(* ========================================================================= *) (* Alternative axiomatization of the modal provability logic GL. *) (* *) (* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) (* ========================================================================= *) let K4LRaxiom_RULES,K4LRaxiom_INDUCT,K4LRaxiom_CASES = new_inductive_definition `(!p q. K4LRaxiom (p --> (q --> p))) /\ (!p q r. K4LRaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\ (!p. K4LRaxiom (((p --> False) --> False) --> p)) /\ (!p q. K4LRaxiom ((p <-> q) --> p --> q)) /\ (!p q. K4LRaxiom ((p <-> q) --> q --> p)) /\ (!p q. K4LRaxiom ((p --> q) --> (q --> p) --> (p <-> q))) /\ K4LRaxiom (True <-> False --> False) /\ (!p. K4LRaxiom (Not p <-> p --> False)) /\ (!p q. K4LRaxiom (p && q <-> (p --> q --> False) --> False)) /\ (!p q. K4LRaxiom (p || q <-> Not(Not p && Not q))) /\ (!p q. K4LRaxiom (Box (p --> q) --> Box p --> Box q)) /\ (!p. K4LRaxiom (Box p --> Box (Box p)))`;; (* ------------------------------------------------------------------------- *) (* Rules. *) (* ------------------------------------------------------------------------- *) let K4LRproves_RULES,K4LRproves_INDUCT,K4LRproves_CASES = new_inductive_definition `(!p. K4LRaxiom p ==> |~ p) /\ (!p q. |~ (p --> q) /\ |~ p ==> |~ q) /\ (!p. |~ p ==> |~ (Box p)) /\ (!p . |~ (Box p --> p) ==> |~ p)`;; (* ------------------------------------------------------------------------- *) (* Propositional lemmas. *) (* ------------------------------------------------------------------------- *) let K4LR_axiom_addimp = prove (`!p q. |~ (p --> (q --> p))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_distribimp = prove (`!p q r. |~ ((p --> q --> r) --> (p --> q) --> (p --> r))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_doubleneg = prove (`!p. |~ (((p --> False) --> False) --> p)`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_iffimp1 = prove (`!p q. |~ ((p <-> q) --> p --> q)`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_iffimp2 = prove (`!p q. |~ ((p <-> q) --> q --> p)`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_impiff = prove (`!p q. |~ ((p --> q) --> (q --> p) --> (p <-> q))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_true = prove (`|~ (True <-> (False --> False))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_not = prove (`!p. |~ (Not p <-> (p --> False))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_and = prove (`!p q. |~ ((p && q) <-> (p --> q --> False) --> False)`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_or = prove (`!p q. |~ ((p || q) <-> Not(Not p && Not q))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_boximp = prove (`!p q. |~ (Box (p --> q) --> Box p --> Box q)`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_axiom_4 = prove (`!p. |~ (Box p --> Box (Box p))`, MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; let K4LR_modusponens = prove (`!p. |~ (p --> q) /\ |~ p ==> |~ q`, MESON_TAC[K4LRproves_RULES]);; let K4LR_necessitation = prove (`!p. |~ p ==> |~ (Box p)`, MESON_TAC[K4LRproves_RULES]);; let K4LR_lobrule = prove (`!p. |~ (Box p --> p) ==> |~ p`, MESON_TAC[K4LRproves_RULES]);; let K4LR_iff_imp1 = prove (`!p q. |~ (p <-> q) ==> |~ (p --> q)`, MESON_TAC[K4LR_modusponens; K4LR_axiom_iffimp1]);; let K4LR_iff_imp2 = prove (`!p q. |~ (p <-> q) ==> |~ (q --> p)`, MESON_TAC[K4LR_modusponens; K4LR_axiom_iffimp2]);; let K4LR_imp_antisym = prove (`!p q. |~ (p --> q) /\ |~ (q --> p) ==> |~ (p <-> q)`, MESON_TAC[K4LR_modusponens; K4LR_axiom_impiff]);; let K4LR_add_assum = prove (`!p q. |~ q ==> |~ (p --> q)`, MESON_TAC[K4LR_modusponens; K4LR_axiom_addimp]);; let K4LR_imp_refl_th = prove (`!p. |~ (p --> p)`, MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_axiom_addimp]);; let K4LR_imp_add_assum = prove (`!p q r. |~ (q --> r) ==> |~ ((p --> q) --> (p --> r))`, MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_add_assum]);; let K4LR_imp_unduplicate = prove (`!p q. |~ (p --> p --> q) ==> |~ (p --> q)`, MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_imp_refl_th]);; let K4LR_imp_trans = prove (`!p q. |~ (p --> q) /\ |~ (q --> r) ==> |~ (p --> r)`, MESON_TAC[K4LR_modusponens; K4LR_imp_add_assum]);; let K4LR_imp_swap = prove (`!p q r. |~ (p --> q --> r) ==> |~ (q --> p --> r)`, MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp; K4LR_modusponens; K4LR_axiom_distribimp]);; let K4LR_imp_trans_chain_2 = prove (`!p q1 q2 r. |~ (p --> q1) /\ |~ (p --> q2) /\ |~ (q1 --> q2 --> r) ==> |~ (p --> r)`, ASM_MESON_TAC[K4LR_imp_trans; K4LR_imp_swap; K4LR_imp_unduplicate]);; let K4LR_imp_trans_th = prove (`!p q r. |~ ((q --> r) --> (p --> q) --> (p --> r))`, MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp; K4LR_axiom_distribimp]);; let K4LR_imp_add_concl = prove (`!p q r. |~ (p --> q) ==> |~ ((q --> r) --> (p --> r))`, MESON_TAC[K4LR_modusponens; K4LR_imp_swap; K4LR_imp_trans_th]);; let K4LR_imp_trans2 = prove (`!p q r s. |~ (p --> q --> r) /\ |~ (r --> s) ==> |~ (p --> q --> s)`, MESON_TAC[K4LR_imp_add_assum; K4LR_modusponens; K4LR_imp_trans_th]);; let K4LR_imp_swap_th = prove (`!p q r. |~ ((p --> q --> r) --> (q --> p --> r))`, MESON_TAC[K4LR_imp_trans; K4LR_axiom_distribimp; K4LR_imp_add_concl; K4LR_axiom_addimp]);; let K4LR_contrapos = prove (`!p q. |~ (p --> q) ==> |~ (Not q --> Not p)`, MESON_TAC[K4LR_imp_trans; K4LR_iff_imp1; K4LR_axiom_not; K4LR_imp_add_concl; K4LR_iff_imp2]);; let K4LR_imp_truefalse_th = prove (`!p q. |~ ((q --> False) --> p --> (p --> q) --> False)`, MESON_TAC[K4LR_imp_trans; K4LR_imp_trans_th; K4LR_imp_swap_th]);; let K4LR_imp_insert = prove (`!p q r. |~ (p --> r) ==> |~ (p --> q --> r)`, MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp]);; let K4LR_imp_mono_th = prove (`|~ ((p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q'))`, MESON_TAC[K4LR_imp_trans; K4LR_imp_swap; K4LR_imp_trans_th]);; let K4LR_ex_falso_th = prove (`!p. |~ (False --> p)`, MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp; K4LR_axiom_doubleneg]);; let K4LR_ex_falso = prove (`!p. |~ False ==> |~ p`, MESON_TAC[K4LR_ex_falso_th; K4LR_modusponens]);; let K4LR_imp_contr_th = prove (`!p q. |~ ((p --> False) --> (p --> q))`, MESON_TAC[K4LR_imp_add_assum; K4LR_ex_falso_th]);; let K4LR_contrad = prove (`!p. |~ ((p --> False) --> p) ==> |~ p`, MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_imp_refl_th; K4LR_axiom_doubleneg]);; let K4LR_bool_cases = prove (`!p q. |~ (p --> q) /\ |~ ((p --> False) --> q) ==> |~ q`, MESON_TAC[K4LR_contrad; K4LR_imp_trans; K4LR_imp_add_concl]);; let K4LR_imp_false_rule = prove (`!p q r. |~ ((q --> False) --> p --> r) ==> |~ (((p --> q) --> False) --> r)`, MESON_TAC[K4LR_imp_add_concl; K4LR_imp_add_assum; K4LR_ex_falso_th; K4LR_axiom_addimp; K4LR_imp_swap; K4LR_imp_trans; K4LR_axiom_doubleneg; K4LR_imp_unduplicate]);; let K4LR_imp_true_rule = prove (`!p q r. |~ ((p --> False) --> r) /\ |~ (q --> r) ==> |~ ((p --> q) --> r)`, MESON_TAC[K4LR_imp_insert; K4LR_imp_swap; K4LR_modusponens; K4LR_imp_trans_th; K4LR_bool_cases]);; let K4LR_truth_th = prove (`|~ True`, MESON_TAC[K4LR_modusponens; K4LR_axiom_true; K4LR_imp_refl_th; K4LR_iff_imp2]);; let K4LR_and_left_th = prove (`!p q. |~ (p && q --> p)`, MESON_TAC[K4LR_imp_add_assum; K4LR_axiom_addimp; K4LR_imp_trans; K4LR_imp_add_concl; K4LR_axiom_doubleneg; K4LR_imp_trans; K4LR_iff_imp1; K4LR_axiom_and]);; let K4LR_and_right_th = prove (`!p q. |~ (p && q --> q)`, MESON_TAC[K4LR_axiom_addimp; K4LR_imp_trans; K4LR_imp_add_concl; K4LR_axiom_doubleneg; K4LR_iff_imp1; K4LR_axiom_and]);; let K4LR_and_pair_th = prove (`!p q. |~ (p --> q --> p && q)`, MESON_TAC[K4LR_iff_imp2; K4LR_axiom_and; K4LR_imp_swap_th; K4LR_imp_add_assum; K4LR_imp_trans2; K4LR_modusponens; K4LR_imp_swap; K4LR_imp_refl_th]);; let K4LR_and = prove (`!p q. |~ (p && q) <=> |~ p /\ |~ q`, MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_and_pair_th; K4LR_modusponens]);; let K4LR_and_elim = prove (`!p q