(* ========================================================================= *) (* Part 1: Background theories. *) (* ========================================================================= *) let EMPTY_IS_FINITE = prove (`!s. (s = EMPTY) ==> FINITE s`, SIMP_TAC[FINITE_RULES]);; let SING_IS_FINITE = prove (`!s a. (s = {a}) ==> FINITE s`, SIMP_TAC[FINITE_INSERT; FINITE_RULES]);; let UNION_NONZERO = prove (`{a | ~(f a + g a = 0)} = {a | ~(f a = 0)} UNION {a | ~(g a = 0)}`, REWRITE_TAC[ADD_EQ_0; EXTENSION; IN_UNION; IN_ELIM_THM; DE_MORGAN_THM]);; (* ------------------------------------------------------------------------- *) (* Definition of type of finite multisets with a few basic operations. *) (* ------------------------------------------------------------------------- *) parse_as_infix("mmember",(11,"right"));; parse_as_infix("munion",(16,"right"));; parse_as_infix("mdiff",(18,"left"));; let multiset_tybij_th = prove (`?f. FINITE {a:A | ~(f a = 0)}`, EXISTS_TAC `\a:A. 0` THEN SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);; let multiset_tybij = new_type_definition "multiset" ("multiset","multiplicity") multiset_tybij_th;; let mempty = new_definition `mempty = multiset (\b. 0)`;; let mmember = new_definition `a mmember M <=> ~(multiplicity M a = 0)`;; let msing = new_definition `msing a = multiset (\b. if b = a then 1 else 0)`;; let munion = new_definition `M munion N = multiset(\b. multiplicity M b + multiplicity N b)`;; let mdiff = new_definition `M mdiff N = multiset(\b. multiplicity M b - multiplicity N b)`;; (* ------------------------------------------------------------------------- *) (* Extensionality for multisets. *) (* ------------------------------------------------------------------------- *) let MEXTENSION = prove (`(M = N) = !a. multiplicity M a = multiplicity N a`, REWRITE_TAC[GSYM FUN_EQ_THM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN MESON_TAC[multiset_tybij]);; (* ------------------------------------------------------------------------- *) (* Basic properties of multisets. *) (* ------------------------------------------------------------------------- *) let MULTIPLICITY_MULTISET = prove (`FINITE {a | ~(f a = 0)} /\ (f a = y) ==> (multiplicity(multiset f) a = y)`, SIMP_TAC[multiset_tybij]);; let MEMPTY = prove (`multiplicity mempty a = 0`, REWRITE_TAC[mempty] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);; let MSING = prove (`multiplicity (msing (a:A)) b = if b = a then 1 else 0`, REWRITE_TAC[msing] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN REWRITE_TAC[] THEN MATCH_MP_TAC SING_IS_FINITE THEN EXISTS_TAC `a:A` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);; let MUNION = prove (`multiplicity (M munion N) a = multiplicity M a + multiplicity N a`, REWRITE_TAC[munion] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN REWRITE_TAC[UNION_NONZERO; FINITE_UNION] THEN SIMP_TAC[multiset_tybij] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);; let MDIFF = prove (`multiplicity (M mdiff N) (a:A) = multiplicity M a - multiplicity N a`, REWRITE_TAC[mdiff] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN SIMP_TAC[SUBSET; IN_ELIM_THM; multiset_tybij] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij] THEN ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Some trivial properties of multisets that we use later. *) (* ------------------------------------------------------------------------- *) let MUNION_MEMPTY = prove (`~(M munion (msing(a:A)) = mempty)`, REWRITE_TAC[MEXTENSION; MEMPTY; MSING; MUNION] THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[ADD_EQ_0; ARITH_EQ]);; let MMEMBER_MUNION = prove (`x mmember (M munion N) <=> x mmember M \/ x mmember N`, REWRITE_TAC[mmember; MUNION; ADD_EQ_0; DE_MORGAN_THM]);; let MMEMBER_MSING = prove (`x mmember (msing a) <=> (x = a)`, REWRITE_TAC[mmember; MSING] THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);; let MUNION_EMPTY = prove (`M munion mempty = M`, REWRITE_TAC[MEXTENSION; MUNION; MEMPTY; ADD_CLAUSES]);; let MUNION_ASSOC = prove (`M1 munion (M2 munion M3) = (M1 munion M2) munion M3`, REWRITE_TAC[MEXTENSION; MUNION; ADD_ASSOC]);; let MUNION_AC = prove (`(M1 munion M2 = M2 munion M1) /\ ((M1 munion M2) munion M3 = M1 munion M2 munion M3) /\ (M1 munion