_sub:complex->complex->complex`; "*",`complex_mul:complex->complex->complex`; "/",`complex_div:complex->complex->complex`; "--",`complex_neg:complex->complex`; "pow",`complex_pow:complex->num->complex`; "inv",`complex_inv:complex->complex`];; let prioritize_complex() = prioritize_overload(mk_type("complex",[]));; (* ------------------------------------------------------------------------- *) (* Complex absolute value (modulus). *) (* ------------------------------------------------------------------------- *) make_overloadable "norm" `:A->real`;; overload_interface("norm",`complex_norm:complex->real`);; let complex_norm = new_definition `norm(z) = sqrt(Re(z) pow 2 + Im(z) pow 2)`;; (* ------------------------------------------------------------------------- *) (* Imaginary unit (too inconvenient to use "i"!) *) (* ------------------------------------------------------------------------- *) let ii = new_definition `ii = complex(&0,&1)`;; (* ------------------------------------------------------------------------- *) (* Injection from reals. *) (* ------------------------------------------------------------------------- *) let CX_DEF = new_definition `Cx(a) = complex(a,&0)`;; (* ------------------------------------------------------------------------- *) (* Arithmetic operations. *) (* ------------------------------------------------------------------------- *) let complex_neg = new_definition `--z = complex(--(Re(z)),--(Im(z)))`;; let complex_add = new_definition `w + z = complex(Re(w) + Re(z),Im(w) + Im(z))`;; let complex_sub = new_definition `w - z = w + --z`;; let complex_mul = new_definition `w * z = complex(Re(w) * Re(z) - Im(w) * Im(z), Re(w) * Im(z) + Im(w) * Re(z))`;; let complex_inv = new_definition `inv(z) = complex(Re(z) / (Re(z) pow 2 + Im(z) pow 2), --(Im(z)) / (Re(z) pow 2 + Im(z) pow 2))`;; let complex_div = new_definition `w / z = w * inv(z)`;; let complex_pow = new_recursive_definition num_RECURSION `(x pow 0 = Cx(&1)) /\ (!n. x pow (SUC n) = x * x pow n)`;; (* ------------------------------------------------------------------------- *) (* Various handy rewrites. *) (* ------------------------------------------------------------------------- *) let RE = prove (`(Re(complex(x,y)) = x)`, REWRITE_TAC[RE_DEF; complex_tybij]);; let IM = prove (`Im(complex(x,y)) = y`, REWRITE_TAC[IM_DEF; complex_tybij]);; let COMPLEX = prove (`complex(Re(z),Im(z)) = z`, REWRITE_TAC[IM_DEF; RE_DEF; complex_tybij]);; let COMPLEX_EQ = prove (`!w z. (w = z) <=> (Re(w) = Re(z)) /\ (Im(w) = Im(z))`, REWRITE_TAC[RE_DEF; IM_DEF; GSYM PAIR_EQ] THEN MESON_TAC[complex_tybij]);; (* ------------------------------------------------------------------------- *) (* Crude tactic to automate very simple algebraic equivalences. *) (* ------------------------------------------------------------------------- *) let SIMPLE_COMPLEX_ARITH_TAC = REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF; complex_add; complex_neg; complex_sub; complex_mul] THEN REAL_ARITH_TAC;; let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Basic algebraic properties that can be proved automatically by this. *) (* ------------------------------------------------------------------------- *) let COMPLEX_ADD_SYM = prove (`!x y. x + y = y + x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_ASSOC = prove (`!x y z. x + y + z = (x + y) + z`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_LID = prove (`!x. Cx(&0) + x = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_LINV = prove (`!x. --x + x = Cx(&0)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_SYM = prove (`!x y. x * y = y * x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_ASSOC = prove (`!x y z. x * y * z = (x * y) * z`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_LID = prove (`!x. Cx(&1) * x = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_LDISTRIB = prove (`!x y z. x * (y + z) = x * y + x * z`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_AC = prove (`(m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_AC = prove (`(m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_RID = prove (`!x. x + Cx(&0) = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_RID = prove (`!x. x * Cx(&1) = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_RINV = prove (`!x. x + --x = Cx(&0)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_RDISTRIB = prove (`!x y z. (x + y) * z = x * z + y * z`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_ADD_LCANCEL = prove (`!x y z. (x + y = x + z) <=> (y = z)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_ADD_RCANCEL = prove (`!x y z. (x + z = y + z) <=> (x = y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_RZERO = prove (`!x. x * Cx(&0) = Cx(&0)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_LZERO = prove (`!x. Cx(&0) * x = Cx(&0)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_NEG = prove (`!x. --(--x) = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_RNEG = prove (`!x y. x * --y = --(x * y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_LNEG = prove (`!x y. --x * y = --(x * y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_ADD = prove (`!x y. --(x + y) = --x + --y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_0 = prove (`--Cx(&0) = Cx(&0)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_ADD_LCANCEL_0 = prove (`!x y. (x + y = x) <=> (y = Cx(&0))`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_ADD_RCANCEL_0 = prove (`!x y. (x + y = y) <=> (x = Cx(&0))`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_LNEG_UNIQ = prove (`!x y. (x + y = Cx(&0)) <=> (x = --y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_RNEG_UNIQ = prove (`!x y. (x + y = Cx(&0)) <=> (y = --x)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_LMUL = prove (`!x y. --(x * y) = --x * y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_RMUL = prove (`!x y. --(x * y) = x * --y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_MUL2 = prove (`!x y. --x * --y = x * y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_ADD = prove (`!x y. x - y + y = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_ADD2 = prove (`!x y. y + x - y = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_REFL = prove (`!x. x - x = Cx(&0)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_0 = prove (`!x y. (x - y = Cx(&0)) <=> (x = y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_EQ_0 = prove (`!x. (--x = Cx(&0)) <=> (x = Cx(&0))`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_SUB = prove (`!x y. --(x - y) = y - x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_SUB = prove (`!x y. (x + y) - x = y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_EQ = prove (`!x y. (--x = y) <=> (x = --y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_NEG_MINUS1 = prove (`!x. --x = --Cx(&1) * x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_SUB = prove (`!x y. x - y - x = --y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD2_SUB2 = prove (`!a b c d. (a + b) - (c + d) = a - c + b - d`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_LZERO = prove (`!x. Cx(&0) - x = --x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_RZERO = prove (`!x. x - Cx(&0) = x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_LNEG = prove (`!x y. --x - y = --(x + y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_RNEG = prove (`!x y. x - --y = x + y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_NEG2 = prove (`!x y. --x - --y = y - x`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_TRIANGLE = prove (`!a b c. a - b + b - c = a - c`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_SUB_LADD = prove (`!x y z. (x = y - z) <=> (x + z = y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_SUB_RADD = prove (`!x y z. (x - y = z) <=> (x = z + y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_SUB2 = prove (`!x y. x - (x - y) = y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_ADD_SUB2 = prove (`!x y. x - (x + y) = --y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_DIFFSQ = prove (`!x y. (x + y) * (x - y) = x * x - y * y`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_EQ_NEG2 = prove (`!x y. (--x = --y) <=> (x = y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_LDISTRIB = prove (`!x y z. x * (y - z) = x * y - x * z`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_SUB_RDISTRIB = prove (`!x y z. (x - y) * z = x * z - y * z`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_MUL_2 = prove (`!x. &2 * x = x + x`, SIMPLE_COMPLEX_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Homomorphic embedding properties for Cx mapping. *) (* ------------------------------------------------------------------------- *) let CX_INJ = prove (`!x y. (Cx(x) = Cx(y)) <=> (x = y)`, REWRITE_TAC[CX_DEF; COMPLEX_EQ; RE; IM]);; let CX_NEG = prove (`!x. Cx(--x) = --(Cx(x))`, REWRITE_TAC[CX_DEF; complex_neg; RE; IM; REAL_NEG_0]);; let CX_INV = prove (`!x. Cx(inv x) = inv(Cx x)`, GEN_TAC THEN REWRITE_TAC[CX_DEF; complex_inv; RE; IM] THEN REWRITE_TAC[real_div; REAL_NEG_0; REAL_MUL_LZERO] THEN REWRITE_TAC[COMPLEX_EQ; REAL_POW_2; REAL_MUL_RZERO; RE; IM] THEN REWRITE_TAC[REAL_ADD_RID; REAL_INV_MUL] THEN ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_INV_0; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_MESON_TAC[REAL_MUL_RINV]);; let CX_ADD = prove (`!x y. Cx(x + y) = Cx(x) + Cx(y)`, REWRITE_TAC[CX_DEF; complex_add; RE; IM; REAL_ADD_LID]);; let CX_SUB = prove (`!x y. Cx(x - y) = Cx(x) - Cx(y)`, REWRITE_TAC[complex_sub; real_sub; CX_ADD; CX_NEG]);; let CX_MUL = prove (`!x y. Cx(x * y) = Cx(x) * Cx(y)`, REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_ADD_RID]);; let CX_DIV = prove (`!x y. Cx(x / y) = Cx(x) / Cx(y)`, REWRITE_TAC[complex_div; real_div; CX_MUL; CX_INV]);; let CX_POW = prove (`!x n. Cx(x pow n) = Cx(x) pow n`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; real_pow; CX_MUL]);; let CX_ABS = prove (`!x. Cx(abs x) = Cx(norm(Cx(x)))`, REWRITE_TAC[CX_DEF; complex_norm; COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);; let COMPLEX_NORM_CX = prove (`!x. norm(Cx(x)) = abs(x)`, REWRITE_TAC[GSYM CX_INJ; CX_ABS]);; (* ------------------------------------------------------------------------- *) (* A convenient lemma that we need a few times below. *) (* ------------------------------------------------------------------------- *) let COMPLEX_ENTIRE = prove (`!x y. (x * y = Cx(&0)) <=> (x = Cx(&0)) \/ (y = Cx(&0))`, REWRITE_TAC[COMPLEX_EQ; complex_mul; RE; IM; CX_DEF; GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_RING);; (* ------------------------------------------------------------------------- *) (* Powers. *) (* ------------------------------------------------------------------------- *) let COMPLEX_POW_ADD = prove (`!x m n. x pow (m + n) = x pow m * x pow n`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_ASSOC]);; let COMPLEX_POW_POW = prove (`!x m n. (x pow m) pow n = x pow (m * n)`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; MULT_CLAUSES; COMPLEX_POW_ADD]);; let COMPLEX_POW_1 = prove (`!x. x pow 1 = x`, REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_RID]);; let COMPLEX_POW_2 = prove (`!x. x pow 2 = x * x`, REWRITE_TAC[num_CONV `2`] THEN REWRITE_TAC[complex_pow; COMPLEX_POW_1]);; let COMPLEX_POW_NEG = prove (`!x n. (--x) pow n = if EVEN n then x pow n else --(x pow n)`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; EVEN] THEN ASM_CASES_TAC `EVEN n` THEN ASM_REWRITE_TAC[COMPLEX_MUL_RNEG; COMPLEX_MUL_LNEG; COMPLEX_NEG_NEG]);; let COMPLEX_POW_ONE = prove (`!n. Cx(&1) pow n = Cx(&1)`, INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID]);; let COMPLEX_POW_MUL = prove (`!x y n. (x * y) pow n = (x pow n) * (y pow n)`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_AC]);; let COMPLEX_POW_II_2 = prove (`ii pow 2 = --Cx(&1)`, REWRITE_TAC[ii; COMPLEX_POW_2; complex_mul; CX_DEF; RE; IM; complex_neg] THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let COMPLEX_POW_EQ_0 = prove (`!x n. (x pow n = Cx(&0)) <=> (x = Cx(&0)) /\ ~(n = 0)`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NOT_SUC; complex_pow; COMPLEX_ENTIRE] THENL [SIMPLE_COMPLEX_ARITH_TAC; CONV_TAC TAUT]);; (* ------------------------------------------------------------------------- *) (* Norms (aka "moduli"). *) (* ------------------------------------------------------------------------- *) let COMPLEX_NORM_CX = prove (`!x. norm(Cx x) = abs(x)`, GEN_TAC THEN REWRITE_TAC[complex_norm; CX_DEF; RE; IM] THEN REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);; let COMPLEX_NORM_POS = prove (`!z. &0 <= norm(z)`, SIMP_TAC[complex_norm; SQRT_POS_LE; REAL_POW_2; REAL_LE_SQUARE; REAL_LE_ADD]);; let COMPLEX_ABS_NORM = prove (`!z. abs(norm z) = norm z`, REWRITE_TAC[real_abs; COMPLEX_NORM_POS]);; let COMPLEX_NORM_ZERO = prove (`!z. (norm z = &0) <=> (z = Cx(&0))`, GEN_TAC THEN REWRITE_TAC[complex_norm] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_0] THEN SIMP_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LE_ADD; REAL_POS; SQRT_INJ] THEN REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF] THEN SIMP_TAC[REAL_LE_SQUARE; REAL_ARITH `&0 <= x /\ &0 <= y ==> ((x + y = &0) <=> (x = &0) /\ (y = &0))`] THEN REWRITE_TAC[REAL_ENTIRE]);; let COMPLEX_NORM_NUM = prove (`norm(Cx(&n)) = &n`, REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM]);; let COMPLEX_NORM_0 = prove (`norm(Cx(&0)) = &0`, MESON_TAC[COMPLEX_NORM_ZERO]);; let COMPLEX_NORM_NZ = prove (`!z. &0 < norm(z) <=> ~(z = Cx(&0))`, MESON_TAC[COMPLEX_NORM_ZERO; COMPLEX_ABS_NORM; REAL_ABS_NZ]);; let COMPLEX_NORM_NEG = prove (`!z. norm(--z) = norm(z)`, REWRITE_TAC[complex_neg; complex_norm; REAL_POW_2; RE; IM] THEN GEN_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC);; let COMPLEX_NORM_MUL = prove (`!w z. norm(w * z) = norm(w) * norm(z)`, REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm; complex_mul; RE; IM] THEN SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN AP_TERM_TAC THEN REAL_ARITH_TAC);; let