(* ========================================================================= *) (* Computing with finite sets of numerals. *) (* *) (* (c) Copyright, Clelia Lomuto, Marco Maggesi, 2009. *) (* Distributed with HOL Light under same license terms *) (* *) (* This file provides some conversions that operate on finite sets of *) (* numerals represented as a trie-like structure (here called "ntries"). *) (* *) (* A concrete syntax for ntries is made available after loading this file. *) (* *) (* Examples: *) (* *) (* # NTRIE_REDUCE_CONV `%%(10 1001 3) INTER %%(3 7 10) UNION %%(3 100)`;; *) (* val it : thm = *) (* |- %%(3 10 1001) INTER %%(3 7 10) UNION %%(3 100) = %%(3 10 100) *) (* *) (* NTRIE_REDUCE_CONV *) (* `%%(10 1001 3) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33)`;; *) (* val it : thm = *) (* |- %%(3 10 1001) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33) <=> T *) (* *) (* The code in this file is divided into three main parts: *) (* 1. Definitions and theorems. *) (* 2. Syntax extension for ntries. *) (* 3. Rules and conversions. *) (* ========================================================================= *) (* ========================================================================= *) (* First part: Definitions and theorems. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Constructors for the ntrie representation of a set of numerals. *) (* ------------------------------------------------------------------------- *) let NTRIE = new_definition `NTRIE s:num->bool = s` and NEMPTY = new_definition `NEMPTY:num->bool = {}` and NZERO = new_definition `NZERO = {_0}` and NNODE = new_definition `NNODE s t = IMAGE BIT0 s UNION IMAGE BIT1 t`;; let NTRIE_RELATIONS = prove (`NNODE NEMPTY NEMPTY = NEMPTY /\ NNODE NZERO NEMPTY = NZERO`, REWRITE_TAC[NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Membership. *) (* ------------------------------------------------------------------------- *) let NTRIE_IN = prove (`(!s n. NUMERAL n IN NTRIE s <=> n IN s) /\ (!n. ~(n IN NEMPTY)) /\ (!n. n IN NZERO <=> n = _0) /\ (!s t. _0 IN NNODE s t <=> _0 IN s) /\ (!s t n. BIT0 n IN NNODE s t <=> n IN s) /\ (!s t n. BIT1 n IN NNODE s t <=> n IN t)`, REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Inclusion. *) (* ------------------------------------------------------------------------- *) let NTRIE_SUBSET = prove (`(!s t. NTRIE s SUBSET NTRIE t <=> s SUBSET t) /\ (!s. NEMPTY SUBSET s) /\ (!s:num->bool. s SUBSET s) /\ ~(NZERO SUBSET NEMPTY) /\ (!s t. NNODE s t SUBSET NEMPTY <=> s SUBSET NEMPTY /\ t SUBSET NEMPTY) /\ (!s t. NNODE s t SUBSET NZERO <=> s SUBSET NZERO /\ t SUBSET NEMPTY) /\ (!s t. NZERO SUBSET NNODE s t <=> NZERO SUBSET s) /\ (!s1 s2 t1 t2. NNODE s1 t1 SUBSET NNODE s2 t2 <=> s1 SUBSET s2 /\ t1 SUBSET t2)`, REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; SUBSET; FORALL_IN_UNION; FORALL_IN_IMAGE; FORALL_IN_INSERT] THEN REWRITE_TAC[IN_UNION; IN_IMAGE; IN_INSERT; NOT_IN_EMPTY; ARITH_EQ] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Equality. *) (* ------------------------------------------------------------------------- *) let NTRIE_EQ = prove (`(!s t. NTRIE s = NTRIE t <=> s = t) /\ ~(NZERO = NEMPTY) /\ ~(NEMPTY = NZERO) /\ (!s t. NNODE s t = NEMPTY <=> s = NEMPTY /\ t = NEMPTY) /\ (!s t. NEMPTY = NNODE s t <=> s = NEMPTY /\ t = NEMPTY) /\ (!s t. NNODE s t = NZERO <=> s = NZERO /\ t = NEMPTY) /\ (!s t. NZERO = NNODE s t <=> s = NZERO /\ t = NEMPTY) /\ (!s1 s2 t1 t2. NNODE s1 t1 = NNODE s2 t2 <=> s1 = s2 /\ t1 = t2)`, REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; NTRIE_SUBSET; NEMPTY; NZERO] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Singleton. *) (* ------------------------------------------------------------------------- *) let NTRIE_SING = prove (`(!n. {NUMERAL n} = NTRIE {n}) /\ {_0} = NZERO /\ (!n. {BIT0 n} = if n = _0 then NZERO else NNODE {n} NEMPTY) /\ (!n. {BIT1 n} = NNODE NEMPTY {n})`, REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Insertion. *) (* ------------------------------------------------------------------------- *) let NTRIE_INSERT = prove (`(!s n. NUMERAL n INSERT NTRIE s = NTRIE (n INSERT s)) /\ _0 INSERT NEMPTY = NZERO /\ _0 INSERT NZERO = NZERO /\ (!s t. _0 INSERT NNODE s t = NNODE (_0 INSERT s) t) /\ (!n. BIT0 n INSERT NZERO = if n = _0 then NZERO else NNODE (n INSERT NZERO) NEMPTY) /\ (!n. BIT1 n INSERT NZERO = NNODE NZERO {n}) /\ (!s t n. BIT0 n INSERT NNODE s t = NNODE (n INSERT s) t) /\ (!s t n. BIT1 n INSERT NNODE s t = NNODE s (n INSERT t))`, REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Union. *) (* ------------------------------------------------------------------------- *) let NTRIE_UNION = prove (`(!s t. NTRIE s UNION NTRIE t = NTRIE (s UNION t)) /\ (!s. s UNION NEMPTY = s) /\ (!s. NEMPTY UNION s = s) /\ NZERO UNION NZERO = NZERO /\ (!s t. NNODE s t UNION NZERO = NNODE (s UNION NZERO) t) /\ (!s t. NZERO UNION NNODE s t = NNODE (s UNION NZERO) t) /\ (!s t r q. NNODE s t UNION NNODE r q = NNODE (s UNION r) (t UNION q))`, REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Intersection. *) (* Warning: rewriting with this theorem generates ntries which are not *) (* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *) (* ------------------------------------------------------------------------- *) let NTRIE_INTER = prove (`(!s t. NTRIE s INTER NTRIE t = NTRIE (s INTER t)) /\ (!s. NEMPTY INTER s = NEMPTY) /\ (!s. s INTER NEMPTY = NEMPTY) /\ NZERO INTER NZERO = NZERO /\ (!s t. NZERO INTER NNODE s t = NZERO INTER s) /\ (!s t. NNODE s t INTER NZERO = NZERO INTER s) /\ (!s1 s2 t1 t2. NNODE s1 t1 INTER NNODE s2 t2 = NNODE (s1 INTER s2) (t1 INTER t2))`, REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Deletion. *) (* Warning: rewriting with this theorem generates ntries which are not *) (* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *) (* ------------------------------------------------------------------------- *) let NTRIE_DELETE = prove (`(!s n. NTRIE s DELETE NUMERAL n = NTRIE (s DELETE n)) /\ (!n. NEMPTY DELETE n = NEMPTY) /\ (!n. NZERO DELETE n = if n = _0 then NEMPTY else NZERO) /\ (!s t. NNODE s t DELETE _0 = NNODE (s DELETE _0) t) /\ (!s t n. NNODE s t DELETE BIT0 n = NNODE (s DELETE n) t) /\ (!s t n. NNODE s t DELETE BIT1 n = NNODE s (t DELETE n))`, REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[ARITH_EQ; ARITH_ZERO]);; (* ------------------------------------------------------------------------- *) (* Disjointedness. *) (* ------------------------------------------------------------------------- *) let NTRIE_DISJOINT = prove (`(!s t. DISJOINT (NTRIE s) (NTRIE t) <=> DISJOINT s t) /\ (!s. DISJOINT s NEMPTY) /\ (!s. DISJOINT NEMPTY s) /\ ~DISJOINT NZERO NZERO /\ (!s t. DISJOINT NZERO (NNODE s t) <=> DISJOINT s NZERO) /\ (!s t. DISJOINT (NNODE s t) NZERO <=> DISJOINT s NZERO) /\ (!s1 s2 t1 t2. DISJOINT (NNODE s1 t1) (NNODE s2 t2) <=> DISJOINT s1 s2 /\ DISJOINT t1 t2)`, REWRITE_TAC[NTRIE; DISJOINT; GSYM NEMPTY; NTRIE_INTER; INTER_ACI; NTRIE_EQ]);; (* ------------------------------------------------------------------------- *) (* Difference. *) (* ------------------------------------------------------------------------- *) let NTRIE_DIFF = prove (`(!s t. NTRIE s DIFF NTRIE t = NTRIE (s DIFF t)) /\ (!s. NEMPTY DIFF s = NEMPTY) /\ (!s. s DIFF NEMPTY = s) /\ NZERO DIFF NZERO = NEMPTY /\ (!s t. NZERO DIFF NNODE s t = NZERO DIFF s) /\ (!s t. NNODE s t DIFF NZERO = NNODE (s DIFF NZERO) t) /\ (!s1 t1 s2 t2. NNODE s1 t1 DIFF NNODE s2 t2 = NNODE (s1 DIFF s2) (t1 DIFF t2))`, REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Image. *) (* ------------------------------------------------------------------------- *) let NTRIE_IMAGE_DEF = new_definition `!f:num->A acc s. NTRIE_IMAGE f acc s = IMAGE f s UNION acc`;; let NTRIE_IMAGE = prove (`(!f:num->A acc. NTRIE_IMAGE f acc NEMPTY = acc) /\ (!f:num->A acc. NTRIE_IMAGE f acc NZERO = f _0 INSERT acc) /\ (!f:num->A acc s t. NTRIE_IMAGE f acc (NNODE s t) = NTRIE_IMAGE (\n. f (BIT1 n)) (NTRIE_IMAGE (\n. f (BIT0 n)) acc s) t)`, REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; NTRIE_IMAGE_DEF] THEN SET_TAC[]);; let IMAGE_EQ_NTRIE_IMAGE = prove (`!f:num->A s. IMAGE f (NTRIE s) = NTRIE_IMAGE (\n. f (NUMERAL n)) {} s`, REWRITE_TAC [NUMERAL; NTRIE; ETA_AX; NTRIE_IMAGE_DEF; UNION_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Constructor and destructor for ntries. *) (* ------------------------------------------------------------------------- *) let [NTRIE_tm; NEMPTY_tm; NZERO_tm; NNODE_tm] = let f = fst o strip_comb o lhs o snd o strip_forall o concl in map f [NTRIE; NEMPTY; NZERO; NNODE];; let mk_nnode = mk_binop NNODE_tm;; let mk_small_ntrie = let rec mk_sing n = if n == 0 then NZERO_tm else let r,d = n mod 2,n / 2 in let tm = mk_sing d in if r == 0 then mk_nnode tm NEMPTY_tm else mk_nnode NEMPTY_tm tm in let rec part ((el,ol) as acc) = function [] -> acc | h::t -> let acc = let r,d = h mod 2,h / 2 in if r = 0 then (d::el,ol) else (el,d::ol) in part acc t in let rec recur = function [] -> NEMPTY_tm | [n] -> mk_sing n | m::(n::_ as t) when n == m -> recur t | s -> let evens,odds = part ([],[]) s in mk_nnode (recur evens) (recur odds) in fun tm -> mk_comb(NTRIE_tm,recur tm);; let mk_ntrie = let rec mk_sing n = if n =/ num_0 then NZERO_tm else let r,d = mod_num n num_2,quo_num n num_2 in let tm = mk_sing d in if r =/ num_0 then mk_nnode tm NEMPTY_tm else mk_nnode NEMPTY_tm tm in let rec part ((el,ol) as acc) = function [] -> acc | h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in if r =/ num_0 then (d::el,ol) else (el,d::ol) in part acc t in let rec recur = function [] -> NEMPTY_tm | [n] -> mk_sing n | m::(n::_ as t) when n =/ m -> recur t | s -> let evens,odds = part ([],[]) s in mk_nnode (recur evens) (recur odds) in fun tm -> mk_comb(NTRIE_tm,recur tm);; (* ========================================================================= *) (* Second part: Syntax extension for ntries. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Destructor for ntries. *) (* ------------------------------------------------------------------------- *) let mk_numset tm = mk_setenum(tm,`:num`);; let dest_small_ntrie,dest_ntrie = let ntrie_strip_tag = function Comb(Const("NTRIE",_),tm) -> tm | _ -> failwith "ntrie_strip_tag" in let dest_small_ntrie tm = let rec runk n = function [] -> n | h::t -> let d = 2*n in runk (if h then d+1 else d) t in let rec recur acc k = function Const("NEMPTY",_) -> acc | Const("NZERO",_) -> runk 0 k::acc | Comb(Comb(Const("NNODE",_),stm),ttm) -> recur (recur acc (false::k) stm) (true::k) ttm | _ -> failwith "malformed ntrie" in recur [] [] (ntrie_strip_tag tm) in let dest_ntrie tm = let rec runk n = function [] -> n | h::t -> let d = num_2 */ n in runk (if h then d +/ num_1 else d) t in let rec recur acc k = function Const("NEMPTY",_) -> acc | Const("NZERO",_) -> runk num_0 k::acc | Comb(Comb(Const("NNODE",_),stm),ttm) -> recur (recur acc (false::k) stm) (true::k) ttm | _ -> failwith "malformed ntrie" in recur [] [] (ntrie_strip_tag tm) in dest_small_ntrie,dest_ntrie;; (* ------------------------------------------------------------------------- *) (* Printer. *) (* ------------------------------------------------------------------------- *) let