M2 munion M3 = M2 munion M1 munion M3)`, REWRITE_TAC[MEXTENSION; MUNION; ADD_AC]);; let MUNION_11 = prove (`(M1 munion N = M2 munion N) <=> (M1 = M2)`, REWRITE_TAC[MEXTENSION; MUNION; EQ_ADD_RCANCEL]);; let MUNION_INUNION = prove (`a mmember (M munion (msing b)) /\ ~(b = a) ==> a mmember M`, REWRITE_TAC[mmember; MUNION; MSING; ADD_EQ_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ]);; let MMEMBER_MDIFF = prove (`(a:A) mmember M ==> (M = (M mdiff (msing a)) munion (msing a))`, REWRITE_TAC[mmember; MEXTENSION; MUNION; MDIFF; MSING] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(multiplicity M (a:A) = 0)` THEN ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Induction principle for multisets. *) (* ------------------------------------------------------------------------- *) let MULTISET_INDUCT_LEMMA1 = prove (`(!M. ({a | ~(multiplicity M a = 0)} SUBSET s) ==> P M) /\ (!a:A M. P M ==> P (M munion (msing a))) ==> !n M. (multiplicity M a = n) /\ {a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s) ==> P M`, STRIP_TAC THEN INDUCT_TAC THEN REPEAT STRIP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN ASM_MESON_TAC[]; SUBGOAL_THEN `M = (M mdiff (msing(a:A))) munion (msing a)` SUBST1_TAC THENL [MATCH_MP_TAC MMEMBER_MDIFF THEN ASM_REWRITE_TAC[mmember; NOT_SUC]; ALL_TAC] THEN MAP_EVERY (MATCH_MP_TAC o ASSUME) [`!a:A M. P M ==> P (M munion msing a)`; `!M. (multiplicity M a = n) /\ {a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s) ==> P M`] THEN ASM_REWRITE_TAC[MDIFF; MSING; ARITH_RULE `SUC n - 1 = n`] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; SUB_0]]);; let MULTISET_INDUCT_LEMMA2 = prove (`P mempty /\ (!a:A M. P M ==> P (M munion (msing a))) ==> !s. FINITE s ==> !M. {a:A | ~(multiplicity M a = 0)} SUBSET s ==> P M`, STRIP_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `M:(A)multiset = mempty` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM_REWRITE_TAC[MEXTENSION; MEMPTY]; X_GEN_TAC `a:A`] THEN REPEAT STRIP_TAC THEN MP_TAC MULTISET_INDUCT_LEMMA1 THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[GSYM EXISTS_REFL]);; let MULTISET_INDUCT = prove (`P mempty /\ (!a:A M. P M ==> P (M munion (msing a))) ==> !M. P M`, DISCH_THEN(MP_TAC o MATCH_MP MULTISET_INDUCT_LEMMA2) THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP] THEN GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN REWRITE_TAC[SUBSET_REFL; multiset_tybij] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);; (* ========================================================================= *) (* Part 2: Transcription of Tobias's paper. *) (* ========================================================================= *) parse_as_infix("<<",(12,"right"));; (* ------------------------------------------------------------------------- *) (* Wellfounded part of a relation. *) (* ------------------------------------------------------------------------- *) let WFP_RULES,WFP_INDUCT,WFP_CASES = new_inductive_definition `!x. (!y. y << x ==> WFP(<<) y) ==> WFP(<<) x`;; (* ------------------------------------------------------------------------- *) (* Wellfounded part induction. *) (* ------------------------------------------------------------------------- *) let WFP_PART_INDUCT = prove (`!P. (!x. x IN WFP(<<) /\ (!y. y << x ==> P(y)) ==> P(x)) ==> !x:A. x IN WFP(<<) ==> P(x)`, GEN_TAC THEN REWRITE_TAC[IN] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN MATCH_MP_TAC WFP_INDUCT THEN ASM_MESON_TAC[WFP_RULES]);; (* ------------------------------------------------------------------------- *) (* A relation is wellfounded iff WFP is the whole universe. *) (* ------------------------------------------------------------------------- *) let WFP_WF = prove (`WF(<<) <=> (WFP(<<) = UNIV:A->bool)`, EQ_TAC THENL [REWRITE_TAC[WF_IND; EXTENSION; IN; UNIV] THEN MESON_TAC[WFP_RULES]; DISCH_TAC THEN MP_TAC WFP_PART_INDUCT THEN ASM_REWRITE_TAC[IN; UNIV; WF_IND]]);; (* ------------------------------------------------------------------------- *) (* This isn't needed for the result as such, but formalizes the last *) (* remarks in section 3 that the WFP is exactly those elements that cannot *) (* start infinite descending chains. *) (* ------------------------------------------------------------------------- *) let WFP_DCHAIN = prove (`!