import for_mathlib.nonarchimedean.is_subgroups_basis import for_mathlib.uniform_space.group_basis import valuation.basic /-! # The topology on a valued ring In this file, we define the topology induced by a valuation on a ring. -/ open_locale classical topological_space noncomputable theory local attribute [instance, priority 0] classical.DLO open set valuation linear_ordered_structure section variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] variables {R : Type*} [ring R] /-- The subgroup of elements whose valuation is less than a certain unit.-/ def valuation.subgroup (v : valuation R Γ₀) (γ : units Γ₀) : set R := {x | v x < γ} lemma valuation.lt_is_add_subgroup (v : valuation R Γ₀) (γ : units Γ₀) : is_add_subgroup {x | v x < γ} := { zero_mem := by { have h := group_with_zero.unit_ne_zero γ, contrapose! h, simpa using h }, add_mem := λ x y x_in y_in, lt_of_le_of_lt (v.map_add x y) (max_lt x_in y_in), neg_mem := λ x x_in, by rwa [mem_set_of_eq, map_neg] } -- is this an OK place to put this? lemma valuation.le_is_add_subgroup (v : valuation R Γ₀) (γ : units Γ₀) : is_add_subgroup {x | v x ≤ γ} := { zero_mem := by simp, add_mem := λ x y x_in y_in, le_trans (v.map_add x y) (max_le x_in y_in), neg_mem := λ x x_in, by rwa [mem_set_of_eq, map_neg] } end local attribute [instance] valuation.lt_is_add_subgroup universe u /-- A valued ring is a ring that comes equipped with a distinguished valuation.-/ class valued (R : Type u) [ring R] := (Γ₀ : Type u) [grp : linear_ordered_comm_group_with_zero Γ₀] (v : valuation R Γ₀) attribute [instance] valued.grp open valued namespace valued variables {R : Type*} [ring R] [valued R] /-- The function underlying the valuation of a valued ring.-/ def value : R → (valued.Γ₀ R) := (valued.v R) local notation `v` := valued.value -- The following four lemmas are restatements that seem to be unfortunately needed lemma map_zero : v (0 : R) = 0 := valuation.map_zero _ lemma map_one : v (1 : R) = 1 := valuation.map_one _ lemma map_mul (x y : R) : v (x*y) = v x * v y := valuation.map_mul _ _ _ lemma map_add (x y : R) : v (x+y) ≤ max (v x) (v y) := valuation.map_add _ _ _ /-- The basis of open subgroups for the topology on a valued ring.-/ def subgroups_basis : subgroups_basis R := { sets := range (valued.v R).subgroup, ne_empty := ⟨_, mem_range_self 1⟩, directed := begin rintros _ _ ⟨γ₀, rfl⟩ ⟨γ₁, rfl⟩, rw exists_mem_range, use min γ₀ γ₁, simp only [set_of_subset_set_of, subset_inter_iff, valuation.subgroup], split ; intros x x_lt ; rw coe_min at x_lt, { exact lt_of_lt_of_le x_lt (min_le_left _ _) }, { exact lt_of_lt_of_le x_lt (min_le_right _ _) } end, sub_groups := by { rintros _ ⟨γ, rfl⟩, exact (valued.v R).lt_is_add_subgroup γ }, h_mul := begin rintros _ ⟨γ, rfl⟩, rw set.exists_mem_range', cases linear_ordered_structure.exists_square_le γ with γ₀ h, replace h : (γ₀*γ₀ : valued.