(* ========================================================================= *) (* Syntax and semantics of modal logic. *) (* *) (* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) (* *) (* Part of this code is copied or adapted from *) (* John Harrison (2017) The HOL Light Tutorial. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Syntax of formulae. *) (* ------------------------------------------------------------------------- *) parse_as_infix("&&",(16,"right"));; parse_as_infix("||",(15,"right"));; parse_as_infix("-->",(14,"right"));; parse_as_infix("<->",(13,"right"));; parse_as_prefix "Not";; parse_as_prefix "Box";; let form_INDUCT,form_RECURSION = define_type "form = False | True | Atom string | Not form | && form form | || form form | --> form form | <-> form form | Box form";; let form_CASES = prove_cases_thm form_INDUCT;; let form_DISTINCT = distinctness "form";; let form_INJ = injectivity "form";; (* ------------------------------------------------------------------------- *) (* Kripke's Semantics of formulae. *) (* ------------------------------------------------------------------------- *) let holds = let pth = prove (`(!WP. P WP) <=> (!W R. P (W,R))`, MATCH_ACCEPT_TAC FORALL_PAIR_THM) in (end_itlist CONJ o map (REWRITE_RULE[pth] o GEN_ALL) o CONJUNCTS o new_recursive_definition form_RECURSION) `(holds WR V False (w:W) <=> F) /\ (holds WR V True w <=> T) /\ (holds WR V (Atom s) w <=> V s w) /\ (holds WR V (Not p) w <=> ~(holds WR V p w)) /\ (holds WR V (p && q) w <=> holds WR V p w /\ holds WR V q w) /\ (holds WR V (p || q) w <=> holds WR V p w \/ holds WR V q w) /\ (holds WR V (p --> q) w <=> holds WR V p w ==> holds WR V q w) /\ (holds WR V (p <-> q) w <=> holds WR V p w <=> holds WR V q w) /\ (holds WR V (Box p) w <=> !w'. w' IN FST WR /\ SND WR w w' ==> holds WR V p w')`;; let holds_in = new_definition `holds_in (W,R) p <=> !V w. w IN W ==> holds (W,R) V p w`;; parse_as_infix("|=",(11,"right"));; let valid = new_definition `L: (W->bool)#(W->W->bool)->bool |= p <=> !f. L f ==> holds_in f p`;; (* ------------------------------------------------------------------------- *) (* Some model-theoretic lemmas. *) (* ------------------------------------------------------------------------- *) let MODAL_TAC = REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];; let MODAL_RULE tm = prove(tm,MODAL_TAC);; let HOLDS_FORALL_LEMMA = prove (`!W R P. (!p V. P (holds (W,R) V p)) <=> (!p:W->bool. P p)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN DISCH_TAC THEN GEN_TAC THEN SUBGOAL_THEN `P (\w:W. holds (W,R) (\a. p) (Atom a) w):bool` (MP_TAC o REWRITE_RULE[holds]) THEN ASM_REWRITE_TAC[ETA_AX]);; let MODAL_SCHEMA_TAC = REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> REWRITE_TAC[th]);; (* ------------------------------------------------------------------------- *) (* Transitive Noetherian frames. *) (* ------------------------------------------------------------------------- *) let MODAL_TRANS = prove (`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\ R w w' /\ R w' w'' ==> R w w'') <=> (!p. holds_in (W,R) (Box p --> Box Box p))`, MODAL_SCHEMA_TAC THEN MESON_TAC[]);; let TRANSNT = new_definition `TRANSNT (W:W->bool,R:W->W->bool) <=> ~(W = {}) /\ (!x y:W. R x y ==> x IN W /\ y IN W) /\ (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ WF(\x y. R y x)`;; (* ------------------------------------------------------------------------- *) (* Subformulas. *) (* ------------------------------------------------------------------------- *) let IN_MINOR_RULES,IN_MINOR_INDUCT,IN_MINOR_CASES = new_inductive_set `(!p. p IN MINOR (Not p)) /\ (!p q. p IN MINOR (p && q)) /\ (!p q. q IN MINOR (p && q)) /\ (!p q. p IN MINOR (p || q)) /\ (!p q. q IN MINOR (p || q)) /\ (!p q. p IN MINOR (p --> q)) /\ (!p q. q IN MINOR (p --> q)) /\ (!p q. p IN MINOR (p <-> q)) /\ (!p q. q IN MINOR (p <-> q)) /\ (!p. p IN MINOR (Box p))`;; let MINOR_CLAUSES = prove (`MINOR False = {} /\ MINOR True = {} /\ MINOR (Atom s) = {} /\ (!p. MINOR (Not p) = {p}) /\ (!p q. MINOR (p && q) = {p,q}) /\ (!p q. MINOR (p || q) = {p,q}) /\ (!p q. MINOR (p --> q) = {p,q}) /\ (!p q. MINOR (p <-> q) = {p,q}) /\ (!p. MINOR (Box p) = {p})`, REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_MINOR_CASES; distinctness "form"; injectivity "form"] THEN MESON_TAC[]);; parse_as_infix("SUBFORMULA",get_infix_status "SUBSET");; let SUBFORMULA = new_definition `(SUBFORMULA) = RTC (\p q. p IN MINOR q)`;; let SUBFORMULA_REFL = prove (`!p. p SUBFORMULA p`, REWRITE_TAC[SUBFORMULA; RTC_REFL]);; let SUBFORMULA_TRANS = prove (`!p q r. p SUBFORMULA q /\ q SUBFORMULA r ==> p SUBFORMULA r`, REWRITE_TAC[SUBFORMULA; RTC_TRANS]);; let SUBFORMULA_CASES_L = prove (`!p q. p SUBFORMULA q <=> p = q \/ (?r. p SUBFORMULA r /\ r IN MINOR q)`, REWRITE_TAC[SUBFORMULA] THEN MESON_TAC[RTC_CASES_L]);; let FINITE_SUBFORMULA = prove (`!p. FINITE {q | q SUBFORMULA p}`, MATCH_MP_TAC form_INDUCT THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBFORMULA_CASES_L] THEN ASM_REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY; SET_RULE `{x | x = a} = {a}`; SET_RULE `{q | q = a \/ P q} = a INSERT {q | P q}`; SET_RULE `{q | ?r. q SUBFORMULA r /\ r = a} = {q | q SUBFORMULA a}`; SET_RULE `{q | ?r. q SUBFORMULA r /\ (r = a0 \/ r = a1)} = {q | q SUBFORMULA a0} UNION {q | q SUBFORMULA a1}`; EMPTY_GSPEC; FINITE_UNION; FINITE_INSERT; FINITE_EMPTY]);; let FINITE_SUBSET_SUBFORMULAS_LEMMA = prove (`!p. FINITE {A | A SUBSET {q | q SUBFORMULA p} UNION {Not q | q SUBFORMULA p}}`, REWRITE_TAC[FINITE_POWERSET_EQ; FINITE_UNION; FINITE_SUBFORMULA] THEN REWRITE_TAC[SET_RULE `{Not q | q SUBFORMULA p} = IMAGE (Not) {q | q SUBFORMULA p}`] THEN GEN_TAC THEN MATCH_MP_TAC FINITE_IMAGE THEN REWRITE_TAC[FINITE_SUBFORMULA]);; let SUBFORMULA_INVERSION = prove (`(!p. p SUBFORMULA False <=> p = False) /\ (!p. p SUBFORMULA True <=> p = True) /\ (!p s. p SUBFORMULA (Atom s) <=> p = Atom s) /\ (!p q. p SUBFORMULA (Not q) <=> p = Not q \/ p SUBFORMULA q) /\ (!p q r. p SUBFORMULA (q && r) <=> p = q && r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ (!p q r. p SUBFORMULA (q || r) <=> p = q || r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ (!p q r. p SUBFORMULA (q --> r) <=> p = q --> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ (!p q r. p SUBFORMULA (q <-> r) <=> p = q <-> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ (!p q. p SUBFORMULA (Box q) <=> p = Box q \/ p SUBFORMULA q)`, REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [SUBFORMULA_CASES_L] THEN REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[SUBFORMULA_REFL]);; let SUBFORMULA_LIST = prove (`!p. ?X. NOREPETITION X /\ (!q. MEM q X <=> q SUBFORMULA p)`, GEN_TAC THEN EXISTS_TAC `list_of_set {q | q SUBFORMULA p}` THEN SIMP_TAC[FINITE_SUBFORMULA; MEM_LIST_OF_SET; IN_ELIM_THM] THEN SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SUBFORMULA]);; MATCH_MP_TAC NOREPETITION_LIST_OF_SET (* ------------------------------------------------------------------------- *) (* Cardinality of the type of formulae. *) (* ------------------------------------------------------------------------- *) let COUNTABLE_FORM = prove (`COUNTABLE (:form)`, (DESTRUCT_TAC "@size. size" o prove_general_recursive_function_exists) `?depth. depth False = 0 /\ depth True = 0 /\ (!a. depth (Atom a) = 0) /\ (!p. depth (Not p) = depth p + 1) /\ (!p q. depth (p && q) = MAX (depth p) (depth q) + 1) /\ (!p q. depth (p || q) = MAX (depth p) (depth q) + 1) /\ (!p q. depth (p --> q) = MAX (depth p) (depth q) + 1) /\ (!p q. depth (p <-> q) = MAX (depth p) (depth q) + 1) /\ (!p. depth (Box p) = depth p + 1)` THEN ABBREV_TAC `u n = {p:form | p | size p < n}` THEN POP_ASSUM (LABEL_TAC "u") THEN SUBGOAL_THEN `(:form) = UNIONS {u n | n | n IN (:num)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN X_GEN_TAC `p:form` THEN EXISTS_TAC `u (size (p:form)+1):form->bool` THEN REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `m < m + 1`] THEN MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COUNTABLE_UNIONS THEN CONJ_TAC THENL [MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `IMAGE u (:num):(form->bool)->bool` THEN SIMP_TAC[NUM_COUNTABLE; COUNTABLE_IMAGE] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN INDUCT_TAC THENL [REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN REWRITE_TAC[ARITH_RULE `!n. ~(n < 0)`; EMPTY_GSPEC; COUNTABLE_EMPTY]; POP_ASSUM (LABEL_TAC "ind")] THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `u (n:num) UNION {True, False} UNION IMAGE Atom (:string) UNION IMAGE (Not) (u n) UNION IMAGE (\(op,p,q). op p q) ({(&&),(||),(-->),(<->)} CROSS (u n) CROSS (u n)) UNION IMAGE (Box) (u n)` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[COUNTABLE_UNION; COUNTABLE_INSERT; COUNTABLE_EMPTY] THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_STRING; COUNTABLE_CROSS; COUNTABLE_INSERT; COUNTABLE_EMPTY]; ALL_TAC] THEN USE_THEN "u" (SUBST1_TAC o GSYM o SPEC `SUC n`) THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN CLAIM_TAC "u_alt" `!p:form n:num. size p < n <=> p IN u n` THENL [USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN SET_TAC[]; ALL_TAC] THEN CLAIM_TAC "max" `!p q:form n:num. MAX (size p) (size q) < n <=> p IN u n /\ q IN u n` THENL [USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN SET_TAC[ARITH_RULE `!p q n. MAX p q < n <=> p < n /\ q < n`]; ALL_TAC] THEN GEN_TAC THEN STRUCT_CASES_TAC (SPEC `p:form` (cases "form")) THEN HYP REWRITE_TAC "size" [LT_0; IN_UNION; IN_INSERT; NOT_IN_EMPTY; distinctness "form"; GSYM ADD1; LT_SUC] THEN HYP REWRITE_TAC "u_alt max" [] THEN ASM_SIMP_TAC[FUN_IN_IMAGE; IN_UNIV] THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS; IN_INSERT; NOT_IN_EMPTY; distinctness "form"; injectivity "form"] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Bisimulation. *) (* ------------------------------------------------------------------------- *) let BISIMIMULATION = new_definition `BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=> (!w1:A w2:B. Z w1 w2 ==> w1 IN W1 /\ w2 IN W2 /\ (!a:string. V1 a w1 <=> V2 a w2) /\ (!w1'. R1 w1 w1' ==> ?w2'. w2' IN W2 /\ Z w1' w2' /\ R2 w2 w2') /\ (!w2'. R2 w2 w2' ==> ?w1'. w1' IN W1 /\ Z w1' w2' /\ R1 w1 w1'))`;; let BISIMIMULATION_HOLDS = prove (`!W1 R1 V1 W2 R2 V2 Z p w1:A w2:B. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2 ==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`, SUBGOAL_THEN `!W1 R1 V1 W2 R2 V2 Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z ==> !p w1:A w2:B. Z w1 w2 ==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)` (fun th -> MESON_TAC[th]) THEN REPEAT GEN_TAC THEN REWRITE_TAC[BISIMIMULATION] THEN DISCH_TAC THEN MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[holds] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Bisimilarity. *) (* ------------------------------------------------------------------------- *) let BISIMILAR = new_definition `BISIMILAR (W1,R1,V1) (W2,R2,V2) (w1:A) (w2:B) <=> ?Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2`;; let BISIMILAR_IN = prove (`!W1 R1 V1 W2 R2 V2 w1:A w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2 ==> w1 IN W1 /\ w2 IN W2`, REWRITE_TAC[BISIMILAR; BISIMIMULATION] THEN MESON_TAC[]);; let BISIMILAR_HOLDS = prove (`!W1 R1 V1 W2 R2 V2 w1:A w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2 ==> (!p. holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`, REWRITE_TAC[BISIMILAR] THEN MESON_TAC[BISIMIMULATION_HOLDS]);; let BISIMILAR_HOLDS_IN = prove (`!W1 R1 W2 R2. (!V1 w1:A. ?V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2) ==> (!p. holds_in (W2,R2) p ==> holds_in (W1,R1) p)`, REWRITE_TAC[holds_in] THEN MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);; let BISIMILAR_VALID = prove (`!L1 L2 . (!W1 R1 V1 w1:A. L1 (W1,R1) /\ w1 IN W1 ==> ?W2 R2 V2 w2:B. L2 (W2,R2) /\ BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2) ==> (!p. L2 |= p ==> L1 |= p)`, REWRITE_TAC[valid; holds_in; FORALL_PAIR_THM] THEN MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);; (* ----------------------------------------------------------------------- *) (* Further operators. *) (* ----------------------------------------------------------------------- *) parse_as_prefix "Diam";; parse_as_prefix "Dotbox";; let diam_DEF = new_definition `Diam p = Not Box Not p`;; let dotbox_DEF = new_definition `Dotbox p = (Box p && p)`;;