(<<):A->A->bool. WFP(<<) = {a | !x. (!n. x(SUC n) << x n) ==> ~(x 0 = a)}`, GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN CONJ_TAC THENL [MATCH_MP_TAC WFP_INDUCT THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(x:num->A) (SUC 0)`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `(x:num->A) o SUC`) THEN ASM_REWRITE_TAC[o_THM]; X_GEN_TAC `a:A` THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN MP_TAC(ISPECL [`\(n:num) (x:A). ~WFP(<<) x`; `\(n:num) x y. ((<<):A->A->bool) y x`; `a:A`] DEPENDENT_CHOICE_FIXED) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [WFP_CASES] THEN MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* The multiset order. *) (* ------------------------------------------------------------------------- *) let morder = new_definition `morder(<<) N M <=> ?M0 a K. (M = M0 munion (msing a)) /\ (N = M0 munion K) /\ (!b. b mmember K ==> b << a)`;; (* ------------------------------------------------------------------------- *) (* We separate off this part from the proof of LEMMA_2_1. *) (* ------------------------------------------------------------------------- *) let LEMMA_2_0 = prove (`morder(<<) N (M0 munion (msing a)) ==> (?M. morder(<<) M M0 /\ (N = M munion (msing a))) \/ (?K. (N = M0 munion K) /\ (!b:A. b mmember K ==> b << a))`, GEN_REWRITE_TAC LAND_CONV [morder] THEN DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN [`M1:(A)multiset`; `b:A`; `K:(A)multiset`]) STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `b:A = a` THENL [DISJ2_TAC THEN UNDISCH_THEN `b:A = a` SUBST_ALL_TAC THEN EXISTS_TAC `K:(A)multiset` THEN ASM_MESON_TAC[MUNION_11]; DISJ1_TAC] THEN SUBGOAL_THEN `?M2. M1 = M2 munion (msing(a:A))` STRIP_ASSUME_TAC THENL [EXISTS_TAC `M1 mdiff (msing(a:A))` THEN MAP_EVERY MATCH_MP_TAC [MMEMBER_MDIFF; MUNION_INUNION] THEN UNDISCH_TAC `M0 munion (msing a) = M1 munion (msing(b:A))` THEN ASM_REWRITE_TAC[MEXTENSION; MUNION; MSING; mmember] THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `M2 munion K:(A)multiset` THEN ASM_REWRITE_TAC[MUNION_AC] THEN REWRITE_TAC[morder] THEN MAP_EVERY EXISTS_TAC [`M2:(A)multiset`; `b:A`; `K:(A)multiset`] THEN UNDISCH_TAC `M0 munion msing (a:A) = M1 munion msing b` THEN ASM_REWRITE_TAC[MUNION_AC] THEN MESON_TAC[MUNION_AC; MUNION_11]);; (* ------------------------------------------------------------------------- *) (* The sequence of lemmas from Tobias's paper. *) (* ------------------------------------------------------------------------- *) let LEMMA_2_1 = prove (`(!M b:A. b << a /\ M IN WFP(morder(<<)) ==> (M munion (msing b)) IN WFP(morder(<<))) /\ M0 IN WFP(morder(<<)) /\ (!M. morder(<<) M M0 ==> (M munion (msing a)) IN WFP(morder(<<))) ==> (M0 munion (msing a)) IN WFP(morder(<<))`, STRIP_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN X_GEN_TAC `N:(A)multiset` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP LEMMA_2_0) THENL [ASM_MESON_TAC[IN]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN SPEC_TAC(`N:(A)multiset`,`N:(A)multiset`) THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC MULTISET_INDUCT THEN REPEAT STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[MUNION_ASSOC; MMEMBER_MUNION; MMEMBER_MSING]) THEN ASM_MESON_TAC[IN; MUNION_EMPTY]);; let LEMMA_2_2 = prove (`(!M b. b << a /\ M IN WFP(morder(<<)) ==> (M munion (msing b)) IN WFP(morder(<<))) ==> !M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`, STRIP_TAC THEN MATCH_MP_TAC WFP_PART_INDUCT THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LEMMA_2_1 THEN ASM_REWRITE_TAC[]);; let LEMMA_2_3 = prove (`WF(<<) ==> !a M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`, REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN MESON_TAC[LEMMA_2_2]);; let LEMMA_2_4 = prove (`WF(<<) ==> !M. M IN WFP(morder(<<))`, DISCH_TAC THEN MATCH_MP_TAC MULTISET_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN REWRITE_TAC[morder; MUNION_MEMPTY]; ASM_SIMP_TAC[LEMMA_2_3]]);; (* ------------------------------------------------------------------------- *) (* Hence the final result. *) (* ------------------------------------------------------------------------- *) let MORDER_WF = prove (`WF(<<) ==> WF(morder(<<))`, SIMP_TAC[WFP_WF; EXTENSION; IN_UNIV; LEMMA_2_4]);;