r. |~ (r --> p && q) ==> |~ (r --> q) /\ |~ (r --> p)`, MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans]);; let K4LR_shunt = prove (`!p q r. |~ (p && q --> r) ==> |~ (p --> q --> r)`, MESON_TAC[K4LR_modusponens; K4LR_imp_add_assum; K4LR_and_pair_th]);; let K4LR_ante_conj = prove (`!p q r. |~ (p --> q --> r) ==> |~ (p && q --> r)`, MESON_TAC[K4LR_imp_trans_chain_2; K4LR_and_left_th; K4LR_and_right_th]);; let K4LR_modusponens_th = prove (`!p q. |~ ((p --> q) && p --> q)`, MESON_TAC[K4LR_imp_refl_th; K4LR_ante_conj]);; let K4LR_not_not_false_th = prove (`!p. |~ ((p --> False) --> False <-> p)`, MESON_TAC[K4LR_imp_antisym; K4LR_axiom_doubleneg; K4LR_imp_swap; K4LR_imp_refl_th]);; let K4LR_iff_sym = prove (`!p q. |~ (p <-> q) <=> |~ (q <-> p)`, MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2; K4LR_imp_antisym]);; let K4LR_iff_trans = prove (`!p q r. |~ (p <-> q) /\ |~ (q <-> r) ==> |~ (p <-> r)`, MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2; K4LR_imp_trans; K4LR_imp_antisym]);; let K4LR_not_not_th = prove (`!p. |~ (Not (Not p) <-> p)`, MESON_TAC[K4LR_iff_trans; K4LR_not_not_false_th; K4LR_axiom_not; K4LR_imp_antisym; K4LR_imp_add_concl; K4LR_iff_imp1; K4LR_iff_imp2]);; let K4LR_contrapos_eq = prove (`!p q. |~ (Not p --> Not q) <=> |~ (q --> p)`, MESON_TAC[K4LR_contrapos; K4LR_not_not_th; K4LR_iff_imp1; K4LR_iff_imp2; K4LR_imp_trans]);; let K4LR_or_left_th = prove (`!p q. |~ (q --> p || q)`, MESON_TAC[K4LR_imp_trans; K4LR_not_not_th; K4LR_iff_imp2; K4LR_and_right_th; K4LR_contrapos; K4LR_axiom_or]);; let K4LR_or_right_th = prove (`!p q. |~ (p --> p || q)`, MESON_TAC[K4LR_imp_trans; K4LR_not_not_th; K4LR_iff_imp2; K4LR_and_left_th; K4LR_contrapos; K4LR_axiom_or]);; let K4LR_ante_disj = prove (`!p q r. |~ (p --> r) /\ |~ (q --> r) ==> |~ (p || q --> r)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM K4LR_contrapos_eq] THEN MESON_TAC[K4LR_imp_trans; K4LR_imp_trans_chain_2; K4LR_and_pair_th; K4LR_contrapos_eq; K4LR_not_not_th; K4LR_axiom_or; K4LR_iff_imp1; K4LR_iff_imp2; K4LR_imp_trans]);; let K4LR_iff_def_th = prove (`!p q. |~ ((p <-> q) <-> (p --> q) && (q --> p))`, MESON_TAC[K4LR_imp_antisym; K4LR_imp_trans_chain_2; K4LR_axiom_iffimp1; K4LR_axiom_iffimp2; K4LR_and_pair_th; K4LR_axiom_impiff; K4LR_imp_trans_chain_2; K4LR_and_left_th; K4LR_and_right_th]);; let K4LR_iff_refl_th = prove (`!p. |~ (p <-> p)`, MESON_TAC[K4LR_imp_antisym; K4LR_imp_refl_th]);; let K4LR_imp_box = prove (`!p q. |~ (p --> q) ==> |~ (Box p --> Box q)`, MESON_TAC[K4LR_modusponens; K4LR_necessitation; K4LR_axiom_boximp]);; let K4LR_box_moduspones = prove (`!p q. |~ (p --> q) /\ |~ (Box p) ==> |~ (Box q)`, MESON_TAC[K4LR_imp_box; K4LR_modusponens]);; let K4LR_box_and = prove (`!p q. |~ (Box(p && q)) ==> |~ (Box p && Box q)`, MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_box; K4LR_box_moduspones; K4LR_and]);; let K4LR_box_and_inv = prove (`!p q. |~ (Box p && Box q) ==> |~ (Box (p && q))`, MESON_TAC[K4LR_and_pair_th; K4LR_imp_box; K4LR_axiom_boximp; K4LR_imp_trans; K4LR_ante_conj; K4LR_modusponens]);; let K4LR_and_comm = prove (`!p q . |~ (p && q) <=> |~ (q && p)`, MESON_TAC[K4LR_and]);; let K4LR_and_assoc = prove (`!p q r. |~ ((p && q) && r) <=> |~ (p && (q && r))`, MESON_TAC[K4LR_and]);; let K4LR_disj_imp = prove (`!p q r. |~ (p || q --> r) <=> |~ (p --> r) /\ |~ (q --> r)`, MESON_TAC[K4LR_ante_disj; K4LR_or_right_th; K4LR_or_left_th; K4LR_imp_trans]);; let K4LR_or_elim = prove (`!p q r. |~ (p || q) /\ |~ (p --> r) /\ |~ (q --> r) ==> |~ r`, MESON_TAC[K4LR_disj_imp; K4LR_modusponens]);; let K4LR_or_comm = prove (`!p q . |~ (p || q) <=> |~ (q || p)`, MESON_TAC[K4LR_or_right_th; K4LR_or_left_th; K4LR_modusponens; K4LR_disj_imp]);; let K4LR_or_assoc = prove (`!p q r. |~ ((p || q) || r) <=> |~ (p || (q || r))`, MESON_TAC[K4LR_or_right_th; K4LR_or_left_th; K4LR_modusponens; K4LR_disj_imp]);; let K4LR_or_intror = prove (`!p q. |~ q ==> |~ (p || q)`, MESON_TAC[K4LR_or_left_th; K4LR_modusponens]);; let