pp_print_ntrie = let print_num fmt n = pp_print_string fmt (string_of_num n) in let print_nums fmt = let rec loop = function [] -> () | h::t -> pp_print_space fmt (); print_num fmt h; loop t in function [] -> () | h::t -> print_num fmt h; loop t in let print fmt tm = let l = sort ( function Comb(Const("NTRIE",_),_) as tm -> print fmt tm | _ -> failwith "print_ntrie";; let print_ntrie = pp_print_ntrie std_formatter and string_of_ntrie = print_to_string pp_print_ntrie;; install_user_printer("ntrie",pp_print_ntrie);; (* ------------------------------------------------------------------------- *) (* Parser. *) (* ------------------------------------------------------------------------- *) reserve_words["%%"];; let preparse_ntrie,parse_ntrie = let NTRIE_ptm = Varp("NTRIE",dpty) and NEMPTY_ptm = Varp("NEMPTY",dpty) and NZERO_ptm = Varp("NZERO",dpty) and NNODE_ptm = Varp("NNODE",dpty) in let pmk_nnode ptm1 ptm2 = Combp(Combp(NNODE_ptm,ptm1),ptm2) in let pmk_ntrie = let rec pmk_sing n = if n =/ num_0 then NZERO_ptm else let r,d = mod_num n num_2,quo_num n num_2 in let tm = pmk_sing d in if r =/ num_0 then pmk_nnode tm NEMPTY_ptm else pmk_nnode NEMPTY_ptm tm in let rec part ((el,ol) as acc) = function [] -> acc | h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in if r = num_0 then (d::el,ol) else (el,d::ol) in part acc t in let rec recur = function [] -> NEMPTY_ptm | [n] -> pmk_sing n | m::(n::_ as t) when n =/ m -> recur t | s -> let evens,odds = part ([],[]) s in pmk_nnode (recur evens) (recur odds) in fun tm -> Combp(NTRIE_ptm,recur tm) in let parse_int = function Ident s::rest -> let n = try num_of_string s with Failure _ -> raise Noparse in n,rest | _ -> raise Noparse in let parse_ints = many parse_int >> pmk_ntrie in let preparse_ntrie = ((a(Resword "%%") ++ a(Resword "(") ++ parse_ints) >> snd) ++ a(Resword ")") >> fst in let parse_ntrie s = let ptm,l = (preparse_ntrie o lex o explode) s in if l = [] then term_of_preterm (retypecheck [] ptm) else failwith "Unparsed input following term" in preparse_ntrie,parse_ntrie;; install_parser("ntrie",preparse_ntrie);; (* ========================================================================= *) (* Third part: Rules and conversions. *) (* ========================================================================= *) module Ntrie_conversions = struct (* ------------------------------------------------------------------------- *) (* Basic definitions, handy tools and other preliminaries. *) (* ------------------------------------------------------------------------- *) let Comb(NUMERAL_tm,(Comb(BIT0_tm,Comb(BIT1_tm,zero_tm)))) = lhand(concl TWO) let comb_numeral tm = mk_comb(NUMERAL_tm,tm) let mk_bit0 tm = if tm = zero_tm then tm else mk_comb(BIT0_tm,tm) and mk_bit1 tm = mk_comb(BIT1_tm,tm) and ntrie_ty = type_of NEMPTY_tm let neg_tm = `(~)` and eq_tm = `(=):(num->bool)->(num->bool)->bool` and iff_tm = `(=):bool->bool->bool` and conj_tm = `(/\):bool->bool->bool` and IN_tm = `(IN):num->(num->bool)->bool` and EMPTY_tm = `{}:num->bool` and SUBSET_tm = `(SUBSET):(num->bool)->(num->bool)->bool` and PSUBSET_tm = `(PSUBSET):(num->bool)->(num->bool)->bool` and DISJOINT_tm = `(DISJOINT):(num->bool)->(num->bool)->bool` and INSERT_tm = `(INSERT):num->(num->bool)->(num->bool)` and UNION_tm = `(UNION):(num->bool)->(num->bool)->(num->bool)` and INTER_tm = `(INTER):(num->bool)->(num->bool)->(num->bool)` and DELETE_tm = `(DELETE):(num->bool)->num->(num->bool)` and DIFF_tm = `(DIFF):(num->bool)->(num->bool)->(num->bool)` let [svar;svar1;svar2;tvar;tvar1;tvar2] = map (fun s -> mk_var(s,ntrie_ty)) ["s";"s1";"s2";"t";"t1";"t2"] and nvar = `n:num` let STANDARDIZE = let ilist = map (fun x -> x,x) [NEMPTY_tm; NZERO_tm; NNODE_tm; NTRIE_tm; IN_tm; eq_tm; SUBSET_tm; PSUBSET_tm; DISJOINT_tm; INSERT_tm; UNION_tm; INTER_tm; DELETE_tm; DIFF_tm; neg_tm; iff_tm; conj_tm; BIT0_tm; BIT1_tm; zero_tm; nvar; svar; svar1; svar2; tvar; tvar1; tvar2] in let rec replace tm = match tm with Var(_,_) | Const(_,_) -> rev_assocd tm ilist tm | Comb(s,t) -> mk_comb(replace s,replace t) | Abs(_,_) -> failwith "replace" in fun th -> let tm' = replace (concl th) in EQ_MP (REFL tm') th (* ------------------------------------------------------------------------- *) (* Well-formed (and minimal) ntries. *) (* ------------------------------------------------------------------------- *) let wellformed = let rec visit = function Const("NEMPTY",_) -> () | Const("NZERO",_) -> () | Comb(Comb(Const("NNODE",_),stm),ttm) -> ( match stm,ttm with Const("NEMPTY",_),Const("NEMPTY",_) | Const("NZERO",_),Const("NEMPTY",_) -> fail() | _ -> visit stm; visit ttm ) | _ -> fail() in function Comb(Const("NTRIE",_),tm) -> can visit tm | _ -> false (* ------------------------------------------------------------------------- *) (* Membership. *) (* ------------------------------------------------------------------------- *) let NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV = let rec NUM_NZ_RULE = let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) (`~(BIT1 n = _0) /\ (~(n = _0) <=> ~(BIT0 n = _0))`, REWRITE_TAC[ARITH_EQ]) in function Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth1 | Comb(Const("BIT0",_),ntm) -> let rth = NUM_NZ_RULE ntm and pth = INST [ntm,nvar] pth2 in EQ_MP pth rth | _ -> failwith "NUM_NZ_RULE" in let [zine_nth;zinx_pth;ine_nth;zinn_pth;pth4;pth5;pth6;pth7] = (CONJUNCTS o STANDARDIZE o prove) (`~(_0 IN NEMPTY) /\ _0 IN NZERO /\ ~(n IN NEMPTY) /\ (_0 IN s <=> _0 IN NNODE s t) /\ (n IN s <=> BIT0 n IN NNODE s t) /\ (n IN t <=> BIT1 n IN NNODE s t) /\ ~(BIT1 n IN NZERO) /\ (~(n = _0) <=> ~(BIT0 n IN