(* ========================================================================= *) (* General "reduction" properties of binary relations, *) (* ========================================================================= *) needs "Library/rstc.ml";; (* ------------------------------------------------------------------------- *) (* Field of a binary relation. *) (* ------------------------------------------------------------------------- *) let fld = new_definition `fld(R) = {x | ?y. R x y \/ R y x}`;; (* ------------------------------------------------------------------------ *) (* Normality of a term w.r.t. a reduction relation *) (* ------------------------------------------------------------------------ *) let NORMAL = new_definition `NORMAL(R:A->A->bool) x <=> ~(?y. R x y)`;; (* ------------------------------------------------------------------------ *) (* Full Church-Rosser property. *) (* *) (* Note that we deviate from most term rewriting literature which call this *) (* the "diamond property" and calls a relation "Church-Rosser" iff its RTC *) (* has the diamond property. But this seems simpler and more natural. *) (* ------------------------------------------------------------------------ *) let CR = new_definition `CR(R:A->A->bool) <=> !x y1 y2. R x y1 /\ R x y2 ==> ?z. R y1 z /\ R y2 z`;; (* ------------------------------------------------------------------------ *) (* Weak Church-Rosser property, i.e. the rejoining may take several steps. *) (* ------------------------------------------------------------------------ *) let WCR = new_definition `WCR(R:A->A->bool) <=> !x y1 y2. R x y1 /\ R x y2 ==> ?z. RTC R y1 z /\ RTC R y2 z`;; (* ------------------------------------------------------------------------ *) (* (Weak) normalization: every term has a normal form. *) (* ------------------------------------------------------------------------ *) let WN = new_definition `WN(R:A->A->bool) <=> !x. ?y. RTC R x y /\ NORMAL(R) y`;; (* ------------------------------------------------------------------------ *) (* Strong normalization: every reduction sequence terminates (Noetherian) *) (* ------------------------------------------------------------------------ *) let SN = new_definition `SN(R:A->A->bool) <=> ~(?seq. !n. R (seq n) (seq (SUC n)))`;; (* ------------------------------------------------------------------------- *) (* Definition of a tree. *) (* ------------------------------------------------------------------------- *) let TREE = new_definition `TREE(R:A->A->bool) <=> (!y. ~(TC R y y)) /\ ?a. a IN fld(R) /\ !y. y IN fld(R) ==> (y = a) \/ TC R a y /\ ?!x. R x y`;; (* ------------------------------------------------------------------------- *) (* Local finiteness (finitely branching). *) (* ------------------------------------------------------------------------- *) let LF = new_definition `LF(R:A->A->bool) <=> !x. FINITE {y | R x y}`;; (* ------------------------------------------------------------------------- *) (* Wellfoundedness apparatus for SN relations. *) (* ------------------------------------------------------------------------- *) let SN_WF = prove (`!R:A->A->bool. SN(R) <=> WF(INV R)`, REWRITE_TAC[SN; WF_DCHAIN; INV]);; let SN_PRESERVE = prove (`!R:A->A->bool. SN(R) <=> !P. (!x. P x ==> ?y. P y /\ R x y) ==> ~(?x. P x)`, REWRITE_TAC[SN_WF; WF; INV] THEN MESON_TAC[]);; let SN_NOETHERIAN = prove (`!R:A->A->bool. SN(R) <=> !P. (!x. (!y. R x y ==> P y) ==> P