import ring_theory.localization import ring_theory.subring import for_mathlib.nonarchimedean.basic import for_mathlib.topological_rings import sheaves.presheaf_of_topological_rings import Spa.rational_open_data /-! # The structure presheaf on the adic spectrum of a Huber pair The purpose of this file is to endow the adic spectrum `spa A` of a Huber pair with a presheaf of topological rings: the structure presheaf. Sections of this presheaf will be thought of as functions on the adic spectrum. ## Implementation details Because the library for categorical limits was not yet very stable at the time of writing, we implement the sections of the presheaf by manually taking a limit: -- The underlying type of 𝒪_X(U), the structure presheaf on X = Spa(A) def presheaf_value (U : opens (spa A)) := {f : Π (rd : rational_open_data_subsets U), rat_open_data_completion rd.1 // ∀ (rd1 rd2 : rational_open_data_subsets U) (h : rd1.1 ≤ rd2.1), rat_open_data_completion.restriction h (f rd1) = (f rd2)} -- agrees on overlaps -/ universes u₁ u₂ u₃ open_locale classical open set function Spv valuation local postfix `⁺` : 66 := λ A : Huber_pair, A.plus namespace spa variable {A : Huber_pair} section open topological_space /-- The set of all rational open subsets contained in the open set U. -/ def rational_open_data_subsets (U : opens (spa A)) := { r : rational_open_data A // r.open_set ⊆ U} /-- The natural inclusion map of rational open subsets contained in the open set U into those contained in some larger open set V (that contains U).-/ def rational_open_data_subsets.map {U V : opens (spa A)} (hUV : U ≤ V) (rd : rational_open_data_subsets U) : rational_open_data_subsets V := ⟨rd.val, set.subset.trans rd.property hUV⟩ /--The intersection of two rational open subsets contained in some open set U is a rational open subset contained in U.-/ noncomputable def rational_open_data_subsets_inter {U : opens (spa A)} (r1 r2 : rational_open_data_subsets U) : rational_open_data_subsets U := ⟨rational_open_data.inter r1.1 r2.1, begin rw rational_open_data.inter_open_set, refine set.subset.trans (inter_subset_left r1.1.open_set r2.1.open_set) _, exact r1.2 end⟩ lemma rational_open_data_subsets_symm {U : opens (spa A)} (r1 r2 : rational_open_data_subsets U) : rational_open_data_subsets_inter r1 r2 = rational_open_data_subsets_inter r2 r1 := begin rw subtype.ext, exact rational_open_data.inter_symm r1.1 r2.1 end end -- section open uniform_space -- rat_open_data is short for "rational open data". KB needs to think more clearly -- about namespaces etc. /-- A, the functions on D(T,s). A topological ring -/ def rat_open_data_completion (r : rational_open_data A) := completion (rational_open_data.localization r) namespace rat_open_data_completion open topological_space /-- The ring structure on A. -/ noncomputable instance (r : rational_open_data A) : comm_ring (rat_open_data_completion r) := by dunfold rat_open_data_completion; apply_instance /-- The uniform structure on A. -/ instance uniform_space (r : rational_open_data A) : uniform_space (rat_open_data_completion r) := by dunfold rat_open_data_completion; apply_instance /-- A is a topological ring. -/ instance (r : rational_open_data A) : topological_ring (rat_open_data_completion r) := by dunfold rat_open_data_completion; apply_instance /-- The natural map A → A for two rational open subsets r1 and r2 with r1 ≤ r2.-/ noncomputable def restriction {r1 r2 : rational_open_data A} (h : r1 ≤ r2) : rat_open_data_completion r1 → rat_open_data_completion r2 := completion.map (rational_open_data.localization_map h) /-- The natural map A → A is a ring homomorphism.-/ instance restriction_is_ring_hom {r1 r2 : rational_open_data A} (h : r1 ≤ r2) : is_ring_hom (restriction h) := completion.is_ring_hom_map (rational_open_data.localization_map_is_cts h) lemma restriction_is_uniform_continuous {r1 r2 : rational_open_data A} (h : r1 ≤ r2) : uniform_continuous (rat_open_data_completion.restriction h) := completion.uniform_continuous_map end rat_open_data_completion -- namespace open topological_space /-- The underlying type of 𝒪_X(U), the structure presheaf on X = Spa(A) -/ def presheaf_value (U : opens (spa A)) := {f : Π (rd : rational_open_data_subsets U), rat_open_data_completion rd.1 // ∀ (rd1 rd2 : rational_open_data_subsets U) (h : rd1.1 ≤ rd2.1), rat_open_data_completion.restriction h (f rd1) = (f rd2)} -- agrees on overlaps /-- An auxilliary definition: The underlying type of 𝒪_X(U), the structure presheaf on X = Spa(A), but given as a subset, rather than a subtype. This definition is used for the definition of the ring structure on 𝒪_X(U) -/ def presheaf_value_set (U : opens (spa A)) := {f : Π (rd : rational_open_data_subsets U), rat_open_data_completion rd.1 | ∀ (rd1 rd2 : rational_open_data_subsets U) (h : rd1.1 ≤ rd2.1), rat_open_data_completion.restriction h (f rd1) = (f rd2)} -- We need to check it's a ring /-- The value of the structure presheaf on an open set U is a subring of the big Pi-type in its definiton.