K4LR_or_introl = prove (`!p q. |~ p ==> |~ (p || q)`, MESON_TAC[K4LR_or_right_th; K4LR_modusponens]);; let K4LR_or_transl = prove (`!p q r. |~ (p --> q) ==> |~ (p --> q || r)`, MESON_TAC[K4LR_or_right_th; K4LR_imp_trans]);; let K4LR_or_transr = prove (`!p q r. |~ (p --> r) ==> |~ (p --> q || r)`, MESON_TAC[K4LR_or_left_th; K4LR_imp_trans]);; let K4LR_frege = prove (`!p q r. |~ (p --> q --> r) /\ |~ (p --> q) ==> |~ (p --> r)`, MESON_TAC[K4LR_axiom_distribimp; K4LR_modusponens; K4LR_shunt; K4LR_ante_conj]);; let K4LR_and_intro = prove (`!p q r. |~ (p --> q) /\ |~ (p --> r) ==> |~ (p --> q && r)`, MESON_TAC[K4LR_and_pair_th; K4LR_imp_trans_chain_2]);; let K4LR_not_def = prove (`!p. |~ (Not p) <=> |~ (p --> False)`, MESON_TAC[K4LR_axiom_not; K4LR_modusponens; K4LR_iff_imp1; K4LR_iff_imp2]);; let K4LR_NC = prove (`!p. |~ (p && Not p) <=> |~ False`, MESON_TAC[K4LR_not_def; K4LR_modusponens; K4LR_and; K4LR_ex_falso]);; let K4LR_nc_th = prove (`!p. |~ (p && Not p --> False)`, MESON_TAC[K4LR_ante_conj; K4LR_imp_swap; K4LR_axiom_not; K4LR_axiom_iffimp1; K4LR_modusponens]);; let K4LR_imp_clauses = prove (`(!p. |~ (p --> True)) /\ (!p. |~ (p --> False) <=> |~ (Not p)) /\ (!p. |~ (True --> p) <=> |~ p) /\ (!p. |~ (False --> p))`, SIMP_TAC[K4LR_truth_th; K4LR_add_assum; K4LR_not_def; K4LR_ex_falso_th] THEN GEN_TAC THEN EQ_TAC THENL [MESON_TAC[K4LR_modusponens; K4LR_truth_th]; MESON_TAC[K4LR_add_assum]]);; let K4LR_and_left_true_th = prove (`!p. |~ (True && p <-> p)`, GEN_TAC THEN MATCH_MP_TAC K4LR_imp_antisym THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC K4LR_and_right_th; ALL_TAC] THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_imp_refl_th; K4LR_imp_clauses]);; let K4LR_or_and_distr = prove (`!p q r. |~ ((p || q) && r) ==> |~ ((p && r) || (q && r))`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[K4LR_and] THEN STRIP_TAC THEN MATCH_MP_TAC K4LR_or_elim THEN EXISTS_TAC `p:form` THEN EXISTS_TAC `q :form` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_or_transl THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_imp_refl_th] THEN ASM_SIMP_TAC[K4LR_add_assum]; MATCH_MP_TAC K4LR_or_transr THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_imp_refl_th] THEN ASM_SIMP_TAC[K4LR_add_assum]]);; let K4LR_and_or_distr = prove (`!p q r. |~ ((p && q) || r) ==> |~ ((p || r) && (q || r))`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[K4LR_and] THEN DISCH_TAC THEN CONJ_TAC THEN MATCH_MP_TAC K4LR_or_elim THEN MAP_EVERY EXISTS_TAC [`p && q`; `r:form`] THEN ASM_REWRITE_TAC[K4LR_or_left_th] THEN MATCH_MP_TAC K4LR_or_transl THEN ASM_REWRITE_TAC[K4LR_and_left_th; K4LR_and_right_th]);; let K4LR_or_and_distr_inv = prove (`!p q r. |~ ((p && r) || (q && r)) ==> |~ ((p || q) && r)`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC K4LR_or_elim THEN MAP_EVERY EXISTS_TAC [`p && r`; `q && r`] THEN ASM_REWRITE_TAC[] THEN POP_ASSUM (K ALL_TAC) THEN CONJ_TAC THEN MATCH_MP_TAC K4LR_and_intro THEN CONJ_TAC THEN REWRITE_TAC[K4LR_and_left_th; K4LR_and_right_th] THENL [MATCH_MP_TAC K4LR_or_transl THEN MATCH_ACCEPT_TAC K4LR_and_left_th; MATCH_MP_TAC K4LR_or_transr THEN MATCH_ACCEPT_TAC K4LR_and_left_th]);; let K4LR_or_and_distr_equiv = prove (`!p q r. |~ ((p || q) && r) <=> |~ ((p && r) || (q && r))`, MESON_TAC[K4LR_or_and_distr; K4LR_or_and_distr_inv]);; let K4LR_and_or_distr_inv_prelim = prove (`!p q r. |~ ((p || r) && (q || r)) ==> |~ (q --> (p && q) || r)`, REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_and] THEN INTRO_TAC "pr qr" THEN MATCH_MP_TAC (SPECL [`p:form`; `r:form`] K4LR_or_elim) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_shunt THEN MATCH_ACCEPT_TAC K4LR_or_right_th; ALL_TAC] THEN MATCH_MP_TAC K4LR_imp_insert THEN MATCH_ACCEPT_TAC K4LR_or_left_th);; let K4LR_and_or_distr_inv = prove (`!p q r. |~ ((p || r) && (q || r)) ==> |~ ((p && q) || r)`, REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_and] THEN INTRO_TAC "pr qr" THEN MATCH_MP_TAC (SPECL [`p:form`; `r:form`] K4LR_or_elim) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN REWRITE_TAC[K4LR_or_left_th] THEN MATCH_MP_TAC (SPECL [`q:form`; `r:form`] K4LR_or_elim) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "qr" (K ALL_TAC) THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_shunt THEN MATCH_ACCEPT_TAC K4LR_or_right_th; MATCH_MP_TAC K4LR_imp_insert THEN MATCH_ACCEPT_TAC K4LR_or_left_th]);; let K4LR_and_or_distr_equiv = prove (`!p q r. |~ ((p && q) || r) <=> |~ ((p || r) && (q || r))`, MESON_TAC[K4LR_and_or_distr; K4LR_and_or_distr_inv]);; let K4LR_DOUBLENEG_CL = prove (`!p. |~ (Not(Not p)) ==> |~ p`, MESON_TAC[K4LR_not_not_th; K4LR_modusponens; K4LR_iff_imp1; K4LR_iff_imp2]);; let K4LR_DOUBLENEG = prove (`!p. |~ p ==> |~ (Not(Not p))`, MESON_TAC[K4LR_not_not_th; K4LR_modusponens; K4LR_iff_imp1; K4LR_iff_imp2]);; let K4LR_and_eq_or = prove (`!p q. |~ (p || q) <=> |~ (Not(Not p && Not q))`, MESON_TAC[K4LR_modusponens; K4LR_axiom_or; K4LR_iff_imp1; K4LR_iff_imp2]);; let K4LR_tnd_th = prove (`!p. |~ (p || Not p)`, GEN_TAC THEN REWRITE_TAC[K4LR_and_eq_or] THEN REWRITE_TAC[K4LR_not_def] THEN MESON_TAC[K4LR_nc_th]);; let K4LR_iff_mp = prove (`!p q. |~ (p <-> q) /\ |~ p ==> |~ q`, MESON_TAC[K4LR_iff_imp1; K4LR_modusponens]);; let K4LR_and_subst = prove (`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') ==> (|~ (p && q) <=> |~ (p' && q'))`, REPEAT STRIP_TAC THEN REWRITE_TAC[K4LR_and] THEN ASM_MESON_TAC[K4LR_iff_mp; K4LR_iff_sym]);; let K4LR_imp_mono_th = prove (`!p p' q q'. |~ ((p' --> p) && (q --> q') --> (p --> q) --> (p' --> q'))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_ante_conj THEN MATCH_ACCEPT_TAC K4LR_imp_mono_th);; let K4LR_imp_mono = prove (`!p p' q q'. |~ (p' --> p) /\ |~ (q --> q') ==> |~ ((p --> q) --> (p' --> q'))`, REWRITE_TAC[GSYM K4LR_and] THEN MESON_TAC[K4LR_modusponens;K4LR_imp_mono_th]);; let K4LR_iff = prove (`!p q. |~ (p <-> q) ==> (|~ p <=> |~ q)`, MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2; K4LR_modusponens]);; let K4LR_iff_def = prove (`!p q. |~ (p <-> q) <=> |~ (p --> q) /\ |~ (q --> p)`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2]; MATCH_ACCEPT_TAC K4LR_imp_antisym]);; let K4LR_not_subst = prove (`!p q. |~ (p <-> q) ==> |~ (Not p <-> Not q)`, MESON_TAC[K4LR_iff_def; K4LR_iff_imp2; K4LR_contrapos]);; let K4LR_and_rigth_true_th = prove (`!p. |~ (p && True <-> p)`, GEN_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC K4LR_and_left_th; ALL_TAC] THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_imp_refl_th] THEN MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_truth_th);; let K4LR_and_comm_th = prove (`!p q. |~ (p && q <-> q && p)`, SUBGOAL_THEN `!p q. |~ (p && q --> q && p)` (fun th -> MESON_TAC[th; K4LR_iff_def]) THEN MESON_TAC[K4LR_and_intro; K4LR_and_left_th; K4LR_and_right_th]);; let K4LR_and_assoc_th = prove (`!p q r. |~ ((p && q) && r <-> p && (q && r))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_antisym THEN CONJ_TAC THEN MATCH_MP_TAC K4LR_and_intro THEN MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans; K4LR_and_intro]);; let K4LR_and_subst_th = prove (`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') ==> |~ (p && q <-> p' && q')`, SUBGOAL_THEN `!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') ==> |~ (p && q --> p' && q')` (fun th -> MESON_TAC[th; K4LR_iff_def]) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC K4LR_and_intro THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `p:form` THEN REWRITE_TAC[K4LR_and_left_th] THEN ASM_SIMP_TAC[K4LR_iff_imp1]; MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `q:form` THEN REWRITE_TAC[K4LR_and_right_th] THEN ASM_SIMP_TAC[K4LR_iff_imp1]]);; let K4LR_imp_subst = prove (`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') ==> |~ ((p --> q) <-> (p' --> q'))`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN POP_ASSUM_LIST (MP_TAC o end_itlist CONJ) THEN SUBGOAL_THEN `!p q p' q'. |~ (p <-> p') /\ |~ (q <-> q') ==> |~ ((p --> q) --> (p' --> q'))` (fun