COMPLEX_NORM_POW = prove (`!z n. norm(z pow n) = norm(z) pow n`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; real_pow; COMPLEX_NORM_NUM; COMPLEX_NORM_MUL]);; let COMPLEX_NORM_INV = prove (`!z. norm(inv z) = inv(norm z)`, GEN_TAC THEN REWRITE_TAC[complex_norm; complex_inv; RE; IM] THEN REWRITE_TAC[REAL_POW_2; real_div] THEN REWRITE_TAC[REAL_ARITH `(r * d) * r * d + (--i * d) * --i * d = (r * r + i * i) * d * d:real`] THEN ASM_CASES_TAC `Re z * Re z + Im z * Im z = &0` THENL [ASM_REWRITE_TAC[REAL_INV_0; SQRT_0; REAL_MUL_LZERO]; ALL_TAC] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN SIMP_TAC[GSYM SQRT_MUL; REAL_LE_MUL; REAL_LE_INV_EQ; REAL_LE_ADD; REAL_LE_SQUARE] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * a * b * b:real = (a * b) * (a * b)`] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID; SQRT_1]);; let COMPLEX_NORM_DIV = prove (`!w z. norm(w / z) = norm(w) / norm(z)`, REWRITE_TAC[complex_div; real_div; COMPLEX_NORM_INV; COMPLEX_NORM_MUL]);; let COMPLEX_NORM_TRIANGLE = prove (`!w z. norm(w + z) <= norm(w) + norm(z)`, REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm; complex_add; RE; IM] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs(x) <= abs(y) ==> x <= y`) THEN SIMP_TAC[SQRT_POS_LE; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE; REAL_LE_SQUARE_ABS; SQRT_POW_2] THEN GEN_REWRITE_TAC RAND_CONV[REAL_ARITH `(a + b) * (a + b) = a * a + b * b + &2 * a * b`] THEN REWRITE_TAC[GSYM REAL_POW_2] THEN SIMP_TAC[SQRT_POW_2; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN REWRITE_TAC[REAL_ARITH `(rw + rz) * (rw + rz) + (iw + iz) * (iw + iz) <= (rw * rw + iw * iw) + (rz * rz + iz * iz) + &2 * other <=> rw * rz + iw * iz <= other`] THEN SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs(x) <= abs(y) ==> x <= y`) THEN SIMP_TAC[SQRT_POS_LE; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE; REAL_LE_SQUARE_ABS; SQRT_POW_2; REAL_LE_MUL] THEN REWRITE_TAC[REAL_ARITH `(rw * rz + iw * iz) * (rw * rz + iw * iz) <= (rw * rw + iw * iw) * (rz * rz + iz * iz) <=> &0 <= (rw * iz - rz * iw) * (rw * iz - rz * iw)`] THEN REWRITE_TAC[REAL_LE_SQUARE]);; let COMPLEX_NORM_TRIANGLE_SUB = prove (`!w z. norm(w) <= norm(w + z) + norm(z)`, MESON_TAC[COMPLEX_NORM_TRIANGLE; COMPLEX_NORM_NEG; COMPLEX_ADD_ASSOC; COMPLEX_ADD_RINV; COMPLEX_ADD_RID]);; let COMPLEX_NORM_ABS_NORM = prove (`!w z. abs(norm w - norm z) <= norm(w - z)`, REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH `a - b <= x /\ b - a <= x ==> abs(a - b) <= x:real`) THEN MESON_TAC[COMPLEX_NEG_SUB; COMPLEX_NORM_NEG; REAL_LE_SUB_RADD; complex_sub; COMPLEX_NORM_TRIANGLE_SUB]);; (* ------------------------------------------------------------------------- *) (* Complex conjugate. *) (* ------------------------------------------------------------------------- *) let cnj = new_definition `cnj(z) = complex(Re(z),--(Im(z)))`;; (* ------------------------------------------------------------------------- *) (* Conjugation is an automorphism. *) (* ------------------------------------------------------------------------- *) let CNJ_INJ = prove (`!w z. (cnj(w) = cnj(z)) <=> (w = z)`, REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_EQ_NEG2]);; let CNJ_CNJ = prove (`!z. cnj(cnj z) = z`, REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_NEG_NEG]);; let CNJ_CX = prove (`!x. cnj(Cx x) = Cx x`, REWRITE_TAC[cnj; COMPLEX_EQ; CX_DEF; REAL_NEG_0; RE; IM]);; let COMPLEX_NORM_CNJ = prove (`!z. norm(cnj z) = norm(z)`, REWRITE_TAC[complex_norm; cnj; REAL_POW_2] THEN REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; RE; IM; REAL_NEG_NEG]);; let CNJ_NEG = prove (`!z. cnj(--z) = --(cnj z)`, REWRITE_TAC[cnj; complex_neg; COMPLEX_EQ; RE; IM]);; let CNJ_INV = prove (`!z. cnj(inv z) = inv(cnj z)`, REWRITE_TAC[cnj; complex_inv; COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[real_div; REAL_NEG_NEG; REAL_POW_2; REAL_MUL_LNEG; REAL_MUL_RNEG]);; let CNJ_ADD = prove (`!w z. cnj(w + z) = cnj(w) + cnj(z)`, REWRITE_TAC[cnj; complex_add; COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);; let CNJ_SUB = prove (`!w z. cnj(w - z) = cnj(w) - cnj(z)`, REWRITE_TAC[complex_sub; CNJ_ADD; CNJ_NEG]);; let CNJ_MUL = prove (`!w z. cnj(w * z) = cnj(w) * cnj(z)`, REWRITE_TAC[cnj; complex_mul; COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);; let CNJ_DIV = prove (`!w z. cnj(w / z) = cnj(w) / cnj(z)`, REWRITE_TAC[complex_div; CNJ_MUL; CNJ_INV]);; let CNJ_POW = prove (`!z n. cnj(z pow n) = cnj(z) pow n`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; CNJ_MUL; CNJ_CX]);; (* ------------------------------------------------------------------------- *) (* Conversion of (complex-type) rational constant to ML rational number. *) (* ------------------------------------------------------------------------- *) let is_complex_const = let cx_tm = `Cx` in fun tm -> is_comb tm && let l,r = dest_comb tm in l = cx_tm && is_ratconst r;; let dest_complex_const = let cx_tm = `Cx` in fun tm -> let l,r = dest_comb tm in if l = cx_tm then rat_of_term r else failwith "dest_complex_const";; let mk_complex_const = let cx_tm = `Cx` in fun r -> mk_comb(cx_tm,term_of_rat r);; (* ------------------------------------------------------------------------- *) (* Conversions to perform operations if coefficients are rational constants. *) (* ------------------------------------------------------------------------- *) let COMPLEX_RAT_MUL_CONV = GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;; let COMPLEX_RAT_ADD_CONV = GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;; let COMPLEX_RAT_EQ_CONV = GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;; let COMPLEX_RAT_POW_CONV = let x_tm = `x:real` and n_tm = `n:num` in let pth = SYM(SPECL [x_tm; n_tm] CX_POW) in fun tm -> let lop,r = dest_comb tm in let op,bod = dest_comb lop in let th1 = INST [rand bod,x_tm; r,n_tm] pth in let tm1,tm2 = dest_comb(concl th1) in if rand tm1 <> tm then failwith "COMPLEX_RAT_POW_CONV" else let tm3,tm4 = dest_comb tm2 in TRANS th1 (AP_TERM tm3 (REAL_RAT_REDUCE_CONV tm4));; (* ------------------------------------------------------------------------- *) (* Instantiate polynomial normalizer. *) (* ------------------------------------------------------------------------- *) let COMPLEX_POLY_CLAUSES = prove (`(!x y z. x + (y + z) = (x + y) + z) /\ (!x y. x + y = y + x) /\ (!x. Cx(&0) + x = x) /\ (!x y z. x * (y * z) = (x * y) * z) /\ (!x y. x * y = y * x) /\ (!x. Cx(&1) * x = x) /\ (!x. Cx(&0) * x = Cx(&0)) /\ (!x y z. x * (y + z) = x * y + x * z) /\ (!x. x pow 0 = Cx(&1)) /\ (!x n. x pow (SUC n) = x * x pow n)`, REWRITE_TAC[complex_pow] THEN SIMPLE_COMPLEX_ARITH_TAC) and COMPLEX_POLY_NEG_CLAUSES = prove (`(!x. --x = Cx(-- &1) * x) /\ (!x y. x - y = x + Cx(-- &1) * y)`, SIMPLE_COMPLEX_ARITH_TAC);; let COMPLEX_POLY_NEG_CONV,COMPLEX_POLY_ADD_CONV,COMPLEX_POLY_SUB_CONV, COMPLEX_POLY_MUL_CONV,COMPLEX_POLY_POW_CONV,COMPLEX_POLY_CONV = SEMIRING_NORMALIZERS_CONV COMPLEX_POLY_CLAUSES COMPLEX_POLY_NEG_CLAUSES (is_complex_const, COMPLEX_RAT_ADD_CONV,COMPLEX_RAT_MUL_CONV,COMPLEX_RAT_POW_CONV) (<);; let COMPLEX_RAT_INV_CONV = GEN_REWRITE_CONV I [GSYM CX_INV] THENC RAND_CONV REAL_RAT_INV_CONV;; let COMPLEX_POLY_CONV = let neg_tm = `(--):complex->complex` and inv_tm = `inv:complex->complex` and add_tm = `(+):complex->complex->complex` and sub_tm = `(-):complex->complex->complex` and mul_tm = `(*):complex->complex->complex` and div_tm = `(/):complex->complex->complex` and pow_tm = `(pow):complex->num->complex` and div_conv = REWR_CONV complex_div in let rec COMPLEX_POLY_CONV tm = if not(is_comb tm) || is_complex_const tm then REFL tm else let lop,r = dest_comb tm in if lop = neg_tm then let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in TRANS th1 (COMPLEX_POLY_NEG_CONV (rand(concl th1))) else if lop = inv_tm then let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in TRANS th1 (TRY_CONV COMPLEX_RAT_INV_CONV (rand(concl th1))) else if not(is_comb lop) then REFL tm else let op,l = dest_comb lop in if op = pow_tm then let th1 = AP_THM (AP_TERM op (COMPLEX_POLY_CONV l)) r in TRANS th1 (TRY_CONV COMPLEX_POLY_POW_CONV (rand(concl th1))) else if op = add_tm || op = mul_tm || op = sub_tm then let th1 = MK_COMB(AP_TERM op (COMPLEX_POLY_CONV l), COMPLEX_POLY_CONV r) in let fn = if op = add_tm then COMPLEX_POLY_ADD_CONV else if op = mul_tm then COMPLEX_POLY_MUL_CONV else COMPLEX_POLY_SUB_CONV in TRANS th1 (fn (rand(concl th1))) else if op = div_tm then let th1 = div_conv tm in TRANS th1 (COMPLEX_POLY_CONV (rand(concl th1))) else REFL tm in COMPLEX_POLY_CONV;; (* ------------------------------------------------------------------------- *) (* Complex number version of usual ring procedure. *) (* ------------------------------------------------------------------------- *) let COMPLEX_MUL_LINV = prove (`!z. ~(z = Cx(&0)) ==> (inv(z) * z = Cx(&1))`, REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);; let COMPLEX_MUL_RINV = prove (`!z. ~(z = Cx(&0)) ==> (z * inv(z) = Cx(&1))`, ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[COMPLEX_MUL_LINV]);; let COMPLEX_RING,complex_ideal_cofactors = let ring_pow_tm = `(pow):complex->num->complex` and COMPLEX_INTEGRAL = prove (`(!x. Cx(&0) * x = Cx(&0)) /\ (!x y z. (x + y = x + z) <=> (y = z)) /\ (!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`, REWRITE_TAC[COMPLEX_ENTIRE; SIMPLE_COMPLEX_ARITH `(w * y + x * z = w * z + x * y) <=> (w - x) * (y - z) = Cx(&0)`] THEN SIMPLE_COMPLEX_ARITH_TAC) and COMPLEX_RABINOWITSCH = prove (`!x y:complex. ~(x = y) <=> ?z. (x - y) * z = Cx(&1)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_SUB_0] THEN MESON_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LZERO; SIMPLE_COMPLEX_ARITH `~(Cx(&1) = Cx(&0))`]) and init = ALL_CONV in let pure,ideal = RING_AND_IDEAL_CONV (dest_complex_const,mk_complex_const,COMPLEX_RAT_EQ_CONV, `(--):complex->complex`,`(+):complex->complex->complex`, `(-):complex->complex->complex`,`(inv):complex->complex`, `(*):complex->complex->complex`,`(/):complex->complex->complex`, `(pow):complex->num->complex`, COMPLEX_INTEGRAL,COMPLEX_RABINOWITSCH,COMPLEX_POLY_CONV) in (fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))), ideal;; (* ------------------------------------------------------------------------- *) (* Most basic properties of inverses. *) (* ------------------------------------------------------------------------- *) let COMPLEX_INV_0 = prove (`inv(Cx(&0)) = Cx(&0)`, REWRITE_TAC[complex_inv; CX_DEF; RE; IM; real_div; REAL_MUL_LZERO; REAL_NEG_0]);; let