x) ==> !x. P x`, REWRITE_TAC[WF_IND; SN_WF; INV]);; (* ------------------------------------------------------------------------ *) (* Normality, weak or strong normalization preserved by transitive closure. *) (* ------------------------------------------------------------------------ *) let NORMAL_TC = prove (`!R:A->A->bool. NORMAL(TC R) x <=> NORMAL(R) x`, REWRITE_TAC[NORMAL] THEN MESON_TAC[TC_CASES_R; TC_INC]);; let NORMAL_RTC = prove (`!R:A->A->bool. NORMAL(R) x ==> !y. RTC R x y <=> (x = y)`, ONCE_REWRITE_TAC[GSYM NORMAL_TC] THEN REWRITE_TAC[NORMAL; RTC; RC_EXPLICIT] THEN MESON_TAC[]);; let WN_TC = prove (`!R:A->A->bool. WN(TC R) <=> WN R`, REWRITE_TAC[WN; NORMAL_TC; RTC; TC_IDEMP]);; let SN_TC = prove (`!R:A->A->bool. SN(TC R) <=> SN R`, GEN_TAC THEN REWRITE_TAC[SN_WF; GSYM TC_INV; WF_TC]);; (* ------------------------------------------------------------------------ *) (* Strong normalization implies normalization *) (* ------------------------------------------------------------------------ *) let SN_WN = prove (`!R:A->A->bool. SN(R) ==> WN(R)`, GEN_TAC THEN REWRITE_TAC[SN_WF; WF; WN] THEN DISCH_TAC THEN X_GEN_TAC `a:A` THEN POP_ASSUM(MP_TAC o SPEC `\y:A. RTC R a y`) THEN REWRITE_TAC[INV; NORMAL] THEN MESON_TAC[RTC_REFL; RTC_TRANS_L]);; (* ------------------------------------------------------------------------ *) (* Reflexive closure preserves Church-Rosser property (pretty trivial) *) (* ------------------------------------------------------------------------ *) let RC_CR = prove (`!R:A->A->bool. CR(R) ==> CR(RC R)`, REWRITE_TAC[CR; RC_EXPLICIT] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------ *) (* The strip lemma leads us halfway to the fact that transitive x *) (* closure preserves the Church-Rosser property. It's no harder / \ *) (* to prove it for two separate reduction relations. This then / y2 *) (* allows us to prove the desired theorem simply by using the / / *) (* strip lemma twice with a bit of conjunct-swapping. y1 / *) (* \ / *) (* The diagram on the right shows the use of the variables. z *) (* ------------------------------------------------------------------------ *) let STRIP_LEMMA = prove (`!R S. (!x y1 y2. R x y1 /\ S x y2 ==> ?z:A. S y1 z /\ R y2 z) ==> (!x y1 y2. TC R x y1 /\ S x y2 ==> ?z:A. S y1 z /\ TC R y2 z)`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> c <=> a ==> (b ==> c)`] THEN REWRITE_TAC[GSYM RIGHT_IMP_FORALL_THM] THEN MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_INC; TC_TRANS]);; (* ------------------------------------------------------------------------ *) (* Transitive closure preserves Church-Rosser property. *) (* ------------------------------------------------------------------------ *) let TC_CR = prove (`!R:A->A->bool. CR(R) ==> CR(TC R)`, GEN_TAC THEN REWRITE_TAC[CR] THEN DISCH_TAC THEN MATCH_MP_TAC STRIP_LEMMA THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN RULE_INDUCT_TAC STRIP_LEMMA THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------ *) (* Reflexive transitive closure preserves Church-Rosser property. *) (* ------------------------------------------------------------------------ *) let RTC_CR = prove (`!R:A->A->bool. CR(R) ==> CR(RTC R)`, REWRITE_TAC[RTC] THEN MESON_TAC[RC_CR; TC_CR]);; (* ------------------------------------------------------------------------ *) (* Equivalent `Church-Rosser` property for the equivalence relation. *) (* ------------------------------------------------------------------------ *) let STC_CR = prove (`!R:A->A->bool. CR(RTC R) <=> !x y. RSTC R x y ==> ?z:A. RTC R x z /\ RTC R y z`, GEN_TAC THEN REWRITE_TAC[CR] THEN EQ_TAC THENL [DISCH_TAC THEN MATCH_MP_TAC RSTC_INDUCT THEN ASM_MESON_TAC[RTC_REFL; RTC_INC; RTC_TRANS]; MESON_TAC[RSTC_INC_RTC; RSTC_SYM; RSTC_TRANS]]);; (* ------------------------------------------------------------------------ *) (* Under normalization, Church-Rosser is equivalent to uniqueness of NF *) (* ------------------------------------------------------------------------ *) let NORM_CR = prove (`!R:A->A->bool. WN(R) ==> (CR(RTC R) <=> (!x y1 y2. RTC R x y1 /\ NORMAL(R) y1 /\ RTC R x y2 /\ NORMAL(R) y2 ==> (y1 = y2)))`, GEN_TAC THEN REWRITE_TAC[CR; WN] THEN DISCH_TAC THEN EQ_TAC THENL [MESON_TAC[NORMAL_RTC]; ASM_MESON_TAC[RTC_TRANS]]);; (* ------------------------------------------------------------------------ *) (* Normalizing and Church-Rosser iff every term has a unique normal form *) (* ------------------------------------------------------------------------ *) let CR_NORM = prove (`!R:A->A->bool. WN(R) /\ CR(RTC R) <=> !x. ?!y. RTC R x y /\ NORMAL(R) y`, GEN_TAC THEN ONCE_REWRITE_TAC[EXISTS_UNIQUE_THM] THEN REWRITE_TAC[FORALL_AND_THM; GSYM WN] THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NORM_CR th]) THEN REWRITE_TAC[CONJ_ASSOC]);; (* ------------------------------------------------------------------------ *) (* Newman's lemma: weak Church-Rosser plus x *) (* strong normalization implies full Church- / \ *) (* Rosser. By the above (and SN ==> WN) it z1 z2 *) (* is sufficient to show normal forms are / | | \ *) (* unique. We use the Noetherian induction / \ / \ *) (* form of SN, so we need only prove that if / z \ *) (* some term has multiple normal forms, so / | \ *) (* does a `successor`. See the diagram on the / | \ *) (* right for the use of variables. y1 w y2 *) (* ------------------------------------------------------------------------ *) let NEWMAN_LEMMA = prove (`!R:A->A->bool. SN(R) /\ WCR(R) ==> CR(RTC R)`, GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SN_WN) THEN DISCH_THEN(fun th -> ASSUME_TAC(REWRITE_RULE[WN] th) THEN MP_TAC th) THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NORM_CR th]) THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND; SN_WF]) THEN REWRITE_TAC[INV] THEN X_GEN_TAC `x:A` THEN REPEAT STRIP_TAC THEN MAP_EVERY UNDISCH_TAC [`RTC R (x:A) y1`; `RTC R (x:A) y2`] THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (X_CHOOSE_TAC `z2:A`)) THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC (X_CHOOSE_TAC `z1:A`)) THENL [ASM_MESON_TAC[];ASM_MESON_TAC[NORMAL];ASM_MESON_TAC[NORMAL]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WCR]) THEN ASM_MESON_TAC[RTC_TRANS]);; (* ------------------------------------------------------------------------- *) (* A variant of Koenig's lemma. *) (* ------------------------------------------------------------------------- *) let LF_TC_FINITE = prove (`!R. LF(R) /\ SN(R) ==> !x:A. FINITE {y | TC(R) x y}`, GEN_TAC THEN REWRITE_TAC[LF] THEN STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND; SN_WF; INV]) THEN GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `{y:A | TC(R) x y} = {y | R x y} UNION (UNIONS { s | ?z. R x z /\ (s = {y | TC(R) z y})})` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_UNION; IN_UNIONS] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [TC_CASES_R] THEN