th -> MESON_TAC[th; K4LR_iff_sym]) THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC K4LR_imp_mono THEN ASM_MESON_TAC[K4LR_iff_imp1; K4LR_iff_sym]);; let K4LR_de_morgan_and_th = prove (`!p q. |~ (Not (p && q) <-> Not p || Not q)`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `Not (Not (Not p) && Not (Not q))` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_not_subst THEN ONCE_REWRITE_TAC[K4LR_iff_sym] THEN MATCH_MP_TAC K4LR_and_subst_th THEN CONJ_TAC THEN MATCH_ACCEPT_TAC K4LR_not_not_th; ONCE_REWRITE_TAC[K4LR_iff_sym] THEN MATCH_ACCEPT_TAC K4LR_axiom_or]);; let K4LR_iff_sym_th = prove (`!p q. |~ ((p <-> q) <-> (q <-> p))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `(p --> q) && (q --> p)` THEN ASM_REWRITE_TAC[K4LR_iff_def_th] THEN ONCE_REWRITE_TAC[K4LR_iff_sym] THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `(q --> p) && (p --> q)` THEN REWRITE_TAC[K4LR_iff_def_th; K4LR_and_comm_th]);; let K4LR_iff_true_th = prove (`(!p. |~ ((p <-> True) <-> p)) /\ (!p. |~ ((True <-> p) <-> p))`, CLAIM_TAC "1" `!p. |~ ((p <-> True) <-> p)` THENL [GEN_TAC THEN MATCH_MP_TAC K4LR_imp_antisym THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `True --> p` THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC K4LR_axiom_iffimp2; ALL_TAC] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(True --> p) && True` THEN REWRITE_TAC[K4LR_modusponens_th] THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_imp_refl_th] THEN MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_truth_th; ALL_TAC] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p --> True) && (True --> p)` THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[K4LR_iff_def_th; K4LR_iff_imp2]] THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_axiom_addimp] THEN SIMP_TAC[K4LR_add_assum; K4LR_truth_th]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `p <-> True` THEN ASM_REWRITE_TAC[K4LR_iff_sym_th]);; let K4LR_or_subst_th = prove (`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') ==> |~ (p || q <-> p' || q')`, SUBGOAL_THEN `!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') ==> |~ (p || q --> p' || q')` (fun th -> MESON_TAC[th; K4LR_iff_sym; K4LR_iff_def]) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[K4LR_disj_imp] THEN CONJ_TAC THEN MATCH_MP_TAC K4LR_frege THENL [EXISTS_TAC `p':form` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_right_th; ASM_SIMP_TAC[K4LR_iff_imp1]]; EXISTS_TAC `q':form` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_left_th; ASM_SIMP_TAC[K4LR_iff_imp1]]]);; let K4LR_or_subst_right = prove (`!p q1 q2. |~ (q1 <-> q2) ==> |~ (p || q1 <-> p || q2)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC K4LR_or_subst_th THEN ASM_REWRITE_TAC[K4LR_iff_refl_th]);; let K4LR_or_rid_th = prove (`!p. |~ (p || False <-> p)`, GEN_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN CONJ_TAC THENL [REWRITE_TAC[K4LR_disj_imp; K4LR_imp_refl_th; K4LR_ex_falso_th]; MATCH_ACCEPT_TAC K4LR_or_right_th]);; let K4LR_or_lid_th = prove (`!p. |~ (False || p <-> p)`, GEN_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN CONJ_TAC THENL [REWRITE_TAC[K4LR_disj_imp; K4LR_imp_refl_th; K4LR_ex_falso_th]; MATCH_ACCEPT_TAC K4LR_or_left_th]);; let K4LR_or_assoc_left_th = prove (`!p q r. |~ (p || (q || r) --> (p || q) || r)`, REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_disj_imp] THEN MESON_TAC[K4LR_or_left_th; K4LR_or_right_th; K4LR_imp_trans]);; let K4LR_or_assoc_right_th = prove (`!p q r. |~ ((p || q) || r --> p || (q || r))`, REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_disj_imp] THEN MESON_TAC[K4LR_or_left_th; K4LR_or_right_th; K4LR_imp_trans]);; let K4LR_or_assoc_th = prove (`!p q r. |~ (p || (q || r) <-> (p || q) || r)`, REWRITE_TAC[K4LR_iff_def; K4LR_or_assoc_left_th; K4LR_or_assoc_right_th]);; let K4LR_and_or_ldistrib_th = prove (`!p q r. |~ (p && (q || r) <-> p && q || p && r)`, REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_iff_def; K4LR_disj_imp] THEN