(* ------------------------------------------------------------------------- *) (* Find sign of polynomial, using modulo-constant lookup and computation. *) (* ------------------------------------------------------------------------- *) let xterm_lt t1 t2 = try let n1,_ = dest_var t1 in let n2,_ = dest_var t2 in let i1 = String.sub n1 2 (String.length n1 - 2) in let i2 = String.sub n2 2 (String.length n2 - 2) in let x1 = int_of_string i1 in let x2 = int_of_string i2 in x1 < x2 with _ -> failwith "xterm_lt: not an xvar?";; (* String.sub n1 2 (String.length n1 - 2) substring let t1,t2 = `x_99:real`,`x_100:real` xterm_sort t1 t2 t1 < t2 *) let FINDSIGN = let p_tm = `p:real` and c_tm = `c:real` and fth = prove (`r (a * b * p) (&0) ==> (a * b = &1) ==> r p (&0)`, DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[REAL_MUL_ASSOC; REAL_MUL_LID]) in let rec FINDSIGN vars sgns p = try try SIGN_CONST p with Failure _ -> let mth = MONIC_CONV vars p in let p' = rand(concl mth) in let pth = find (fun th -> lhand(concl th) = p') sgns in let c = lhand(lhand(concl mth)) in let c' = term_of_rat(Int 1 // rat_of_term c) in let sth = SIGN_CONST c' in let rel_c = funpow 2 rator (concl sth) in let rel_p = funpow 2 rator (concl pth) in let th1 = if rel_p = req then if rel_c = rgt then pth_0g else pth_0l else if rel_p = rgt then if rel_c = rgt then pth_gg else pth_gl else if rel_p = rlt then if rel_c = rgt then pth_lg else pth_ll else if rel_p = rneq then if rel_c = rgt then pth_nzg else pth_nzl else failwith "FINDSIGN" in let th2 = MP (MP (INST [p',p_tm; c',c_tm] th1) pth) sth in let th3 = EQ_MP (LAND_CONV(RAND_CONV(K(SYM mth))) (concl th2)) th2 in let th4 = MATCH_MP fth th3 in MP th4 (EQT_ELIM(REAL_RAT_REDUCE_CONV(lhand(concl th4)))) with Failure _ -> failwith "FINDSIGN" in FINDSIGN;; (* let vars = [`x:real`;`y:real`] let p = `&7 + x * (&11 + x * (&10 + y * &7))` let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) < &0`] let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) = &0`] let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) > &0`] let sgns = [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) <> &0`] FINDSIGN vars sgns p FINDSIGN vars sgns `-- &1` *) (* ASSERTSIGN [x,y] [] (|- &7 + x * (&11 + x * (&10 + y * -- &7)) < &0 --> [-- &1 + x * (-- &11 / &7 + x * (-- &10 / &7 + y * &1)) > &0] ASSERTSIGN [x,y] [] (|- &7 + x * (&11 + x * (&10 + y * &7)) < &0 --> [&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) < &0] *) let ASSERTSIGN vars sgns sgn_thm = let op,l,r = get_binop (concl sgn_thm) in let p_thm = MONIC_CONV vars l in let _,pl,pr = get_binop (concl p_thm) in let c,_ = dest_binop rm pl in let c_thm = SIGN_CONST c in let c_op,_,_ = get_binop (concl c_thm) in let sgn_thm' = if c_op = rlt && op = rlt then MATCH_MPL[signs_lem01;c_thm;sgn_thm;p_thm] else if c_op = rgt && op = rlt then MATCH_MPL[signs_lem02;c_thm;sgn_thm;p_thm] else if c_op = rlt && op = rgt then MATCH_MPL[signs_lem03;c_thm;sgn_thm;p_thm] else if c_op = rgt && op = rgt then MATCH_MPL[signs_lem04;c_thm;sgn_thm;p_thm] else if c_op = rlt && op = req then MATCH_MPL[signs_lem05;c_thm;sgn_thm;p_thm] else if c_op = rgt && op = req then MATCH_MPL[signs_lem06;c_thm;sgn_thm;p_thm] else if c_op = rlt && op = rneq then MATCH_MPL[signs_lem07;c_thm;sgn_thm;p_thm] else if c_op = rgt && op = rneq then MATCH_MPL[signs_lem08;c_thm;sgn_thm;p_thm] else failwith "ASSERTSIGN : 0" in try let sgn_thm'' = find (fun th -> lhand(concl th) = pr) sgns in let