COMPLEX_INV_MUL = prove (`!w z. inv(w * z) = inv(w) * inv(z)`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`w = Cx(&0)`; `z = Cx(&0)`] THEN ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);; let COMPLEX_INV_1 = prove (`inv(Cx(&1)) = Cx(&1)`, REWRITE_TAC[complex_inv; CX_DEF; RE; IM] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_DIV_1]);; let COMPLEX_POW_INV = prove (`!x n. (inv x) pow n = inv(x pow n)`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_INV_1; COMPLEX_INV_MUL]);; let COMPLEX_INV_INV = prove (`!x:complex. inv(inv x) = x`, GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_INV_0] THEN POP_ASSUM MP_TAC THEN MAP_EVERY (fun t -> MP_TAC(SPEC t COMPLEX_MUL_RINV)) [`x:complex`; `inv(x):complex`] THEN CONV_TAC COMPLEX_RING);; (* ------------------------------------------------------------------------- *) (* And also field procedure. *) (* ------------------------------------------------------------------------- *) let COMPLEX_FIELD = let prenex_conv = TOP_DEPTH_CONV BETA_CONV THENC PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; complex_div; COMPLEX_INV_INV; COMPLEX_INV_MUL; GSYM REAL_POW_INV] THENC NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC PRENEX_CONV and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV and is_inv = let inv_tm = `inv:complex->complex` and is_div = is_binop `(/):complex->complex->complex` in fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) && not(is_complex_const(rand tm)) and lemma_inv = MESON[COMPLEX_MUL_RINV] `!x. x = Cx(&0) \/ x * inv(x) = Cx(&1)` and dcases = MATCH_MP(TAUT `(p \/ q) /\ (r \/ s) ==> (p \/ r) \/ q /\ s`) in let cases_rule th1 th2 = dcases (CONJ th1 th2) in let BASIC_COMPLEX_FIELD tm = let is_freeinv t = is_inv t && free_in t tm in let itms = setify(map rand (find_terms is_freeinv tm)) in let dth = if itms = [] then TRUTH else end_itlist cases_rule (map (C SPEC lemma_inv) itms) in let tm' = mk_imp(concl dth,tm) in let th1 = setup_conv tm' in let ths = map COMPLEX_RING (conjuncts(rand(concl th1))) in let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in MP (EQ_MP (SYM th1) (end_itlist CONJ ths)) dth in fun tm -> let th0 = prenex_conv tm in let tm0 = rand(concl th0) in let avs,bod = strip_forall tm0 in let th1 = setup_conv bod in let ths = map BASIC_COMPLEX_FIELD (conjuncts(rand(concl th1))) in EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));; (* ------------------------------------------------------------------------- *) (* Properties of inverses, divisions are now mostly automatic. *) (* ------------------------------------------------------------------------- *) let COMPLEX_POW_DIV = prove (`!x y n. (x / y) pow n = (x pow n) / (y pow n)`, REWRITE_TAC[complex_div; COMPLEX_POW_MUL; COMPLEX_POW_INV]);; let COMPLEX_DIV_REFL = prove (`!x. ~(x = Cx(&0)) ==> (x / x = Cx(&1))`, CONV_TAC COMPLEX_FIELD);; let COMPLEX_EQ_MUL_LCANCEL = prove (`!x y z. (x * y = x * z) <=> (x = Cx(&0)) \/ (y = z)`, CONV_TAC COMPLEX_FIELD);; let COMPLEX_EQ_MUL_RCANCEL = prove (`!x y z. (x * z = y * z) <=> (x = y) \/ (z = Cx(&0))`, CONV_TAC COMPLEX_FIELD);; let COMPLEX_MUL_RINV_UNIQ = prove (`!w z. w * z = Cx(&1) ==> inv w = z`, CONV_TAC COMPLEX_FIELD);; let COMPLEX_MUL_LINV_UNIQ = prove (`!w z. w * z = Cx(&1) ==> inv z = w`, CONV_TAC COMPLEX_FIELD);; let COMPLEX_DIV_LMUL = prove (`!w z. ~(z = Cx(&0)) ==> z * w / z = w`, CONV_TAC COMPLEX_FIELD);; let COMPLEX_DIV_RMUL = prove (`!w z. ~(z = Cx(&0)) ==> w / z * z = w`, CONV_TAC COMPLEX_FIELD);;