NZERO))`, REWRITE_TAC[NTRIE_IN; ARITH_EQ]) in let [zinn_nth;npth4;npth5] = map (AP_TERM neg_tm) [zinn_pth;pth4;pth5] in let rec NTRIE_ZERO_IN_RULE : term -> bool * thm = function Const("NEMPTY",_) -> false,zine_nth | Const("NZERO",_) -> true,zinx_pth | Comb(Comb(Const("NNODE",_),stm),ttm) -> let b,rth = NTRIE_ZERO_IN_RULE stm in let pth = if b then zinn_pth else zinn_nth in b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | _ -> failwith "Malformed ntrie" in let rec NTRIE_CHOOSE_RULE = function Const("NEMPTY",_) -> failwith "Empty ntrie" | Const("NZERO",_) -> zinx_pth | Comb(Comb(Const("NNODE",_),stm),ttm) -> ( try let rth = NTRIE_CHOOSE_RULE ttm in let ntm = lhand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth5 in EQ_MP pth rth with Failure _ -> let rth = NTRIE_CHOOSE_RULE stm in let ntm = lhand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth4 in EQ_MP pth rth ) | _ -> failwith "Malformed ntrie" in let NTRIE_IN_CONV : conv = let rec NTRIE_IN_RULE : term * term -> bool * thm = function Const("_0",_),stm -> NTRIE_ZERO_IN_RULE stm | ntm,Const("NEMPTY",_) -> false,INST [ntm,nvar] ine_nth | Comb(Const("BIT1",_),ntm),Const("NZERO",_) -> false,INST [ntm,nvar] pth6 | Comb(Const("BIT0",_),ntm),Const("NZERO",_) -> let rth = NUM_NZ_RULE ntm in false,EQ_MP (INST [ntm,nvar] pth7) rth | Comb(Const("BIT0",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) -> let b,rth = NTRIE_IN_RULE(ntm,stm) in let pth = if b then pth4 else npth4 in let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in b,EQ_MP pth rth | Comb(Const("BIT1",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) -> let b,rth = NTRIE_IN_RULE(ntm,ttm) in let pth = if b then pth5 else npth5 in let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in b,EQ_MP pth rth | _ -> failwith "NTRIE_IN_RULE" in let NTRIE_IN_CONV : conv = let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) (`(n IN s <=> (NUMERAL n IN NTRIE s <=> T)) /\ (~(n IN s) <=> (NUMERAL n IN NTRIE s <=> F))`, REWRITE_TAC[NUMERAL;NTRIE]) in function Comb(Comb(Const("IN",_),Comb(Const("NUMERAL",_),ntm)), Comb(Const("NTRIE",_),stm)) -> let b,rth = NTRIE_IN_RULE(ntm,stm) in let pth = if b then pth1 else pth2 in EQ_MP (INST [ntm,nvar; stm,svar] pth) rth | _ -> failwith "NTRIE_IN_CONV" in NTRIE_IN_CONV in NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV (* ------------------------------------------------------------------------- *) (* Inclusion. *) (* ------------------------------------------------------------------------- *) let NTRIE_SUBSET_CONV : conv = let [sub_refl_pth; esube_pth; xsubx_pth; esubx_pth; esub_pth; xsube_nth; sube_nth; xsubn_pth; xsubn_nth; nsubx_pth; nsubx_nth1; nsubx_nth2; nsubn_pth; nsubn_nth1; nsubn_nth2] = (CONJUNCTS o STANDARDIZE o prove) (`s SUBSET s /\ NEMPTY SUBSET NEMPTY /\ NZERO SUBSET NZERO /\ NEMPTY SUBSET NZERO /\ NEMPTY SUBSET t /\ ~(NZERO SUBSET NEMPTY) /\ (n IN s ==> ~(s SUBSET NEMPTY)) /\ (NZERO SUBSET s <=> NZERO SUBSET NNODE s t) /\ (~(NZERO SUBSET s) <=> ~(NZERO SUBSET NNODE s t)) /\ (s SUBSET NZERO <=> NNODE s NEMPTY SUBSET NZERO) /\ (~(s SUBSET NZERO) <=> ~(NNODE s NEMPTY SUBSET NZERO)) /\ (n IN t ==> ~(NNODE s t SUBSET NZERO)) /\ (s1 SUBSET s2 /\ t1 SUBSET t2 <=> NNODE s1 t1 SUBSET NNODE s2 t2) /\ (~(s1 SUBSET s2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2)) /\ (~(t1 SUBSET t2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2))`, SIMP_TAC[NTRIE_SUBSET] THEN REWRITE_TAC[NEMPTY] THEN SET_TAC[]) in let rec NTRIE_NZERO_SUBSET_RULE = function Const("NEMPTY",_) -> false,xsube_nth | Const("NZERO",_) -> true,xsubx_pth | Comb(Comb(Const("NNODE",_),stm),ttm) -> let b,rth = NTRIE_NZERO_SUBSET_RULE stm in let pth = if b then xsubn_pth else xsubn_nth in b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | _ -> failwith "Malformed ntrie" in let rec NTRIE_SUBSET_NZERO_RULE = function Const("NEMPTY",_) -> true,esubx_pth | Const("NZERO",_) -> true,xsubx_pth | Comb(Comb(Const("NNODE",_),stm),Const("NEMPTY",_)) -> let b,rth = NTRIE_SUBSET_NZERO_RULE stm in let pth = if b then nsubx_pth else nsubx_nth1 in b,EQ_MP (INST [stm,svar] pth) rth | Comb(Comb(Const("NNODE",_),stm),ttm) -> let rth = NTRIE_CHOOSE_RULE ttm in let ntm = lhand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar] nsubx_nth2 in false,MP pth rth | _ -> failwith "Malformed ntrie" in let rec NTRIE_SUBSET_RULE = function Const("NEMPTY",_),Const("NEMPTY",_) -> true,esube_pth | Const("NEMPTY",_),Const("NZERO",_) -> true,esubx_pth | Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] esub_pth | stm,Const("NEMPTY",_) -> let rth = NTRIE_CHOOSE_RULE stm in let ntm = lhand(concl rth) in let pth = INST [ntm,nvar; stm,svar] sube_nth in false,MP pth rth | Const("NZERO",_),ttm -> NTRIE_NZERO_SUBSET_RULE ttm | stm,Const("NZERO",_) -> NTRIE_SUBSET_NZERO_RULE stm | stm,ttm when stm = ttm -> true,INST [stm,svar] sub_refl_pth | Comb(Comb(Const("NNODE",_),stm1),ttm1), Comb(Comb(Const("NNODE",_),stm2),ttm2) -> let b1,rth1 = NTRIE_SUBSET_RULE (stm1,stm2) in let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in if not b1 then false,MP (pinst nsubn_nth1) rth1 else let b2,rth2 = NTRIE_SUBSET_RULE (ttm1,ttm2) in if not b2 then false,MP (pinst nsubn_nth2) rth2 else true,EQ_MP (pinst nsubn_pth) (CONJ rth1 rth2) | _ -> failwith "Malformed ntrie" in let NTRIE_SUBSET_CONV : conv = let pth_sub_eqt,pth_sub_eqf = (CONJ_PAIR o STANDARDIZE o prove) (`(s SUBSET t <=> (NTRIE s SUBSET NTRIE t <=> T)) /\ (~(s SUBSET t) <=> (NTRIE s SUBSET NTRIE t <=> F))`, REWRITE_TAC[NTRIE]) in function Comb(Comb(Const("SUBSET",_),Comb(Const("NTRIE",_),stm)), Comb(Const("NTRIE",_),ttm)) -> let b,rth = NTRIE_SUBSET_RULE(stm,ttm) in