op1,l1,r1 = get_binop (concl sgn_thm') in let op2,l2,r2 = get_binop (concl sgn_thm'') in if (concl sgn_thm') = (concl sgn_thm'') then sgns else if op2 = rneq && (op1 = rlt || op1 = rgt) then sgn_thm'::snd (remove ((=) sgn_thm'') sgns) else failwith "ASSERTSIGN : 1" with Failure "find" -> sgn_thm'::sgns;; (* let k0 = `&7 + x * (&11 + x * (&10 + y * -- &7))` MONIC_CONV vars k0 let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) < &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0` let sgn_thm = k1 ASSERTSIGN vars [ASSUME `&1 + x * (&11 / &7 + x * (&10 / &7 + y * &1)) <> &0`] k1 *) (* ---------------------------------------------------------------------- *) (* Case splitting *) (* ---------------------------------------------------------------------- *) let SPLIT_ZERO vars sgns p cont_z cont_n ex_thms = try let sgn_thm = FINDSIGN vars sgns p in let op,l,r = get_binop (concl sgn_thm) in (if op = req then cont_z else cont_n) sgns ex_thms with Failure "FINDSIGN" -> let eq_tm = mk_eq(p,rzero) in let neq_tm = mk_neq(p,rzero) in let or_thm = ISPEC p signs_lem002 in (* zero *) let z_thm = cont_z (ASSERTSIGN vars sgns (ASSUME eq_tm)) ex_thms in let z_thm' = DISCH eq_tm z_thm in (* nonzero *) let nz_thm = cont_n (ASSERTSIGN vars sgns (ASSUME neq_tm)) ex_thms in let nz_thm' = DISCH neq_tm nz_thm in (* combine *) let ret = MATCH_MPL[signs_lem003;or_thm;z_thm';nz_thm'] in (* matching problem... must continue by hand *) let ldj,rdj = dest_disj (concl ret) in let lcj,rcj = dest_conj ldj in let a,_ = dest_binop req lcj in let p,p1 = dest_beq rcj in let _,rcj = dest_conj rdj in let p2 = rhs rcj in let pull_thm = ISPECL[a;p;p1;p2] PULL_CASES_THM in let ret' = MATCH_EQ_MP pull_thm ret in ret';; (* let ret = MATCH_MPL[lem3;or_thm] MATCH_MP ret z_thm' ;nz_thm'] in let vars,sgns,p,cont_z,cont_n,ex_thms = !sz_vars, !sz_sgns, !sz_p,!sz_cont_z, !sz_cont_n ,!sz_ex_thms let ret = MATCH_MPL[lem3;or_thm;] let mp_thm = MATCH_MPL[lem3;or_thm;] in let vars, sgns, p,cont_z, cont_n = !sz_vars,!sz_sgns,!sz_p,!sz_cont_z,!sz_cont_n let mp_thm = k1 let t1 = ISPECL[`(?y. &0 + y * (&0 + x * &1) = &0)`;`T`;`T`;`&0 + x * &1`;`T`] t0 MATCH_EQ_MP t1 k1 EQ_MP t1 k1 MATCH_EQ_MP PULL_CASES_THM k1 concl k1 = lhs (concl t1) MATCH_EQ_MP PULL_CASES_THM k0 let k0 = ASSUME `(&0 + x * &1 = &0) /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/ &0 + x * &1 <> &0 /\ (&0 + x * &1 > &0 /\ ((?x_1089. &0 + x_1089 * (&0 + x * &1) = &0) <=> T) \/ &0 + x * &1 < &0 /\ ((?x_1084. &0 + x_1084 * (&0 + x * &1) = &0) <=> T))`;; let k1 = ASSUME `(&0 + x * &1 = &0) /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/ &0 + x * &1 <> &0 /\ (&0 + x * &1 > &0 /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T) \/ &0 + x * &1 < &0 /\ ((?y. &0 + y * (&0 + x * &1) = &0) <=> T))`;; MATCH_MPL[PULL_CASES_THM;!sz_z_thm;!sz_nz_thm] in let thm1 = ASSUME `(?x_32. (&0 + c * &1) + x_32 * ((&0 + b * &1) + x_32 * (&0 + a * &1)) = &0) <=> T` let thm2 = ASSUME `(&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 ==> ((?x. (&0 + c * &1) + x * ((&0 + b * &1) + x * (&0 + a * &1)) = &0) <=> F)) /\ (&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 ==> ((?x_26. (&0 + c * &1) + x_26 * ((&0 + b * &1) + x_26 * (&0 + a * &1)) = &0) <=> T)) ` MATCH_MPL (* let PULL_CASES_THM = prove_by_refinement( *) (* `((a = &0) ==> (p <=> p0)) ==> ((a <> &0) ==> (a < &0 ==> (p <=> p1)) /\ (a > &0 ==> (p <=> p2))) *) (* ==> (p <=> ((a = &0) /\ p0) \/ ((a < &0) /\ p1) \/ (a > &0 /\ p2))`, *) (* (\* {{{ Proof *\) [ REWRITE_TAC[NEQ] THEN MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN ASM_REWRITE_TAC[NEQ] THEN TRY REAL_ARITH_TAC ]);; (\* }}} *\) *) let PULL_CASES_THM = prove (`!a p p0 p1 p2. ((a = &0) /\ (p <=> p0) \/ (a <> &0) /\ (a > &0 /\ (p <=> p1) \/ a < &0 /\ (p <=> p2))) <=> ((p <=> (a = &0) /\ p0 \/ a > &0 /\ p1 \/ a < &0 /\ p2))`, (* {{{ Proof *) REPEAT STRIP_TAC THEN REWRITE_TAC[NEQ] THEN MAP_EVERY BOOL_CASES_TAC [`p:bool`; `p0:bool`; `p1:bool`; `p2:bool`] THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; (* }}} *) let vars, sgns, p, cont_z, cont_n = [`x:real`;`y:real`], empty_sgns, `&0 + y * &1`, (fun x -> (ASSUME `abc > def`,[])), (fun x -> (ASSUME `sean > steph`,[])) SPLIT_ZERO vars sgns p cont_z cont_n ASSERTSIGN vars empty_sgns (ASSUME `&0 + y * &1 = &0`) , let vars = [`x:real`;`y:real`] let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`) let p = `&7 + x * (&11 + x * (&10 + y * -- &7))` let cont_z = hd let cont_n = hd SPLIT_ZERO vars sgns p cont_z cont_n let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0` let sgn_thm = k1 ASSERTSIGN vars [] k1 *) let SPLIT_SIGN vars sgns p cont_p cont_n ex_thms = let sgn_thm = try FINDSIGN vars sgns p with Failure "FINDSIGN" -> failwith "SPLIT_SIGN: no sign -- should have sign assumption by now" in let gt_tm = mk_binop rgt p rzero in let lt_tm = mk_binop rlt p rzero in let op,_,_ = get_binop (concl sgn_thm) in if op = rgt then cont_p sgns ex_thms else if op = rlt then cont_n sgns ex_thms else if op = req then failwith "SPLIT_SIGN: lead coef is 0" else if op = rneq then let or_thm = MATCH_MP signs_lem0002 sgn_thm in (* < *) let lt_sgns = ASSERTSIGN vars sgns (ASSUME lt_tm) in let lt_thm = cont_n lt_sgns ex_thms in let lt_thm' = DISCH lt_tm lt_thm in (* > *) let gt_sgns = ASSERTSIGN vars sgns (ASSUME gt_tm) in let gt_thm = cont_p gt_sgns ex_thms in let gt_thm' = DISCH gt_tm gt_thm in (* combine *) let ret = MATCH_MPL[signs_lem0003;or_thm;gt_thm';lt_thm'] in (* matching problem... must continue by hand *) let ldj,rdj = dest_disj (concl ret) in let lcj,rcj = dest_conj ldj in let a,_ = dest_binop rgt lcj in let p,p1 = dest_beq rcj in let _,rcj = dest_conj rdj in let p2 = rhs rcj in let pull_thm = ISPECL[a;p;p1;p2] PULL_CASES_THM_NZ in let ret' = MATCH_EQ_MP (MATCH_MP pull_thm sgn_thm) ret in ret' else failwith "SPLIT_SIGN: unknown op";; (* let vars, sgns, p,cont_p, cont_n = !ss_vars,!ss_sgns,!ss_p,!ss_cont_p,!ss_cont_n [`x`], [ASSUME `&0 + x * &1 <> &0`; ARITH_RULE ` &1 > &0`], `&0 + x * &1` let ss_vars, ss_sgns, ss_p,ss_cont_p, ss_cont_n = ref [],ref [],ref `T`,ref (fun x -> TRUTH,[]),ref(fun x -> TRUTH,[]);; ss_vars := vars; ss_sgns := sgns; ss_p := p; ss_cont_p := cont_p; ss_cont_n := cont_n; let vars, sgns, p, cont_p, cont_n = [`x:real`;`y:real`], ASSERTSIGN vars empty_sgns (ASSUME `&0 + y * &1 <> &0`) , `&0 + y * &1`, (fun x -> (ASSUME `P > def`,[])), (fun x -> (ASSUME `sean > steph`,[])) SPLIT_SIGN vars sgns p cont_z cont_n let vars = [`x:real`;`y:real`] let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`) let p = `&7 + x * (&11 + x * (&10 + y * -- &7))` let cont_p = hd let cont_n = hd SPLIT_SIGN vars sgns p cont_p cont_n let sgns = ASSERTSIGN vars [] (ASSUME `&7 + x * (&11 + x * (&10 + y * -- &7)) <> &0`) let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) < &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) = &0` let k1 = ASSUME `&7 + x * (&11 + x * (&10 + y * &7)) <> &0` let sgn_thm = k1 ASSERTSIGN vars [] k1 *)