import analysis.special_functions.pow import analysis.special_functions.log.basic import analysis.specific_limits.basic import category_theory.Fintype import analysis.normed_space.basic import pseudo_normed_group.basic import pseudo_normed_group.category import laurent_measures.basic import for_mathlib.tsum import for_mathlib.nnreal universe u noncomputable theory open_locale big_operators nnreal classical /-- `invpoly r S`, with notation `ℤ[T⁻¹] S`, is the functions `S → ℤ[T⁻¹]`. -/ @[derive add_comm_group] def invpoly (r : ℝ≥0) (S : Fintype) := S → polynomial ℤ variables {r : ℝ≥0} {S S' : Fintype.{u}} local notation `ℤ[T⁻¹]` := invpoly r namespace invpoly @[simp] lemma add_apply (F G : ℤ[T⁻¹] S) (s : S) : (F + G) s = F s + G s := rfl @[simp] lemma sub_apply (F G : ℤ[T⁻¹] S) (s : S) : (F - G) s = F s - G s := rfl @[simp] lemma neg_apply (F : ℤ[T⁻¹] S) (s : S) : (-F) s = -(F s) := rfl @[simp] lemma zero_apply (s : S) : (0 : ℤ[T⁻¹] S) s = 0 := rfl @[simp] lemma nsmul_apply (k : ℕ) (F : ℤ[T⁻¹] S) (s : S) : (k • F) s = k • (F s) := rfl @[simp] lemma zsmul_apply (k : ℤ) (F : ℤ[T⁻¹] S) (s : S) : (k • F) s = k • (F s) := rfl -- @[ext] -- lemma ext (F G : ℤ[T⁻¹] S) : (F : S → ) = G → F = G := -- by { intros h, funext s, ext, exact congr_fun (congr_fun h s) n } protected lemma nnreal_summable (F : ℤ[T⁻¹] S) (s : S) : summable (λ n, ∥(F s).coeff n∥₊ * r ^ (-n:ℤ)) := begin apply @summable_of_ne_finset_zero _ _ _ _ _ (F s).support, intros n hn, simp only [polynomial.mem_support_iff, not_not] at hn, simp only [hn, nnnorm_zero, zero_mul], end protected lemma summable (F : ℤ[T⁻¹] S) (s : S) : summable (λ n, ∥(F s).coeff n∥ * r ^ (-n : ℤ)) := begin simpa only [← nnreal.summable_coe, nnreal.coe_mul, coe_nnnorm, nnreal.coe_zpow] using F.nnreal_summable s end -- Move me lemma nonneg_of_norm_mul_zpow (k n : ℤ) (r : ℝ≥0) : 0 ≤ ∥ k ∥ * (r : ℝ)^n := mul_nonneg (norm_nonneg _) (zpow_nonneg (nnreal.coe_nonneg _) _) def map (f : S ⟶ S') : ℤ[T⁻¹] S → ℤ[T⁻¹] S' := λ F, λ s', ∑ s in finset.univ.filter (λ t, f t = s'), F s @[simp] lemma map_apply (f : S ⟶ S') (F : ℤ[T⁻¹] S) (s' : S') (k : ℕ) : (map f F s').coeff k = ∑ s in finset.univ.filter (λ t, f t = s'), (F s).coeff k := by simp only [map, ← polynomial.finset_sum_coeff] @[simp] lemma map_id : (map (𝟙 S) : ℤ[T⁻¹] S → ℤ[T⁻¹] S) = id := begin ext F s k, simp only [map_apply, Fintype.id_apply, id.def, finset.sum_filter, finset.sum_ite_eq', finset.mem_univ, if_true], end @[simp] lemma map_comp {S'' : Fintype.