AP_TERM_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[FINITE_UNION; FINITE_UNIONS] THEN CONJ_TAC THENL [MP_TAC(ISPECL [`\z:A. {y | TC R z y}`; `{z | (R:A->A->bool) x z}`] FINITE_IMAGE_EXPAND) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN; IN_ELIM_THM]; GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN_ELIM_THM] THEN REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);; let SN_NOLOOP = prove (`!R:A->A->bool. SN(R) ==> !z. ~(TC(R) z z)`, GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN SPEC_TAC(`TC(R:A->A->bool)`,`R:A->A->bool`) THEN GEN_TAC THEN REWRITE_TAC[SN_WF; INV; WF] THEN DISCH_THEN(fun th -> GEN_TAC THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o SPEC `\x:A. x = z`) THEN REWRITE_TAC[] THEN MESON_TAC[]);; let RELPOW_RTC = prove (`!R:A->A->bool. !n x y. RELPOW n R x y ==> RTC(R) x y`, GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]);; let RTC_TC_LEMMA = prove (`!R x:A. {y:A | RTC(R) x y} = x INSERT {y:A | TC(R) x y}`, REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN REWRITE_TAC[RTC; RC_EXPLICIT; DISJ_ACI; EQ_SYM_EQ]);; let HAS_SIZE_SUBSET = prove (`!s:A->bool t m n. s HAS_SIZE m /\ t HAS_SIZE n /\ s SUBSET t ==> m <= n`, REWRITE_TAC[HAS_SIZE] THEN MESON_TAC[CARD_SUBSET]);; let FC_FINITE_BOUND_LEMMA = prove (`!R. (!z. ~(TC R z z)) ==> !n. {y:A | RTC(R) x y} HAS_SIZE n ==> !m y. RELPOW m R x y ==> m <= n`, REPEAT STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC o REWRITE_RULE[RELPOW_SEQUENCE]) THEN SUBGOAL_THEN `!i. i <= m ==> RELPOW i R (x:A) (f i)` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[RELPOW] THEN REWRITE_TAC[LE_SUC_LT] THEN ASM_MESON_TAC[LT_IMP_LE]; ALL_TAC] THEN SUBGOAL_THEN `{z:A | ?i:num. i < m /\ (z = f i)} SUBSET {y | RTC R x y}` ASSUME_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[RELPOW_RTC; LT_IMP_LE]; ALL_TAC] THEN SUBGOAL_THEN `!p. p <= m ==> {z:A | ?i. i < p /\ (z = f i)} HAS_SIZE p` (fun th -> ASSUME_TAC(MATCH_MP th (SPEC `m:num` LE_REFL))) THENL [ALL_TAC; MATCH_MP_TAC HAS_SIZE_SUBSET THEN EXISTS_TAC `{z:A | ?i. i < m /\ (z = f i)}` THEN EXISTS_TAC `{y:A | RTC(R) x y}` THEN ASM_REWRITE_TAC[]] THEN INDUCT_TAC THEN DISCH_TAC THENL [REWRITE_TAC[HAS_SIZE_0; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; LT]; ALL_TAC] THEN SUBGOAL_THEN `{z:A | ?i. i < SUC p /\ (z = f i)} = f(p) INSERT {z | ?i. i < p /\ (z = f i)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_INSERT; IN_ELIM_THM] THEN REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE; CARD_CLAUSES; SUC_INJ] THEN SUBGOAL_THEN `{z:A | ?i. i < p /\ (z = f i)} HAS_SIZE p` MP_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `SUC p <= m` THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP (CONJUNCT2 CARD_CLAUSES) th]) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN UNDISCH_TAC `f p IN {z:A | ?i:num. i < p /\ (z = f i)}` THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM] THEN X_GEN_TAC `q:num` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `TC(R) ((f:num->A) q) (f p)` (fun th -> ASM_MESON_TAC[th]) THEN UNDISCH_TAC `SUC p <= m` THEN UNDISCH_TAC `q < p` THEN REWRITE_TAC[LT_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THENL [REWRITE_TAC[ADD_CLAUSES] THEN DISCH_TAC THEN MATCH_MP_TAC TC_INC THEN FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `SUC (SUC q) <= m` THEN ARITH_TAC; DISCH_TAC THEN MATCH_MP_TAC TC_TRANS_L THEN EXISTS_TAC `(f:num->A)(q + SUC