import continuous_valuations import Huber_pair /-! # The adic spectrum as a topological space In this file we define a structure (`rational_open_data`) that will parameterise a basis for the topology on the adic spectrum of a Huber pair. -/ open_locale classical local attribute [instance] set.pointwise_mul_comm_semiring local attribute [instance] set.smul_set_action local postfix `⁺` : 66 := λ A : Huber_pair, A.plus variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] -- We reserve the name `Spa` (with upper case `S`) for the bundled adic spectrum (`adic_space.lean`) /-- The space underlying the adic spectrum of a Huber pair (A,A⁺) consists of all the equivalence classes of valuations that are continuous and whose value on the ring A⁺ is ≤ 1. [Wedhorn, Def 7.23]. -/ definition spa (A : Huber_pair) : Type := {v : Spv A // v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1} /--The equivalence class of a valuation is contained in spa if and only if the valuation is continuous and its values on the ring A⁺ are ≤ 1, since these properties are constant on equivalence classes.-/ lemma mk_mem_spa {A : Huber_pair} {v : valuation A Γ₀} : Spv.mk v ∈ {v : Spv A | v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1} ↔ v.is_continuous ∧ ∀ r : A⁺, v (algebra_map A r) ≤ 1 := begin apply and_congr, { exact (Spv.out_mk v).is_continuous_iff, }, { apply forall_congr, intro r, simpa using (Spv.out_mk v) (algebra_map A r) 1, } end namespace spa open set algebra variables {A : Huber_pair} /-- The coercion from the adic spectrum of a Huber pair to the ambient valuation spectrum.-/ instance : has_coe (spa A) (Spv A) := ⟨subtype.val⟩ @[ext] lemma ext (v₁ v₂ : spa A) (h : (Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) : v₁ = v₂ := subtype.val_injective $ Spv.ext _ _ h lemma ext_iff {v₁ v₂ : spa A} : v₁ = v₂ ↔ ((Spv.out ↑v₁).is_equiv (Spv.out (↑v₂ : Spv A))) := by rw [subtype.coe_ext, Spv.ext_iff] /-- The value monoid of a random representative valuation of a point in the adic spectrum. -/ abbreviation out_Γ₀ (v : spa A) := Spv.out_Γ₀ (v : Spv A) /-- A valuation in the adic spectrum is continuous. -/ lemma is_continuous (v : spa A) : Spv.is_continuous (v : Spv A) := v.property.left /-- The valuation of an integral element is at most 1. -/ lemma map_plus (v : spa A) (a : (A⁺)) : v (algebra_map A a) ≤ 1 := v.property.right a /-- The valuation of a unit of the ring of integral elements is 1. -/ @[simp] lemma map_unit (v : spa A) (u : units (A⁺)) : v ((algebra_map A : (A⁺) → A) u) = 1 := begin have h₁ := map_plus v u, have h₂ := map_plus v (u⁻¹ : _), have := actual_ordered_comm_monoid.mul_eq_one_iff_of_le_one' h₁ h₂, apply (this.mp _).left, erw ← valuation.map_mul, rw ← is_ring_hom.map_mul (algebra_map A : (A⁺) → A), simp only [units.mul_inv, algebra.map_one, valuation.map_one] end -- We are now going to setup the topology on `spa A`. -- A basis of the topology is indexed by the following data: /--A rational open subset of `spa A` is indexed by: * an element s of A, and * a finite set T ⊆ A that generates an open ideal in A. In the literature, these sets are commonly denoted by D(T,s).-/ structure rational_open_data (A : Huber_pair) := (s : A) (T : set A) [Tfin : fintype T] (Hopen : is_open ((ideal.span T) : set A)) namespace rational_open_data variables (r : rational_open_data A) attribute [instance] Tfin @[ext] lemma ext {r₁ r₂ : rational_open_data A} (hs : r₁.s = r₂.s) (hT : r₁.T = r₂.T) : r₁ = r₂ := begin cases r₁, cases r₂, congr; assumption end /--The subset of the adic spectrum associated with the data for a rational open subset. In the literature, these sets are commonly denoted by D(T,s).-/ def open_set (r : rational_open_data A) : set (spa A) := {v : spa A | (∀ t ∈ r.T, (v t ≤ v r.s)) ∧ (v r.s ≠ 0)} variable (A) /--The rational open subset covering the entire adic spectrum.-/ def univ : rational_open_data A := { s := 1, T := {1}, Hopen := by { rw ideal.span_singleton_one, exact is_open_univ } } variable {A} @[simp] lemma univ_s : (univ A).s = 1 := rfl @[simp] lemma univ_T : (univ A).T = {1} := rfl @[simp] lemma univ_open_set : (univ A).open_set = set.univ := begin rw eq_univ_iff_forall, intros v, split, { intros t ht, erw mem_singleton_iff at ht, rw [ht, univ_s], }, { erw [univ_s, Spv.map_one], exact one_ne_zero } end /--The rational open subset D(T,s) is the same as D(T ∪ {s}, s).