let pth = if b then pth_sub_eqt else pth_sub_eqf in EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | _ -> failwith "NTRIE_SUBSET_CONV" in NTRIE_SUBSET_CONV (* ------------------------------------------------------------------------- *) (* Equality. *) (* ------------------------------------------------------------------------- *) let NTRIE_EQ_CONV : conv = let [eq_refl_pth;eeqe_pth;xeqx_pth;eeqx_nth;xeqe_nth;eqe_nth;eeq_nth; eqx_nth1;eqx_nth2;neqn_pth;neqn_nth1;neqn_nth2] = (CONJUNCTS o STANDARDIZE o prove) (`s = s /\ NEMPTY = NEMPTY /\ NZERO = NZERO /\ ~(NEMPTY = NZERO) /\ ~(NZERO = NEMPTY) /\ (n IN s ==> ~(s = NEMPTY)) /\ (n IN t ==> ~(NEMPTY = t)) /\ (~(n = _0) ==> n IN s ==> ~(s = NZERO)) /\ (~(n = _0) ==> n IN t ==> ~(NZERO = t)) /\ (s1 = s2 /\ t1 = t2 <=> NNODE s1 t1 = NNODE s2 t2) /\ (~(s1 = s2) ==> ~(NNODE s1 t1 = NNODE s2 t2)) /\ (~(t1 = t2) ==> ~(NNODE s1 t1 = NNODE s2 t2))`, SIMP_TAC[NTRIE_EQ] THEN SET_TAC[NEMPTY; NZERO]) in let rec NTRIE_EQ_RULE = function Const("NEMPTY",_),Const("NEMPTY",_) -> true,eeqe_pth | Const("NZERO",_),Const("NZERO",_) -> true,xeqx_pth | Const("NEMPTY",_),Const("NZERO",_) -> false,eeqx_nth | Const("NZERO",_),Const("NEMPTY",_) -> false,xeqe_nth | stm,Const("NEMPTY",_) -> let rth = NTRIE_CHOOSE_RULE stm in let ntm = lhand(concl rth) in let pth = INST [ntm,nvar; stm,svar] eqe_nth in false,MP pth rth | Const("NEMPTY",_),ttm -> let rth = NTRIE_CHOOSE_RULE ttm in let ntm = lhand(concl rth) in let pth = INST [ntm,nvar; ttm,tvar] eeq_nth in false,MP pth rth | stm,Const("NZERO",_) -> let rth = NTRIE_CHOOSE_RULE stm in let ntm = lhand(concl rth) in let zth = NUM_NZ_RULE ntm in let pth = INST [ntm,nvar; stm,svar] eqx_nth1 in false,MP (MP pth zth) rth | Const("NZERO",_),ttm -> let rth = NTRIE_CHOOSE_RULE ttm in let ntm = lhand(concl rth) in let zth = NUM_NZ_RULE ntm in let pth = INST [ntm,nvar; ttm,tvar] eqx_nth2 in false,MP (MP pth zth) rth | stm,ttm when stm = ttm -> true,INST [stm,svar] eq_refl_pth | Comb(Comb(Const("NNODE",_),stm1),ttm1), Comb(Comb(Const("NNODE",_),stm2),ttm2) -> let b1,rth1 = NTRIE_EQ_RULE(stm1,stm2) in let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in if not b1 then false,MP (pinst neqn_nth1) rth1 else let b2,rth2 = NTRIE_EQ_RULE(ttm1,ttm2) in if not b2 then false,MP (pinst neqn_nth2) rth2 else failwith "Malformed ntrie" | _ -> failwith "Malformed ntrie" in let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) (`(s = t <=> (NTRIE s = NTRIE t <=> T)) /\ (~(s = t) <=> (NTRIE s = NTRIE t <=> F))`, REWRITE_TAC[NTRIE]) in function Comb(Comb(Const("=",_),Comb(Const("NTRIE",_),stm)), Comb(Const("NTRIE",_),ttm)) -> let b,rth = NTRIE_EQ_RULE(stm,ttm) in let pth = if b then pth1 else pth2 in EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | _ -> failwith "NTRIE_SUBSET_CONV" (* ------------------------------------------------------------------------- *) (* Singleton. *) (* ------------------------------------------------------------------------- *) let NTRIE_SING_RULE,NTRIE_SING_CONV = let [pth0;pth1;pth2;pth3] = (CONJUNCTS o STANDARDIZE o prove) (`({n} = s <=> ({NUMERAL n} = NTRIE s)) /\ ({_0} = NZERO) /\ ({n} = s ==> {BIT0 n} = NNODE s NEMPTY) /\ ({n} = s <=> {BIT1 n} = NNODE NEMPTY s)`, REWRITE_TAC[NTRIE_SING; NTRIE; NTRIE_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NTRIE_EQ] THEN MESON_TAC[NZERO]) in let rec NTRIE_SING_RULE = function Const("_0",_) -> pth1 | Comb(Const("BIT0",_),ntm) -> let rth = NTRIE_SING_RULE ntm in let stm = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar] pth2 in MP pth rth | Comb(Const("BIT1",_),ntm) -> let rth = NTRIE_SING_RULE ntm in let stm = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar] pth3 in EQ_MP pth rth | _ -> failwith "Malformed numeral" in let NTRIE_SING_CONV : conv = function Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)), Const("EMPTY",_)) -> let rth = NTRIE_SING_RULE ntm in let stm = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar] pth0 in EQ_MP pth rth | _ -> failwith "NTRIE_SING_CONV" in NTRIE_SING_RULE,NTRIE_SING_CONV (* ------------------------------------------------------------------------- *) (* Insertion. *) (* ------------------------------------------------------------------------- *) let NTRIE_INSERT_RULE,NTRIE_INSERT_CONV = let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] = (CONJUNCTS o STANDARDIZE o prove) (`(n INSERT s = t <=> NUMERAL n INSERT NTRIE s = NTRIE t) /\ ({n} = s <=> n INSERT NEMPTY = s) /\ (_0 INSERT NEMPTY = NZERO) /\ (_0 INSERT NZERO = NZERO) /\ (_0 INSERT s = s1 <=> _0 INSERT NNODE s t = NNODE s1 t) /\ (n INSERT NZERO = t <=> BIT0 n INSERT NZERO = NNODE t NEMPTY) /\ ({n} = t <=> BIT1 n INSERT NZERO = NNODE NZERO t) /\ (n INSERT s = s1 <=> BIT0 n INSERT NNODE s t = NNODE s1 t) /\ (n INSERT t = t1 <=> BIT1 n INSERT NNODE s t = NNODE s t1)`, REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN MESON_TAC[NEMPTY; NZERO]) in let rec NTRIE_INSERT_RULE = function Const("_0",_),Const("NEMPTY",_) -> pth2 | Const("_0",_),Const("NZERO",_) -> pth3 | Const("_0",_),Comb(Comb(Const("NNODE",_),stm),ttm) -> let rth = NTRIE_INSERT_RULE(zero_tm,stm) in let stm1 = rand(concl rth) in let pth = INST [stm,svar; ttm,tvar; stm1,svar1] pth4 in EQ_MP pth rth | ntm,Const("NEMPTY",_) -> let rth = NTRIE_SING_RULE ntm in let stm = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar] pth1 in EQ_MP pth rth | Comb(Const("BIT0",_),ntm),Const("NZERO",_) -> let rth = NTRIE_INSERT_RULE(ntm,NZERO_tm) in let ttm = rand(concl rth) in let pth = INST [ntm,nvar; ttm,tvar] pth5 in EQ_MP pth rth | Comb(Const("BIT1",_),ntm),Const("NZERO",_) -> let rth = NTRIE_SING_RULE