d)` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[ADD_CLAUSES]] THEN FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `SUC (q + SUC (SUC d)) <= m` THEN ARITH_TAC]);; let FC_FINITE_BOUND = prove (`!R (x:A). FINITE {y | RTC(R) x y} /\ (!z. ~(TC R z z)) ==> ?N. !n y. RELPOW n R x y ==> n <= N`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_TAC THEN EXISTS_TAC `CARD {y:A | RTC(R) x y}` THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP FC_FINITE_BOUND_LEMMA) THEN ASM_REWRITE_TAC[HAS_SIZE]);; let BOUND_SN = prove (`!R. (!x:A. ?N. !n y. RELPOW n R x y ==> n <= N) ==> SN(R)`, GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SN_WF; WF_DCHAIN; INV] THEN DISCH_THEN(X_CHOOSE_TAC `f:num->A`) THEN FIRST_X_ASSUM(MP_TAC o SPEC `(f:num->A) 0`) THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPECL [`SUC N`; `f(SUC N):A`])) THEN REWRITE_TAC[GSYM NOT_LT; LT] THEN SUBGOAL_THEN `!n. RELPOW n R (f 0 :A) (f n)` (fun th -> REWRITE_TAC[th]) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[]);; let LF_SN_BOUND = prove (`!R. LF(R) ==> (SN(R) <=> !x:A. ?N. !n y. RELPOW n R x y ==> n <= N)`, GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUND_SN] THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC FC_FINITE_BOUND THEN CONJ_TAC THENL [SPEC_TAC(`x:A`,`x:A`) THEN REWRITE_TAC[RTC_TC_LEMMA; FINITE_INSERT] THEN MATCH_MP_TAC LF_TC_FINITE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC SN_NOLOOP THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Koenig's lemma. *) (* ------------------------------------------------------------------------- *) let TREE_FLD = prove (`!R. TREE(R) ==> ?a:A. fld(R) = {y | RTC(R) a y}`, GEN_TAC THEN REWRITE_TAC[TREE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `a:A` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN EQ_TAC THENL [DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[]; ONCE_REWRITE_TAC[RTC_CASES_L] THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[fld] THEN SET_TAC[]]);; let KOENIG_LEMMA = prove (`!R:A->A->bool. TREE(R) /\ LF(R) /\ SN(R) ==> FINITE (fld R)`, GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `a:A` SUBST1_TAC o MATCH_MP TREE_FLD) THEN REWRITE_TAC[RTC_TC_LEMMA; FINITE_INSERT] THEN SPEC_TAC(`a:A`,`a:A`) THEN MATCH_MP_TAC LF_TC_FINITE THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Rephrasing in terms of joinability. *) (* ------------------------------------------------------------------------- *) let JOINABLE = new_definition `JOINABLE R s t <=> ?u. RTC R s u /\ RTC R t u`;; let JOINABLE_REFL = prove (`!R t. JOINABLE R t t`, REWRITE_TAC[JOINABLE] THEN MESON_TAC[RTC_CASES]);; let JOINABLE_SYM = prove (`!R s t. JOINABLE R s t <=> JOINABLE R t s`, REWRITE_TAC[JOINABLE] THEN MESON_TAC[]);; let JOINABLE_TRANS_R = prove (`!R s t u. R s t /\ JOINABLE R t u ==> JOINABLE R s u`, REWRITE_TAC[JOINABLE] THEN MESON_TAC[RTC_CASES_R]);; let CR_RSTC_JOINABLE = prove (`!R. CR(RTC R) ==> !x:A y. RSTC(R) x y <=> JOINABLE(R) x y`, GEN_TAC THEN REWRITE_TAC[STC_CR; JOINABLE] THEN ASM_MESON_TAC[RSTC_TRANS; RSTC_SYM; RSTC_INC_RTC]);; (* ------------------------------------------------------------------------- *) (* CR is equivalent to transitivity of joinability. *) (* ------------------------------------------------------------------------- *) let JOINABLE_TRANS = prove (`!R. CR(RTC R) <=> !x y z. JOINABLE(R) x y /\ JOINABLE(R) y z ==> JOINABLE(R) x z`, REWRITE_TAC[CR; JOINABLE] THEN MESON_TAC[RTC_REFL; RTC_TRANS; RTC_SYM]);;