-/ noncomputable def insert_s (r : rational_open_data A) : rational_open_data A := { s := r.s, T := insert r.s r.T, Hopen := submodule.is_open_of_open_submodule ⟨ideal.span (r.T), r.Hopen, ideal.span_mono $ set.subset_insert _ _⟩ } @[simp] lemma insert_s_s (r : rational_open_data A) : (insert_s r).s = r.s := rfl @[simp] lemma insert_s_T (r : rational_open_data A) : (insert_s r).T = insert r.s r.T := rfl @[simp] lemma insert_s_open_set (r : rational_open_data A) : (insert_s r).open_set = r.open_set := begin ext v, split; rintros ⟨h₁, h₂⟩; split; try { exact h₂ }; intros t ht, { apply h₁ t, exact mem_insert_of_mem _ ht }, { cases ht, { rw [ht, insert_s_s], }, { exact h₁ t ht } }, end lemma mem_insert_s (r : rational_open_data A) : r.s ∈ (insert_s r).T := by {left, refl} /-- Auxilliary definition for the intersection of two rational open sets.-/ noncomputable def inter_aux (r1 r2 : rational_open_data A) : rational_open_data A := { s := r1.s * r2.s, T := r1.T * r2.T, Tfin := set.pointwise_mul_fintype _ _, Hopen := begin rcases Huber_ring.exists_pod_subset _ (mem_nhds_sets r1.Hopen $ ideal.zero_mem $ ideal.span r1.T) with ⟨A₀, _, _, _, ⟨_, emb, I, fg, top⟩, hI⟩, dsimp only at hI, resetI, rw is_ideal_adic_iff at top, cases top.2 (algebra_map A ⁻¹' ↑(ideal.span r2.T)) _ with n hn, { apply submodule.is_open_of_open_submodule, use ideal.map (of_id A₀ A) (I^(n+1)), refine ⟨is_open_ideal_map_open_embedding emb _ (top.1 (n+1)), _⟩, delta ideal.span, erw [pow_succ, ideal.map_mul, ← submodule.span_mul_span], apply submodule.mul_le_mul, { exact (ideal.span_le.mpr hI) }, { rw ← image_subset_iff at hn, exact (ideal.span_le.mpr hn) } }, { apply emb.continuous.tendsto, rw show algebra.to_fun A (0:A₀) = 0, { haveI : is_ring_hom (algebra.to_fun A : A₀ → A) := algebra.is_ring_hom, apply is_ring_hom.map_zero }, exact (mem_nhds_sets r2.Hopen $ ideal.zero_mem $ ideal.span r2.T) } end } /--The intersection of two rational open sets is a rational open set.-/ noncomputable def inter (r1 r2 : rational_open_data A) : rational_open_data A := inter_aux (rational_open_data.insert_s r1) (rational_open_data.insert_s r2) @[simp] lemma inter_s (r1 r2 : rational_open_data A) : (r1.inter r2).s = r1.s * r2.s := rfl @[simp] lemma inter_T (r1 r2 : rational_open_data A) : (r1.inter r2).T = (insert r1.s r1.T) * (insert r2.s r2.T) := rfl lemma inter_open_set (r1 r2 : rational_open_data A) : (inter r1 r2).open_set = r1.open_set ∩ r2.open_set := begin rw [← insert_s_open_set r1, ← insert_s_open_set r2], apply le_antisymm, { rintros v ⟨hv, hs⟩, have vmuls : v (r1.s * r2.s) = v r1.s * v r2.s := valuation.map_mul _ _ _, have hs₁ : v r1.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs, have hs₂ : v r2.s ≠ 0 := λ H, by simpa [-coe_fn_coe_base, vmuls, H] using hs, split; split; try { assumption }; intros t ht, { suffices H : v t * v r2.s ≤ v r1.s * v r2.s, { simpa [hs₂, mul_assoc, -coe_fn_coe_base] using linear_ordered_structure.mul_le_mul_right H (group_with_zero.mk₀ _ hs₂)⁻¹, }, { simpa using hv (t * r2.s) ⟨t, ht, r2.s, mem_insert_s r2, rfl⟩, } }, { suffices H : v r1.s * v t ≤ v r1.s * v r2.s, { simpa [hs₁, mul_assoc, -coe_fn_coe_base] using linear_ordered_structure.mul_le_mul_left H (group_with_zero.mk₀ _ hs₁)⁻¹, }, { simpa using hv (r1.s * t) ⟨r1.s, mem_insert_s r1, t, ht, rfl⟩, } } }, { rintros v ⟨⟨hv₁, hs₁⟩, ⟨hv₂, hs₂⟩⟩, split, { rintros t ⟨t₁, ht₁, t₂, ht₂, rfl⟩, convert le_trans (linear_ordered_structure.mul_le_mul_right (hv₁ t₁ ht₁) _) (linear_ordered_structure.mul_le_mul_left (hv₂ t₂ ht₂) _); apply valuation.map_mul }, { assume eq_zero, simp at eq_zero, tauto }, } end lemma inter_symm (r1 r2 : rational_open_data A) : r1.inter r2 = r2.inter r1 := ext (mul_comm _ _) (mul_comm _ _) end rational_open_data variable (A) /--The basis for the topology on the adic spectrum, consisting of rational open sets.-/ def rational_basis := {U : set (spa A) | ∃ r : rational_open_data A, U = r.open_set} /--The topology on the adic spectrum, generated by rational open sets.-/ instance : topological_space (spa A) := topological_space.generate_from (rational_basis A) variable {A} /--The rational open sets form a basis for the topology on the adic spectrum.-/ lemma rational_basis.is_basis : topological_space.is_topological_basis (rational_basis A) := begin refine ⟨_, _, rfl⟩, { rintros _ ⟨r₁, rfl⟩ _ ⟨r₂, rfl⟩ x hx, refine ⟨_, ⟨_, (rational_open_data.inter_open_set r₁ r₂).symm⟩, hx, subset.refl _⟩, }, { apply subset.antisymm (subset_univ _) (subset_sUnion_of_mem _), exact ⟨_, rational_open_data.univ_open_set.symm⟩ } end end spa