{u}} (f : S ⟶ S') (g : S' ⟶ S'') : (map (f ≫ g) : ℤ[T⁻¹] S → ℤ[T⁻¹] S'') = map g ∘ map f := begin ext F s k, simp only [function.comp_app, map_apply, finset.sum_congr], rw ← finset.sum_bUnion, { apply finset.sum_congr, { change finset.univ.filter (λ t, g (f t) = s) = _, ext i, split; { intro hi, simpa only [finset.mem_bUnion, finset.mem_filter, finset.mem_univ, true_and, exists_prop, exists_eq_right'] using hi } }, { intros, refl } }, { intros i hi j hj h k hk, simp only [finset.inf_eq_inter, finset.mem_inter, finset.mem_filter, finset.mem_univ, true_and, finset.coe_filter, finset.coe_univ, set.sep_univ, set.mem_set_of_eq] at hi hj hk, refine h _, rw [← hk.1, ← hk.2] } end instance : has_norm (ℤ[T⁻¹] S) := ⟨λ F, ∑ s, ∑' n, ∥(F s).coeff n∥ * (r : ℝ) ^ (-n:ℤ)⟩ lemma norm_def (F : ℤ[T⁻¹] S) : ∥F∥ = ∑ s, ∑' n, ∥(F s).coeff n∥ * (r : ℝ)^(-n:ℤ) := rfl /-- The norm on `ℤ[T⁻¹](S)` sending `s ↦ ∑ aₙ(s) T⁻ⁿ` to `∑_{s,n} ∥aₙ(s)∥₊r^⁻ⁿ`. -/ instance : has_nnnorm (ℤ[T⁻¹] S) := ⟨λ F, ∑ s, ∑' n, ∥(F s).coeff n∥₊ * r ^ (-n : ℤ)⟩ lemma nnnorm_def (F : ℤ[T⁻¹] S) : ∥F∥₊ = ∑ s, ∑' n, ∥(F s).coeff n∥₊ * r^(-n:ℤ) := rfl @[simp] lemma coe_nnnorm (F : ℤ[T⁻¹] S) : (∥F∥₊ : ℝ) = ∥F∥ := by simp only [nnnorm_def, norm_def, nnreal.coe_sum, nnreal.coe_tsum, nonneg.coe_mul, coe_nnnorm, nnreal.coe_zpow] @[simp] lemma invpoly.norm_nonneg (F : ℤ[T⁻¹] S) : 0 ≤ ∥F∥ := by rw [← coe_nnnorm]; exact ∥F∥₊.coe_nonneg @[simp] lemma nnnorm_neg (F : ℤ[T⁻¹] S) : ∥-F∥₊ = ∥F∥₊ := by simp only [nnnorm_def, nnnorm_neg, neg_apply, polynomial.coeff_neg] lemma nnnorm_add (F G : ℤ[T⁻¹] S) : ∥F + G∥₊ ≤ ∥F∥₊ + ∥G∥₊ := begin simp only [nnnorm_def, ← finset.sum_add_distrib], apply finset.sum_le_sum, rintro s -, rw ← tsum_add (F.nnreal_summable _) (G.nnreal_summable _), refine tsum_le_tsum _ ((F + G).nnreal_summable _) ((F.nnreal_summable s).add (G.nnreal_summable s)), intro b, simp [← add_mul], refine mul_le_mul' (nnnorm_add_le _ _) le_rfl end lemma norm_add (F G : ℤ[T⁻¹] S) : ∥F + G∥ ≤ ∥F∥ + ∥G∥ := by simpa only [← coe_nnnorm, ← nnreal.coe_add, nnreal.coe_le_coe] using nnnorm_add F G instance : pseudo_normed_group (ℤ[T⁻¹] S) := { filtration := λ c, { F | ∥F∥₊ ≤ c }, filtration_mono := λ c₁ c₂ h F hF, by {dsimp at *, exact le_trans hF h}, zero_mem_filtration := λ c, by simp [nnnorm_def], neg_mem_filtration := λ c F h, (nnnorm_neg F).le.trans h, add_mem_filtration := λ c₁ c₂ F₁ F₂ h₁ h₂, (nnnorm_add _ _).trans (add_le_add h₁ h₂) } @[simp] lemma mem_filtration_iff (F : ℤ[T⁻¹] S) (c : ℝ≥0) : F ∈ pseudo_normed_group.filtration (ℤ[T⁻¹] S) c ↔ ∥F∥₊ ≤ c := iff.rfl section open finset lemma map_bound (f : S ⟶ S') (F : ℤ[T⁻¹] S) : ∥map f F∥₊ ≤ ∥F∥₊ := calc ∥map f F∥₊ = ∑ s', ∑' n, ∥∑ s in univ.filter (λ t, f t = s'), (F s).coeff n∥₊ * (r^(-n:ℤ)) : (by simp only [map, ← polynomial.finset_sum_coeff]; refl) ... ≤ ∑ s', ∑' n, ∑ s in univ.filter (λ t, f t = s'), ∥(F s).coeff n∥₊ * r^(-n:ℤ) : begin apply sum_le_sum, rintros s' -, have h1 : summable (λ n : ℕ, ∑ (s : S.α) in univ.filter (λ t, f t = s'), ∥(F s).coeff n∥₊ * r^(-n:ℤ)) := summable_sum (λ s _, F.nnreal_summable s), have h2 : ∀ b : ℕ, ∥∑ (s : S.α) in univ.filter (λ t, f t = s'), (F s).coeff b∥₊ * r ^ (-b:ℤ) ≤ ∑ (s : S.