-/ lemma presheaf_subring (U : opens (spa A)) : is_subring (presheaf_value_set U) := { zero_mem := λ _ _ _, is_ring_hom.map_zero _, one_mem := λ _ _ _, is_ring_hom.map_one _, add_mem := λ a b ha hb rd₁ rd₂ h, begin change rat_open_data_completion.restriction h (a rd₁ + b rd₁) = a rd₂ + b rd₂, rw is_ring_hom.map_add (rat_open_data_completion.restriction h), rw [ha _ _ h, hb _ _ h], end, neg_mem := λ a ha rd₁ rd₂ h, begin change rat_open_data_completion.restriction h (-(a rd₁)) = -(a rd₂), rw is_ring_hom.map_neg (rat_open_data_completion.restriction h), rw ha _ _ h, end, mul_mem := λ a b ha hb rd₁ rd₂ h, begin change rat_open_data_completion.restriction h (a rd₁ * b rd₁) = a rd₂ * b rd₂, rw is_ring_hom.map_mul (rat_open_data_completion.restriction h), rw [ha _ _ h, hb _ _ h] end } /-- The ring structure on the value of the structure presheaf on an open set U.-/ noncomputable instance presheaf_comm_ring (U : opens (spa A)) : comm_ring (presheaf_value U) := @subset.comm_ring _ pi.comm_ring _ (spa.presheaf_subring U) /-- The topology on the value of the structure presheaf on an open set U.-/ instance presheaf_top_space (U : opens (spa A)) : topological_space (presheaf_value U) := by unfold presheaf_value; apply_instance /-- The value of the structure presheaf on an open set U is a topological ring.-/ instance presheaf_top_ring (U : opens (spa A)) : topological_ring (presheaf_value U) := begin haveI := spa.presheaf_subring U, letI : topological_ring (Π (rd : rational_open_data_subsets U), rat_open_data_completion (rd.1)) := by apply_instance, apply topological_subring (presheaf_value_set U), end /-- The restriction map for the structure presheaf on the adic spectrum of a Huber pair. -/ def presheaf_map {U V : opens (spa A)} (hUV : U ≤ V) : presheaf_value V → presheaf_value U := λ f, ⟨_, λ rd1 rd2 h, (f.2 (rational_open_data_subsets.map hUV rd1) (rational_open_data_subsets.map hUV rd2) h : _)⟩ -- Note the (X : _) trick at the end of the preceding definition, -- which tells Lean "don't try and elaborate X assuming it has the type you know it has, -- elaborate it independently, figure out the type, and then unify". -- Thanks to Mario Carneiro for this trick which -- hugely speeds up elaboration time of this definition. @[simp] lemma presheaf_map_id (U : opens (spa A)) : presheaf_map (le_refl U) = id := by { delta presheaf_map, tidy } lemma presheaf_map_comp {U V W : opens (spa A)} (hUV : U ≤ V) (hVW : V ≤ W) : presheaf_map hUV ∘ presheaf_map hVW = presheaf_map (le_trans hUV hVW) := by { delta presheaf_map, tidy } /-- The restriction maps of the structure presheaf are ring homomorphisms. -/ instance presheaf_map_is_ring_hom {U V : opens (spa A)} (hUV : U ≤ V) : is_ring_hom (presheaf_map hUV) := { map_one := rfl, map_mul := λ _ _, rfl, map_add := λ _ _, rfl } lemma presheaf_map_cts {U V : opens (spa A)} (hUV : U ≤ V) : continuous (presheaf_map hUV) := continuous_subtype_mk _ (continuous_pi (λ i, ((continuous_apply _).comp continuous_subtype_val))) variable (A) /-- The structure presheaf on the adic spectrum of a Huber pair. -/ noncomputable def presheaf_of_topological_rings : presheaf_of_topological_rings (spa A) := { F := presheaf_value, res := λ U V, presheaf_map, Hid := presheaf_map_id, Hcomp := λ U V W, presheaf_map_comp, Fring := spa.presheaf_comm_ring, res_is_ring_hom := λ U V, spa.presheaf_map_is_ring_hom, Ftop := spa.presheaf_top_space, Ftop_ring := spa.presheaf_top_ring, res_continuous := λ U V, presheaf_map_cts } end spa -- namespace -- notes -- KB idle comment: I guess we never make A a Huber pair if A is a Huber pair? -- We would need integral closure for this and I don't think we have it in mathlib. -- We see mid way through p75 that the definition of the presheaf -- on V is proj lim of O_X(U) as U runs through rationals opens in V. This gets -- the projective limit topology and then we have a presheaf (hopefully this is -- straightforward) of complete topological rings (need proj lim of complete is complete)