Γ₀ R) ≤ γ, exact_mod_cast h, use γ₀, rintro x ⟨r, r_in, s, s_in, rfl⟩, refine lt_of_lt_of_le _ h, rw valuation.map_mul, exact mul_lt_mul' r_in s_in end, h_left_mul := begin rintros x _ ⟨γ, rfl⟩, rw exists_mem_range', dsimp [valuation.subgroup], by_cases Hx : ∃ γx : units (Γ₀ R), v x = (γx : Γ₀ R), { cases Hx with γx Hx, simp only [image_subset_iff, set_of_subset_set_of, preimage_set_of_eq, valuation.map_mul], use γx⁻¹*γ, intros y vy_lt, change v y < ↑(γx⁻¹ * γ) at vy_lt, change v x * v y < ↑γ, rw Hx, rw units.coe_mul at vy_lt, apply actual_ordered_comm_monoid.lt_of_mul_lt_mul_left (γx⁻¹ : Γ₀ R), rwa [← mul_assoc, inv_mul_cancel' _ (group_with_zero.unit_ne_zero _), one_mul, ← group_with_zero.coe_inv_unit] }, { rw [← ne_zero_iff_exists, not_not] at Hx, use 1, intros y y_in, erw [mem_set_of_eq, valuation.map_mul], change v x * v y < _, erw [Hx, zero_mul], exact zero_lt_unit _ } end, h_right_mul := begin rintros x _ ⟨γ, rfl⟩, rw exists_mem_range', dsimp [valuation.subgroup], by_cases Hx : ∃ γx : units (Γ₀ R), v x = γx, { cases Hx with γx Hx, simp only [image_subset_iff, set_of_subset_set_of, preimage_set_of_eq, valuation.map_mul], use γ * γx⁻¹, intros y vy_lt, change v y * v x < _, rw Hx, apply actual_ordered_comm_monoid.lt_of_mul_lt_mul_right' (γx⁻¹ : Γ₀ R), rwa [mul_assoc, mul_inv_cancel' _ (group_with_zero.unit_ne_zero _), mul_one, ← group_with_zero.coe_inv_unit], }, { rw [← ne_zero_iff_exists, not_not] at Hx, use 1, intros y y_in, rw [mem_set_of_eq, valuation.map_mul], change v y * v x < _, erw [Hx, mul_zero], exact zero_lt_unit _ } end } local attribute [instance] valued.subgroups_basis subgroups_basis.topology ring_filter_basis.topological_ring lemma mem_basis_zero {s : set R} : s ∈ filter_basis.sets R ↔ ∃ γ : units (valued.Γ₀ R), {x | valued.v R x < (γ : valued.Γ₀ R)} = s := iff.rfl lemma mem_nhds {s : set R} {x : R} : (s ∈ 𝓝 x) ↔ ∃ γ : units (valued.Γ₀ R), {y | v (y - x) < γ } ⊆ s := begin erw [subgroups_basis.mem_nhds, exists_mem_range], exact iff.rfl, end lemma mem_nhds_zero {s : set R} : (s ∈ 𝓝 (0 : R)) ↔ ∃ γ : units (Γ₀ R), {x | v x < (γ : Γ₀ R) } ⊆ s := by simp [valued.mem_nhds, sub_zero] lemma loc_const {x : R} (h : v x ≠ 0) : {y : R | v y = v x} ∈ 𝓝 x := begin rw valued.mem_nhds, rcases ne_zero_iff_exists.mp h with ⟨γ, hx⟩, use γ, rw ← hx, intros y y_in, exact valuation.map_eq_of_sub_lt _ y_in end /-- The uniform structure on a valued ring.-/ def uniform_space : uniform_space R := topological_add_group.to_uniform_space R local attribute [instance] valued.uniform_space /-- A valued ring is a uniform additive group.-/ lemma uniform_add_group : uniform_add_group R := topological_add_group_is_uniform local attribute [instance] valued.uniform_add_group lemma cauchy_iff {F : filter R} : cauchy F ↔ F ≠ ⊥ ∧ ∀ γ : units (valued.Γ₀ R), ∃ M ∈ F, ∀ x y, x ∈ M → y ∈ M → y - x ∈ {x : R | valued.v R x < ↑γ} := begin rw add_group_filter_basis.cauchy_iff R rfl, apply and_congr iff.rfl, split, { intros h γ, apply h, erw valued.mem_basis_zero, use γ }, { intros h U U_in, rcases valued.mem_basis_zero.mp U_in with ⟨γ, rfl⟩, clear U_in, apply h } end end valued