α) in univ.filter (λ t, f t = s'), ∥(F s).coeff b∥₊ * r ^ (-b:ℤ), { intros b, rw ← sum_mul, exact mul_le_mul' (nnnorm_sum_le _ _) le_rfl }, apply tsum_le_tsum h2 (nnreal.summable_of_le h2 h1) h1, end ... = ∑ s', ∑ s in univ.filter (λ t, f t = s'), ∑' n, ∥(F s).coeff n∥₊ * r^(-n:ℤ) : sum_congr rfl (λ s' _, tsum_sum $ λ s _, F.nnreal_summable _) ... = _ : begin rw [← sum_bUnion], refine sum_congr _ _, { ext s, simp only [mem_bUnion, mem_univ, mem_filter, true_and, exists_true_left, exists_eq'] }, { intros, refl }, { rintro x - y - h i hi, apply h, simp only [inf_eq_inter, mem_inter, mem_filter, mem_univ, true_and] at hi, rw [← hi.1, ← hi.2] } end end lemma map_bound' (f : S ⟶ S') (F : ℤ[T⁻¹] S) : ∥map f F∥ ≤ ∥F∥ := by simpa only [← coe_nnnorm, ← nnreal.coe_add, nnreal.coe_le_coe] using map_bound f F lemma bounded_of_filtration (F : ℤ[T⁻¹] S) (c : ℝ≥0) [hr : fact (0 < r)] : ∥F∥₊ ≤ c → ∀ (s : S) (n : ℕ), ∥(F s).coeff n∥₊ ≤ c * r^n := begin intros hF s n, have : ∥(F s).coeff n∥₊ * r ^ (-n : ℤ) ≤ ∑' k, ∥(F s).coeff k∥₊ * r ^ (-k:ℤ), { exact le_tsum (F.nnreal_summable s) _ (λ k _, zero_le'), }, rw [mul_comm, nnreal.mul_le_iff_le_inv (zpow_ne_zero_of_ne_zero (hr.elim.ne).symm _)] at this, simp only [zpow_neg, zpow_coe_nat, inv_inv, mul_comm (r^n)] at this, refine le_trans this _, rw mul_le_mul_right (pow_pos hr.elim n), refine le_trans _ hF, unfold nnnorm, simp only [zpow_neg, zpow_coe_nat], apply @finset.single_le_sum S ℝ≥0 _ (λ s, ∑' n, ∥(F s).coeff n∥₊ * (r^n)⁻¹), { rintros s -, exact zero_le', }, { exact finset.mem_univ _ } end lemma bounded_of_filtration' (F : ℤ[T⁻¹] S) (c : ℝ≥0) [fact (0 < r)] [hr : fact (r < 1)] : ∥F∥₊ ≤ c → ∀ (s : S) (n : ℕ), |(F s).coeff n| ≤ ⌊c⌋₊ := begin intros hF s n, rw int.abs_le_floor_nnreal_iff, refine le_trans (bounded_of_filtration F c hF s n) _, exact mul_le_of_le_of_le_one (le_refl c) (pow_le_one' hr.elim.le n), end -- rather annoyingly, can't use `bounded_of_filtration` to prove this -- more easily because it's true even if r=0 :-) /-- This lemma puts bounds on where `(F s).coeff n` can be nonzero. -/ lemma eq_zero_of_filtration (F : ℤ[T⁻¹] S) (c : ℝ≥0) : ∥F∥₊ ≤ c → ∀ (s : S) (n : ℕ), c < r^(-n:ℤ) → (F s).coeff n = 0 := begin intros hF s n h, suffices : ∥(F s).coeff n∥₊ < 1, { change abs ((F s).coeff n : ℝ) < 1 at this, norm_cast at this, rwa ← int.abs_lt_one_iff }, have : ∥(F s).coeff n∥₊ * r ^ (-n : ℤ) ≤ ∑' k, ∥(F s).coeff k∥₊ * r ^ (-k:ℤ), { exact le_tsum (F.nnreal_summable s) _ (λ k _, zero_le'), }, replace this := lt_of_le_of_lt (this.trans _) h, { have hr₁ : 0 < r^(-n:ℤ) := lt_of_le_of_lt zero_le' h, have hr₂ : r^(-n:ℤ) ≠ 0 := hr₁.ne', convert mul_lt_mul this (le_refl (r ^ (-n : ℤ))⁻¹) _ hr₁.le, { exact (mul_inv_cancel_right₀ hr₂ _).symm }, { exact (mul_inv_cancel hr₂).symm }, { rwa nnreal.inv_pos }, }, { refine le_trans _ hF, apply @finset.single_le_sum S ℝ≥0 _ (λ s, ∑' n, ∥(F s).coeff n∥₊ * r^(-n:ℤ)), { rintros s -, exact zero_le', }, { exact finset.mem_univ _ } } end lemma log_div_log_lt {r : ℝ≥0} (c : ℝ≥0) (n : ℕ) (hr0 : 0 < r) (hr1 : r < 1) (h : -real.log ↑c / real.log ↑r < ↑n) : c < r ^ -(n : ℤ) := begin rcases (eq_zero_or_pos : c = 0 ∨ 0 < c) with (rfl | hc), { apply nnreal.zpow_pos hr0.ne.symm, }, { rw [div_lt_iff_of_neg (real.log_neg hr0 hr1), lt_neg, ← neg_mul] at h, rw [(by norm_cast : -(n : ℝ) = (-(n : ℤ) : ℤ)), ← real.log_zpow] at h, rw real.log_lt_log_iff hc at h, { exact_mod_cast h }, { norm_cast, apply nnreal.zpow_pos hr0.ne.symm } }, end lemma eq_zero_of_filtration' {F : ℤ[T⁻¹] S} {c : ℝ≥0} [hr0 : fact (0 < r)] [hr1 : fact (r < 1)] : ∥F∥₊ ≤ c → ∀ (s : S) (n : ℕ), -real.log(c)/real.log(r) < n → (F s).coeff n = 0 := begin intros hF s n h, refine eq_zero_of_filtration F c hF s n (log_div_log_lt c n hr0.elim hr1.elim h), end -- move me lemma zpow_strict_anti {K : Type} [linear_ordered_field K] {x : K} (hx₀ : 0 < x) (hx₁ : x < 1) : strict_anti (λ n:ℤ, x ^ n) := begin intros n m H, rw [← inv_inv x], simp only [inv_zpow x⁻¹, inv_lt_inv (zpow_pos_of_pos (inv_pos.mpr hx₀) _) (zpow_pos_of_pos (inv_pos.mpr hx₀) _)], exact zpow_strict_mono (one_lt_inv hx₀ hx₁) H, end section profinite_structure variables [fact (0 < r)] (c : ℝ≥0) instance [fact (r < 1)] : fintype { F : ℤ[T⁻¹] S | ∥F∥₊ ≤ c} := let i : { F : ℤ[T⁻¹] S | ∥F∥₊ ≤ c} → (S → fin (⌊-real.log ↑c / real.log ↑r⌋₊ + 1) → set.Icc (-⌊c⌋₊ : ℤ) ⌊c⌋₊ ) := λ F s j, ⟨(F.1 s).coeff j, abs_le.1 (bounded_of_filtration' _ _ F.2 _ _)⟩ in fintype.of_injective i begin intros F₁ F₂ h, ext s n, cases le_or_lt (n : ℝ) (-real.log(c)/real.log(r)) with hn hn, { replace hn := nat.le_floor hn, rw ← nat.lt_add_one_iff at hn, replace h := congr_fun (congr_fun h s) ⟨n, hn⟩, exact congr_arg subtype.val h }, { convert (rfl : (0 : ℤ) = 0), { apply eq_zero_of_filtration' F₁.2 _ _ hn, }, { apply eq_zero_of_filtration' F₂.2 _ _ hn, } }, end instance : topological_space { F : ℤ[T⁻¹] S | ∥F∥₊ ≤ c} := ⊥ instance [fact (0 < r)] [fact (r < 1)] : profinitely_filtered_pseudo_normed_group (ℤ[T⁻¹] S) := { continuous_add' := λ _ _, continuous_of_discrete_topology, continuous_neg' := λ _, continuous_of_discrete_topology, continuous_cast_le := λ _ _ _, continuous_of_discrete_topology, ..(infer_instance : (pseudo_normed_group (ℤ[T⁻¹] S))) } . end profinite_structure /-- The `T⁻¹` action on `ℤ[T⁻¹] S`. This is defined, essentially, as a shift in `ℕ` (accounting for the restriction at 0). This is an additive group homomorphism. -/ def Tinv_aux {S : Fintype.{u}} : ℤ[T⁻¹] S →+ ℤ[T⁻¹] S := add_monoid_hom.mk' (λ F s, add_monoid_hom.mul_left polynomial.X (F s)) (by { intros F G, funext s, exact map_add _ _ _ }) lemma Tinv_aux_coeff (F : ℤ[T⁻¹] S) (s : S) (n : ℕ) : (Tinv_aux F s).coeff n = (polynomial.X * F s).coeff n := rfl @[simp] lemma Tinv_aux_zero (F : ℤ[T⁻¹] S) (s : S) : (Tinv_aux F s).coeff 0 = 0 := by simp only [Tinv_aux_coeff, polynomial.mul_coeff_zero, polynomial.coeff_X_zero, zero_mul] @[simp] lemma Tinv_aux_succ (F : ℤ[T⁻¹] S) (s : S) (i : ℕ) : (Tinv_aux F s).coeff (i + 1) = (F s).coeff i := by simp only [Tinv_aux_coeff, polynomial.coeff_X_mul] lemma Tinv_aux_summable [hr : fact (0 < r)] (F : ℤ[T⁻¹] S) (s : S) : summable (λ n, (∥(Tinv_aux F s).coeff n∥₊ * r ^ (-n:ℤ))) := begin rw ← nnreal.summable_nat_add_iff 1, simp only [Tinv_aux_succ, int.coe_nat_succ, neg_add, zpow_add₀ hr.out.ne', ← mul_assoc], apply summable.mul_right, exact F.nnreal_summable s, end @[simps] def Tinv_hom [hr : fact (0 < r)] [fact (r < 1)] : comphaus_filtered_pseudo_normed_group_hom (ℤ[T⁻¹] S) (ℤ[T⁻¹] S) := comphaus_filtered_pseudo_normed_group_hom.mk_of_bound Tinv_aux r⁻¹ begin abstract Tinv_spec { intro c, refine ⟨_, continuous_of_discrete_topology⟩, intros F hF, rw mul_comm, refine le_trans _ (mul_le_mul' hF le_rfl), simp only [nnnorm_def, finset.sum_mul], refine finset.sum_le_sum (λ s _, _), transitivity ∑' n, ∥(F s).coeff n∥₊ * r^(-n:ℤ) * r⁻¹, { rw ← sum_add_tsum_nat_add' 1, swap, { apply Tinv_aux_summable }, simp only [finset.range_one, zpow_neg, zpow_coe_nat, finset.sum_singleton, pow_zero, inv_one, mul_one, int.coe_nat_succ, neg_add, zpow_add₀ hr.out.ne', zpow_one, mul_assoc, Tinv_aux_zero, nnnorm_zero, Tinv_aux_succ, zero_add], }, refine le_of_eq _, ext, simp only [nonneg.coe_mul, nnreal.coe_tsum, coe_nnnorm, nnreal.coe_zpow, tsum_mul_right], } end . instance [fact (0 < r)] [fact (r < 1)] : profinitely_filtered_pseudo_normed_group_with_Tinv r (ℤ[T⁻¹] S) := { Tinv := Tinv_hom, Tinv_mem_filtration := λ c F hF, comphaus_filtered_pseudo_normed_group_hom.mk_of_bound_bound_by _ _ _ hF, .. (_: profinitely_filtered_pseudo_normed_group (ℤ[T⁻¹] S))} open comphaus_filtered_pseudo_normed_group_with_Tinv lemma Tinv_coeff [fact (0 < r)] [fact (r < 1)] (F : ℤ[T⁻¹] S) (s : S) (n : ℕ) : (Tinv F s).coeff n = (polynomial.X * F s).coeff n := rfl @[simp] lemma Tinv_zero [fact (0 < r)] [fact (r < 1)] (F : ℤ[T⁻¹] S) (s : S) : (Tinv F s).coeff 0 = 0 := Tinv_aux_zero F s @[simp] lemma Tinv_succ [fact (0 < r)] [fact (r < 1)] (F : ℤ[T⁻¹] S) (s : S) (i : ℕ) : (Tinv F s).coeff (i + 1) = (F s).coeff i := Tinv_aux_succ F s i variable {α : Type*} open pseudo_normed_group profinitely_filtered_pseudo_normed_group comphaus_filtered_pseudo_normed_group @[simps] def map_hom [fact (0 < r)] [fact (r < 1)] (f : S ⟶ S') : comphaus_filtered_pseudo_normed_group_with_Tinv_hom r (ℤ[T⁻¹] S) (ℤ[T⁻¹] S') := { to_fun := map f, map_zero' := by { ext s n, simp only [map_apply, zero_apply, polynomial.coeff_zero, finset.sum_const_zero], }, map_add' := λ F G, by { ext s n, simp only [map_apply, add_apply, polynomial.coeff_add, finset.sum_add_distrib], }, map_Tinv' := λ F, by { ext s (_|n), { simp only [map_apply, Tinv_zero, finset.sum_const_zero], }, { simp only [map_apply, Tinv_succ], } }, strict' := λ c F (hF : ∥F∥₊ ≤ c), (map_bound _ _).trans hF, continuous' := λ c, continuous_of_discrete_topology } end invpoly