REPEAT CONJ_TAC THEN TRY (MATCH_MP_TAC K4LR_and_intro) THEN REPEAT CONJ_TAC THEN MATCH_MP_TAC K4LR_ante_conj THENL [MATCH_MP_TAC K4LR_imp_swap THEN REWRITE_TAC[K4LR_disj_imp] THEN CONJ_TAC THEN MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_shunt THENL [MATCH_ACCEPT_TAC K4LR_or_right_th; MATCH_ACCEPT_TAC K4LR_or_left_th]; MATCH_ACCEPT_TAC K4LR_axiom_addimp; MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_right_th; MATCH_ACCEPT_TAC K4LR_axiom_addimp; MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_left_th]);; let K4LR_not_true_th = prove (`|~ (Not True <-> False)`, REWRITE_TAC[K4LR_iff_def; K4LR_ex_falso_th; GSYM K4LR_not_def] THEN MATCH_MP_TAC K4LR_iff_mp THEN EXISTS_TAC `True` THEN REWRITE_TAC[K4LR_truth_th] THEN ONCE_REWRITE_TAC[K4LR_iff_sym] THEN MATCH_ACCEPT_TAC K4LR_not_not_th);; let K4LR_and_subst_right_th = prove (`!p q1 q2. |~ ((q1 <-> q2) --> (p && q1 <-> p && q2))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p && q1 --> p && q2) && (p && q2 --> p && q1)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC K4LR_iff_imp2 THEN MATCH_ACCEPT_TAC K4LR_iff_def_th] THEN SUBGOAL_THEN `!p q1 q2. |~ ((q1 <-> q2) --> (p && q1 --> p && q2))` (fun th -> MATCH_MP_TAC K4LR_and_intro THEN MESON_TAC[th; K4LR_and_comm_th; K4LR_imp_trans; K4LR_iff_def_th; K4LR_iff_imp1; K4LR_iff_imp2]) THEN REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_shunt THEN MATCH_MP_TAC K4LR_and_intro THEN CONJ_TAC THENL [MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans]; ALL_TAC] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q1 <-> q2) && q1` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_and_left_th] THEN MESON_TAC[K4LR_and_right_th; K4LR_imp_trans]; MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q1 --> q2) && q1` THEN REWRITE_TAC[K4LR_modusponens_th] THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_and_right_th] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q1 <-> q2)` THEN REWRITE_TAC[K4LR_and_left_th] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q1 --> q2) && (q2 --> q1)` THEN REWRITE_TAC[K4LR_and_left_th] THEN MATCH_MP_TAC K4LR_iff_imp1 THEN MATCH_ACCEPT_TAC K4LR_iff_def_th]);; let K4LR_and_subst_left_th = prove (`!p1 p2 q. |~ ((p1 <-> p2) --> (p1 && q <-> p2 && q))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 && q --> p2 && q) && (p2 && q --> p1 && q)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC K4LR_iff_imp2 THEN MATCH_ACCEPT_TAC K4LR_iff_def_th] THEN SUBGOAL_THEN `!p1 p2 q. |~ ((p1 <-> p2) --> (p1 && q --> p2 && q))` (fun th -> MATCH_MP_TAC K4LR_and_intro THEN MESON_TAC[th; K4LR_and_comm_th; K4LR_imp_trans; K4LR_iff_def_th; K4LR_iff_imp1; K4LR_iff_imp2]) THEN REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_shunt THEN MATCH_MP_TAC K4LR_and_intro THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans]] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 <-> p2) && p1` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_and_left_th] THEN MESON_TAC[K4LR_and_right_th; K4LR_and_left_th; K4LR_imp_trans]; MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 --> p2) && p1` THEN REWRITE_TAC[K4LR_modusponens_th] THEN MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_and_right_th] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 <-> p2)` THEN REWRITE_TAC[K4LR_and_left_th] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 --> p2) && (p2 --> p1)` THEN REWRITE_TAC[K4LR_and_left_th] THEN MATCH_MP_TAC K4LR_iff_imp1 THEN MATCH_ACCEPT_TAC K4LR_iff_def_th]);; let K4LR_contrapos_th = prove (`!p q. |~ ((p --> q) --> (Not q --> Not p))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q --> False)` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_iff_imp1 THEN MATCH_ACCEPT_TAC K4LR_axiom_not; MATCH_MP_TAC K4LR_shunt THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `p --> False` THEN CONJ_TAC THENL [MESON_TAC[K4LR_ante_conj; K4LR_imp_trans_th]; MESON_TAC[K4LR_axiom_not; K4LR_iff_imp2]]]);; let K4LR_contrapos_eq_th = prove (`!p q. |~ ((p --> q) <-> (Not q --> Not p))`, SUBGOAL_THEN `!p q. |~ ((Not q --> Not p) --> (p --> q))` (fun th -> MESON_TAC[th; K4LR_iff_def; K4LR_contrapos_th]) THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `Not (Not p) --> Not (Not q)` THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC K4LR_contrapos_th; ALL_TAC] THEN MATCH_MP_TAC K4LR_iff_imp1 THEN MATCH_MP_TAC K4LR_imp_subst THEN MESON_TAC[K4LR_not_not_th]);; let K4LR_iff_sym_th = prove (`!p q. |~ ((p <-> q) --> (q <-> p))`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p --> q) && (q --> p)` THEN CONJ_TAC THENL [MESON_TAC[K4LR_iff_def_th; K4LR_iff_imp1]; ALL_TAC] THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q --> p) && (p --> q)` THEN CONJ_TAC THENL [MESON_TAC[K4LR_and_comm_th; K4LR_iff_imp1]; MESON_TAC[K4LR_iff_def_th; K4LR_iff_imp2]]);; let K4LR_de_morgan_or_th = prove (`!p q. |~ (Not (p || q) <-> Not p && Not q)`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `Not (Not (Not p && Not q))` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_not_subst THEN MATCH_ACCEPT_TAC K4LR_axiom_or; MATCH_ACCEPT_TAC K4LR_not_not_th]);; let K4LR_crysippus_th = prove (`!p q. |~ (Not (p --> q) <-> p && Not q)`, REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `(p --> Not q --> False) --> False` THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[K4LR_axiom_and; K4LR_iff_sym]] THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `Not (p --> Not q --> False)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_ACCEPT_TAC K4LR_axiom_not] THEN MATCH_MP_TAC K4LR_not_subst THEN MATCH_MP_TAC K4LR_imp_subst THEN CONJ_TAC THENL [MATCH_ACCEPT_TAC K4LR_iff_refl_th; ALL_TAC] THEN MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `Not (Not q)` THEN CONJ_TAC THENL [MESON_TAC[K4LR_not_not_th; K4LR_iff_sym]; MATCH_ACCEPT_TAC K4LR_axiom_not]);; let K4LR_frege_th = prove (`!p q r. |~ (p --> q --> r) ==> |~((p --> q) --> (p --> r))`, MESON_TAC[K4LR_axiom_distribimp; K4LR_modusponens]);; (* ------------------------------------------------------------------------- *) (* K4LR C= GL *) (* ------------------------------------------------------------------------- *) let GL_proves_K4LRaxioms = prove (`!p. K4LRaxiom p ==> |-- p`, MATCH_MP_TAC K4LRaxiom_INDUCT THEN MESON_TAC[GLproves_RULES; GLaxiom_RULES; GL_schema_4]);; let GL_proves_Lob_rule = prove (`!p. |-- (Box p --> p) ==> |-- p`, MESON_TAC[GL_necessitation; GL_modusponens; GL_axiom_lob]);; let K4LRproves_subset_GLproves = prove (`!p. |~ p ==> |-- p`, MATCH_MP_TAC K4LRproves_INDUCT THEN MESON_TAC[GL_proves_K4LRaxioms; GL_modusponens; GL_necessitation; GL_proves_Lob_rule]);; (* ------------------------------------------------------------------------- *) (* GL C= K4LR *) (* ------------------------------------------------------------------------- *) let K4LR_proves_Lob_axiom = prove (`!p. |~ (Box (Box p --> p) --> Box p)`, GEN_TAC THEN MATCH_MP_TAC K4LR_lobrule THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `Box (Box p --> p) --> Box (Box p)` THEN CONJ_TAC THENL [MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `Box(Box(Box p --> p))` THEN CONJ_TAC THENL [MESON_TAC[K4LR_axiom_4]; MATCH_MP_TAC K4LR_imp_swap THEN MESON_TAC[K4LR_axiom_boximp]]; MATCH_MP_TAC K4LR_frege_th THEN MESON_TAC[K4LR_axiom_boximp]]);; let K4LR_proves_GLaxioms = prove (`!p. GLaxiom p ==> |~ p`, MATCH_MP_TAC GLaxiom_INDUCT THEN MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES; K4LR_proves_Lob_axiom]);; let GLproves_subset_K4LRproves = prove (`!p. |-- p ==> |~ p`, MATCH_MP_TAC GLproves_INDUCT THEN MESON_TAC[K4LR_proves_GLaxioms; K4LR_modusponens; K4LR_necessitation; K4LR_proves_Lob_axiom]);; (* ------------------------------------------------------------------------- *) (* GL = K4LR *) (* ------------------------------------------------------------------------- *) let GL_equiv_K4LR = prove (`!p. |-- p <=> |~ p`, MESON_TAC[GLproves_subset_K4LRproves; K4LRproves_subset_GLproves]);;