ntm in let ttm = rand(concl rth) in let pth = INST [ntm,nvar; ttm,tvar] pth6 in EQ_MP pth rth | Comb(Const("BIT0",_),ntm), Comb(Comb(Const("NNODE",_),stm),ttm) -> let rth = NTRIE_INSERT_RULE(ntm,stm) in let stm1 = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar; stm1,svar1] pth7 in EQ_MP pth rth | Comb(Const("BIT1",_),ntm), Comb(Comb(Const("NNODE",_),stm),ttm) -> let rth = NTRIE_INSERT_RULE(ntm,ttm) in let ttm1 = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in EQ_MP pth rth | _ -> failwith "Malformed ntrie or numeral" in let NTRIE_INSERT_CONV : conv = function Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)), Comb(Const("NTRIE",_),stm)) -> let rth = NTRIE_INSERT_RULE(ntm,stm) in let ttm = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth0 in EQ_MP pth rth | _ -> failwith "NTRIE_INSERT_CONV" in NTRIE_INSERT_RULE,NTRIE_INSERT_CONV (* ------------------------------------------------------------------------- *) (* Union. *) (* ------------------------------------------------------------------------- *) let NTRIE_UNION_CONV : conv = let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] = (CONJUNCTS o STANDARDIZE o prove) (`(s1 UNION s2 = s <=> NTRIE s1 UNION NTRIE s2 = NTRIE s) /\ NEMPTY UNION NEMPTY = NEMPTY /\ NEMPTY UNION NZERO = NZERO /\ NZERO UNION NEMPTY = NZERO /\ NZERO UNION NZERO = NZERO /\ (s UNION NEMPTY = s) /\ (NEMPTY UNION t = t) /\ (s UNION NZERO = s1 <=> NNODE s t UNION NZERO = NNODE s1 t) /\ (s UNION NZERO = s1 <=> NZERO UNION NNODE s t = NNODE s1 t) /\ (s1 UNION s2 = s /\ t1 UNION t2 = t <=> NNODE s1 t1 UNION NNODE s2 t2 = NNODE s t)`, REPEAT STRIP_TAC THEN TRY EQ_TAC THEN REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN REWRITE_TAC[NTRIE_UNION; NTRIE; NTRIE_EQ]) in let rec NTRIE_UNION_NZERO = function Const("NEMPTY",_) -> pth2 | Const("NZERO",_) -> pth4 | Comb(Comb(Const("NNODE",_),stm),ttm) -> NTRIE_NNODE_UNION_NZERO (stm,ttm) | _ -> failwith "Malformed ntrie" and NTRIE_NNODE_UNION_NZERO (stm,ttm) = let rth = NTRIE_UNION_NZERO stm in let stm1 = rand(concl rth) in let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in EQ_MP pth rth and NTRIE_NZERO_UNION_NNODE (stm,ttm) = let rth = NTRIE_UNION_NZERO stm in let stm1 = rand(concl rth) in let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in EQ_MP pth rth in let rec NTRIE_UNION_RULE = function Const("NEMPTY",_),Const("NEMPTY",_) -> pth1 | Const("NEMPTY",_),Const("NZERO",_) -> pth2 | Const("NZERO",_),Const("NEMPTY",_) -> pth3 | Const("NZERO",_),Const("NZERO",_) -> pth4 | stm,Const("NEMPTY",_) -> INST [stm,svar] pth5 | Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth6 | Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) -> NTRIE_NNODE_UNION_NZERO (stm,ttm) | Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) -> NTRIE_NZERO_UNION_NNODE (stm,ttm) | Comb(Comb(Const("NNODE",_),stm1),ttm1), Comb(Comb(Const("NNODE",_),stm2),ttm2) -> let rth1 = NTRIE_UNION_RULE(stm1,stm2) and rth2 = NTRIE_UNION_RULE(ttm1,ttm2) in let stm = rand(concl rth1) and ttm = rand(concl rth2) in let pth = INST [stm,svar; stm1,svar1; stm2,svar2; ttm,tvar; ttm1,tvar1; ttm2,tvar2] pth9 in EQ_MP pth (CONJ rth1 rth2) | _ -> failwith "Malformed ntrie" in let NTRIE_UNION_CONV : conv = function Comb(Comb(Const("UNION",_),Comb(Const("NTRIE",_),stm1)), Comb(Const("NTRIE",_),stm2)) -> let rth = NTRIE_UNION_RULE(stm1,stm2) in let stm = rand(concl rth) in EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth | _ -> failwith "NTRIE_UNION_CONV" in NTRIE_UNION_CONV (* ------------------------------------------------------------------------- *) (* Intersection. *) (* ------------------------------------------------------------------------- *) let MK_NNODE_RULE = let pth0,pth1 = (CONJ_PAIR o STANDARDIZE o prove) (`NNODE NEMPTY NEMPTY = NEMPTY /\ NNODE NZERO NEMPTY = NZERO`, REWRITE_TAC[NTRIE_EQ]) in function Const("NEMPTY",_),Const("NEMPTY",_) -> pth0 | Const("NZERO",_),Const("NEMPTY",_) -> pth1 | _ -> failwith "MK_NNODE_RULE" let NTRIE_INTER_CONV : conv = let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;npth9;pth10] = (CONJUNCTS o STANDARDIZE o prove) (`(s1 INTER s2 = s <=> NTRIE s1 INTER NTRIE s2 = NTRIE s) /\ NEMPTY INTER NEMPTY = NEMPTY /\ NEMPTY INTER NZERO = NEMPTY /\ NZERO INTER NEMPTY = NEMPTY /\ s INTER NEMPTY = NEMPTY /\ NEMPTY INTER t = NEMPTY /\ NZERO INTER NZERO = NZERO /\ (s INTER NZERO = s1 <=> NNODE s t INTER NZERO = s1) /\ (s INTER NZERO = s1 <=> NZERO INTER NNODE s t = s1) /\ (_0 IN t <=> NZERO INTER t = NZERO) /\ (~(_0 IN t) <=> NZERO INTER t = NEMPTY) /\ (s1 INTER s2 = s /\ t1 INTER t2 = t <=> NNODE s1 t1 INTER NNODE s2 t2 = NNODE s t)`, REWRITE_TAC[NTRIE_INTER; NTRIE_EQ; NTRIE; NZERO; NEMPTY] THEN SET_TAC[]) in let rec NTRIE_INTER_NZERO = function Const("NEMPTY",_) -> pth2 | Const("NZERO",_) -> pth6 | Comb(Comb(Const("NNODE",_),stm),ttm) -> NTRIE_NNODE_INTER_NZERO (stm,ttm) | _ -> failwith "Malformed ntrie" and NTRIE_NNODE_INTER_NZERO (stm,ttm) = let rth = NTRIE_INTER_NZERO stm in let stm1 = rand(concl rth) in let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in EQ_MP pth rth and NTRIE_NZERO_INTER_NNODE (stm,ttm) = let rth = NTRIE_INTER_NZERO stm in let stm1 = rand(concl rth) in let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in EQ_MP pth rth in let rec NTRIE_INTER_RULE = function Const("NEMPTY",_),Const("NEMPTY",_) -> pth1 | Const("NEMPTY",_),Const("NZERO",_) -> pth2 | Const("NZERO",_),Const("NEMPTY",_) -> pth3 | Const("NZERO",_),Const("NZERO",_) -> pth6 | stm,Const("NEMPTY",_) -> INST [stm,svar] pth4 | Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth5 | Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) -> NTRIE_NNODE_INTER_NZERO(stm,ttm) | Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) -> NTRIE_NZERO_INTER_NNODE(stm,ttm) | Const("NZERO",_),ttm -> let b,rth = NTRIE_ZERO_IN_RULE ttm in let pth = if b then pth9 else npth9 in EQ_MP (INST [ttm,tvar] pth) rth | Comb(Comb(Const("NNODE",_),stm1),ttm1), Comb(Comb(Const("NNODE",_),stm2),ttm2) -> let rth1 = NTRIE_INTER_RULE(stm1,stm2) and rth2 = NTRIE_INTER_RULE(ttm1,ttm2) in let stm = rand(concl rth1) and ttm = rand(concl rth2) in let pth = INST [stm,svar; stm1,svar1; stm2,svar2; ttm,tvar; ttm1,tvar1; ttm2,tvar2] pth10 in let th = EQ_MP pth (CONJ rth1 rth2) in ( try TRANS th (MK_NNODE_RULE(stm,ttm)) with Failure _ -> th ) | _ -> failwith "Malformed ntrie" in let NTRIE_INTER_CONV : conv = function Comb(Comb(Const("INTER",_),Comb(Const("NTRIE",_),stm1)), Comb(Const("NTRIE",_),stm2)) -> let rth = NTRIE_INTER_RULE(stm1,stm2) in let stm = rand(concl rth) in EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth | _ -> failwith "NTRIE_INTER_CONV" in NTRIE_INTER_CONV (* ------------------------------------------------------------------------- *) (* Deletion. *) (* ------------------------------------------------------------------------- *) let NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV = let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] = (CONJUNCTS o STANDARDIZE o prove) (`(s DELETE n = t <=> NTRIE s DELETE NUMERAL n = NTRIE t) /\ NEMPTY DELETE _0 = NEMPTY /\ NEMPTY DELETE n = NEMPTY /\ NZERO DELETE _0 = NEMPTY /\ (~(n = _0) <=> NZERO DELETE BIT0 n = NZERO) /\ NZERO DELETE BIT1 n = NZERO /\ (s DELETE _0 = s1 <=> NNODE s t DELETE _0 = NNODE s1 t) /\ (s DELETE n = s1 <=> NNODE s t DELETE BIT0 n = NNODE s1 t) /\ (t DELETE n = t1 <=> NNODE s t DELETE BIT1 n = NNODE s t1)`, REWRITE_TAC[NTRIE_DELETE; ARITH_EQ; NTRIE] THEN MESON_TAC[NTRIE_EQ; NTRIE_DELETE]) in let rec NTRIE_DELETE_ZERO = function Const("NEMPTY",_) -> pth1 | Const("NZERO",_) -> pth3 | Comb(Comb(Const("NNODE",_),stm),ttm) -> NTRIE_NNODE_DELETE_ZERO(stm,ttm) | _ -> failwith "Malformed ntrie" and NTRIE_NNODE_DELETE_ZERO (stm,ttm) = let rth = NTRIE_DELETE_ZERO stm in let stm1 = rand(concl rth) in let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth6 in EQ_MP pth rth in let NTRIE_DELETE_CONV : conv = let rec NTRIE_DELETE_RULE = function Const("NEMPTY",_),Const("_0",_) -> pth1 | Const("NEMPTY",_),ntm -> INST [ntm,nvar] pth2 | Const("NZERO",_),Const("_0",_) -> pth3 | Comb(Comb(Const("NNODE",_),stm),ttm),Const("_0",_) -> NTRIE_NNODE_DELETE_ZERO(stm,ttm) | Const("NZERO",_),Comb(Const("BIT0",_),ntm) -> let rth = NUM_NZ_RULE ntm in EQ_MP (INST [ntm,nvar] pth4) rth | Const("NZERO",_),Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth5 | Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT0",_),ntm) -> let rth = NTRIE_DELETE_RULE(stm,ntm) in let stm1 = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar; stm1,svar1; ttm,tvar] pth7 in let th = EQ_MP pth rth in ( try TRANS th (MK_NNODE_RULE(stm1,ttm)) with Failure _ -> th ) | Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT1",_),ntm) -> let rth = NTRIE_DELETE_RULE(ttm,ntm) in let ttm1 = rand(concl rth) in let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in let th = EQ_MP pth rth in ( try TRANS th (MK_NNODE_RULE(stm,ttm1)) with Failure _ -> th ) | _ -> failwith "Malformed ntrie" in function Comb(Comb(Const("DELETE",_),Comb(Const("NTRIE",_),stm)), Comb(Const("NUMERAL",_),ntm)) -> let rth = NTRIE_DELETE_RULE(stm,ntm) in let ttm = rand(concl rth) in EQ_MP (INST [ntm,nvar; stm,svar; ttm,tvar] pth0) rth | _ -> failwith "NTRIE_DELETE_CONV" in NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV (* ------------------------------------------------------------------------- *) (* Disjointedness. *) (* ------------------------------------------------------------------------- *) let NTRIE_DISJOINT_CONV : conv = let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;pth10;pth11;pth12] = (CONJUNCTS o STANDARDIZE o prove) (`DISJOINT NEMPTY NEMPTY /\ DISJOINT NEMPTY NZERO /\ DISJOINT NZERO NEMPTY /\ ~DISJOINT NZERO NZERO /\ DISJOINT s NEMPTY /\ DISJOINT NEMPTY t /\ (_0 IN s <=> ~DISJOINT s NZERO) /\ (~(_0 IN s) <=> DISJOINT s NZERO) /\ (_0 IN t <=> ~DISJOINT NZERO t) /\ (~(_0 IN t) <=> DISJOINT NZERO t) /\ (DISJOINT s1 s2 /\ DISJOINT t1 t2 <=> DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\ (~DISJOINT s1 s2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\ (~DISJOINT t1 t2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2))`, SIMP_TAC[NTRIE_DISJOINT] THEN REWRITE_TAC[NZERO] THEN SET_TAC[]) in let rec NTRIE_DISJOINT_RULE = function Const("NEMPTY",_),Const("NEMPTY",_) -> true,pth0 | Const("NEMPTY",_),Const("NZERO",_) -> true,pth1 | Const("NZERO",_),Const("NEMPTY",_) -> true,pth2 | Const("NZERO",_),Const("NZERO",_) -> false,pth3 | stm,Const("NEMPTY",_) -> true,INST [stm,svar] pth4 | Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] pth5 | stm,Const("NZERO",_) -> let b,rth = NTRIE_ZERO_IN_RULE stm in let pinst = INST [stm,svar] in let pth = pinst (if b then pth6 else pth7) in not b,EQ_MP pth rth | Const("NZERO",_),ttm -> let b,rth = NTRIE_ZERO_IN_RULE ttm in let pinst = INST [ttm,tvar] in let pth = pinst (if b then pth8 else pth9) in not b,EQ_MP pth rth | Comb(Comb(Const("NNODE",_),stm1),ttm1), Comb(Comb(Const("NNODE",_),stm2),ttm2) -> let b1,rth1 = NTRIE_DISJOINT_RULE (stm1,stm2) in let pinst = INST [stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in if not b1 then false,MP (pinst pth11) rth1 else let b2,rth2 = NTRIE_DISJOINT_RULE (ttm1,ttm2) in if not b2 then false,MP (pinst pth12) rth2 else true,EQ_MP (pinst pth10) (CONJ rth1 rth2) | _ -> failwith "Malformed ntrie" in let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove) (`(DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> T)) /\ (~DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> F))`, REWRITE_TAC[NTRIE]) in function Comb(Comb(Const("DISJOINT",_),Comb(Const("NTRIE",_),stm)), Comb(Const("NTRIE",_),ttm)) -> let b,rth = NTRIE_DISJOINT_RULE(stm,ttm) in let pth = if b then pth1 else pth2 in EQ_MP (INST [stm,svar; ttm,tvar] pth) rth | _ -> failwith "NTRIE_DISJOINT_CONV" (* ------------------------------------------------------------------------- *) (* Set difference. *) (* ------------------------------------------------------------------------- *) let NTRIE_DIFF_CONV : conv = let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] = (CONJUNCTS o STANDARDIZE o prove) (`NEMPTY DIFF NEMPTY = NEMPTY /\ NEMPTY DIFF NZERO = NEMPTY /\ NZERO DIFF NEMPTY = NZERO /\ NZERO DIFF NZERO = NEMPTY /\ NEMPTY DIFF t = NEMPTY /\ s DIFF NEMPTY = s /\ s DIFF NZERO = s DELETE _0 /\ (_0 IN t <=> NZERO DIFF t = NEMPTY) /\ (~(_0 IN t) <=> NZERO DIFF t = NZERO) /\ (s1 DIFF s2 = s /\ t1 DIFF t2 = t <=> NNODE s1 t1 DIFF NNODE s2 t2 = NNODE s t)`, REWRITE_TAC[NTRIE_DIFF; NTRIE_EQ] THEN REWRITE_TAC[NZERO; NEMPTY] THEN SET_TAC[]) in let rec NTRIE_DIFF_RULE = function Const("NEMPTY",_),Const("NEMPTY",_) -> pth0 | Const("NEMPTY",_),Const("NZERO",_) -> pth1 | Const("NZERO",_),Const("NEMPTY",_) -> pth2 | Const("NZERO",_),Const("NZERO",_) -> pth3 | stm,Const("NEMPTY",_) -> INST [stm,svar] pth5 | Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth4 | stm,Const("NZERO",_) -> let rth = NTRIE_DELETE_ZERO stm in let pth = INST [stm,svar] pth6 in TRANS pth rth | Const("NZERO",_),ttm -> let b,rth = NTRIE_ZERO_IN_RULE ttm in let pinst = INST [ttm,tvar] in let pth = pinst(if b then pth7 else pth8) in EQ_MP pth rth | Comb(Comb(Const("NNODE",_),stm1),ttm1), Comb(Comb(Const("NNODE",_),stm2),ttm2) -> let rth1 = NTRIE_DIFF_RULE(stm1,stm2) and rth2 = NTRIE_DIFF_RULE(ttm1,ttm2) in let stm = rand(concl rth1) and ttm = rand(concl rth2) in let pth = INST [stm,svar; stm1,svar1; stm2,svar2; ttm,tvar; ttm1,tvar1; ttm2,tvar2] pth9 in let th = EQ_MP pth (CONJ rth1 rth2) in ( try TRANS th (MK_NNODE_RULE(stm,ttm)) with Failure _ -> th ) | _ -> failwith "Malformed ntrie" in let pth = (STANDARDIZE o prove) (`(s DIFF t = s1 <=> NTRIE s DIFF NTRIE t = NTRIE s1)`, REWRITE_TAC[NTRIE]) in function Comb(Comb(Const("DIFF",_),Comb(Const("NTRIE",_),stm)), Comb(Const("NTRIE",_),ttm)) -> let rth = NTRIE_DIFF_RULE(stm,ttm) in let rtm = rand(concl rth) in EQ_MP (INST [stm,svar; ttm,tvar; rtm,svar1] pth) rth | _ -> failwith "NTRIE_DIFF_CONV" (* ------------------------------------------------------------------------- *) (* Encoding from and decoding to set enumerations. *) (* ------------------------------------------------------------------------- *) let NTRIE_ENCODE_CONV : conv = let [pth0;pth1;pth2] = (CONJUNCTS o STANDARDIZE o prove) (`{} = NEMPTY /\ s = NTRIE s /\ (INSERT) (NUMERAL n) = (INSERT) n`, REWRITE_TAC[NTRIE; NEMPTY; NUMERAL]) in let rec NTRIE_ENC_CONV : conv = function Const("EMPTY",ty) when ty = ntrie_ty -> pth0 | Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),stm) -> let rth1 = NTRIE_ENC_CONV stm in let ttm = rand(concl rth1) in let rth2 = MK_COMB ((INST [ntm,nvar] pth2),rth1) in TRANS rth2 (NTRIE_INSERT_RULE (ntm,ttm)) | _ -> failwith "NTRIE_ENC_CONV" in fun tm -> let rth = NTRIE_ENC_CONV tm in let stm = rand(concl rth) in TRANS rth (INST [stm,svar] pth1);; let NTRIE_DECODE_CONV : conv = fun tm -> let l = dest_small_ntrie tm in let tm' = mk_numset (map mk_small_numeral (sort (<) l)) in SYM (NTRIE_ENCODE_CONV tm');; end let NTRIE_IN_CONV : conv = Ntrie_conversions.NTRIE_IN_CONV and NTRIE_SUBSET_CONV : conv = Ntrie_conversions.NTRIE_SUBSET_CONV and NTRIE_EQ_CONV : conv = Ntrie_conversions.NTRIE_EQ_CONV and NTRIE_SING_CONV : conv = Ntrie_conversions.NTRIE_SING_CONV and NTRIE_INSERT_CONV : conv = Ntrie_conversions.NTRIE_INSERT_CONV and NTRIE_UNION_CONV : conv = Ntrie_conversions.NTRIE_UNION_CONV and NTRIE_INTER_CONV : conv = Ntrie_conversions.NTRIE_INTER_CONV and NTRIE_DELETE_CONV : conv = Ntrie_conversions.NTRIE_DELETE_CONV and NTRIE_DISJOINT_CONV : conv = Ntrie_conversions.NTRIE_DISJOINT_CONV and NTRIE_DIFF_CONV : conv = Ntrie_conversions.NTRIE_DIFF_CONV and NTRIE_ENCODE_CONV : conv = Ntrie_conversions.NTRIE_ENCODE_CONV and NTRIE_DECODE_CONV : conv = Ntrie_conversions.NTRIE_DECODE_CONV;; (* ------------------------------------------------------------------------- *) (* Final hack-together. *) (* ------------------------------------------------------------------------- *) let NTRIE_REL_CONV : conv = let gconv_net = itlist (uncurry net_of_conv) [`NTRIE s = NTRIE t`, NTRIE_EQ_CONV; `NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV; `DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV; `NUMERAL n IN NTRIE s`, NTRIE_IN_CONV] (basic_net()) in REWRITES_CONV gconv_net;; let NTRIE_RED_CONV : conv = let gconv_net = itlist (uncurry net_of_conv) [`NTRIE s = NTRIE t`, NTRIE_EQ_CONV; `NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV; `DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV; `NUMERAL n IN NTRIE s`, NTRIE_IN_CONV; `NUMERAL n INSERT NTRIE s`, NTRIE_INSERT_CONV; `NTRIE s UNION NTRIE t`, NTRIE_UNION_CONV; `NTRIE s INTER NTRIE t`, NTRIE_INTER_CONV; `NTRIE s DELETE NUMERAL n`, NTRIE_DELETE_CONV; `NTRIE s DIFF NTRIE t`, NTRIE_DIFF_CONV] (basic_net()) in REWRITES_CONV gconv_net;; let NTRIE_REDUCE_CONV = DEPTH_CONV NTRIE_RED_CONV;; let NTRIE_REDUCE_TAC = CONV_TAC NTRIE_REDUCE_CONV;;