/- Presheaf (of types). https://stacks.math.columbia.edu/tag/006D Author: Ramon Fernandez Mir -/ import topology.basic import topology.opens universes u v -- Definition of a presheaf. open topological_space lattice structure presheaf (α : Type u) [topological_space α] := (F : opens α → Type v) (res : ∀ (U V) (HVU : V ⊆ U), F U → F V) (Hid : ∀ (U), res U U (set.subset.refl U) = id) (Hcomp : ∀ (U V W) (HWV : W ⊆ V) (HVU : V ⊆ U), res U W (set.subset.trans HWV HVU) = res V W HWV ∘ res U V HVU) namespace presheaf variables {α : Type u} [topological_space α] instance : has_coe_to_fun (presheaf α) := { F := λ _, opens α → Type v, coe := presheaf.F } -- Simplification lemmas for Hid and Hcomp. @[simp] lemma Hcomp' (F : presheaf α) : ∀ (U V W) (HWV : W ⊆ V) (HVU : V ⊆ U) (s : F U), (F.res U W (set.subset.trans HWV HVU)) s = (F.res V W HWV) ((F.res U V HVU) s) := λ U V W HWV HVU s, by rw F.Hcomp U V W HWV HVU @[simp] lemma Hid' (F : presheaf α) : ∀ (U) (s : F U), (F.res U U (set.subset.refl U)) s = s := λ U s, by rw F.Hid U; simp -- Morphism of presheaves. structure morphism (F G : presheaf α) := (map : ∀ (U), F U → G U) (commutes : ∀ (U V) (HVU : V ⊆ U), (G.res U V HVU) ∘ (map U) = (map V) ∘ (F.res U V HVU)) local infix `⟶`:80 := morphism section morphism def comp {F G H : presheaf α} (fg : F ⟶ G) (gh : G ⟶ H) : F ⟶ H := { map := λ U, gh.map U ∘ fg.map U, commutes := λ U V HVU, begin rw [←function.comp.assoc, gh.commutes U V HVU], symmetry, rw [function.comp.assoc, ←fg.commutes U V HVU] end } local infix `⊚`:80 := comp def id (F : presheaf α) : F ⟶ F := { map := λ U, id, commutes := λ U V HVU, by simp, } structure iso (F G : presheaf α) := (mor : F ⟶ G) (inv : G ⟶ F) (mor_inv_id : mor ⊚ inv = id F) (inv_mor_id : inv ⊚ mor = id G) end morphism end presheaf