(* ========================================================================= *) (* Miller-Rabin strong pseudoprimes / probable primes. *) (* ========================================================================= *) needs "Library/primitive.ml";; prioritize_num();; (* ------------------------------------------------------------------------- *) (* Miller-Rabin compositeness witnesses and pseudoprimes (including primes). *) (* We treat even numbers as degenerately composite to any pseudoprime base, *) (* except for n = 2, which is considered a pseudoprime. This seems to give *) (* the cleanest relationhships, though we mainly care about the odd case. *) (* ------------------------------------------------------------------------- *) let miller_rabin_composite = new_definition `miller_rabin_composite a n <=> if EVEN n then ~(n = 2) else let e = index 2 (n - 1) in let k = (n - 1) DIV 2 EXP e in ~(a EXP k == 1) (mod n) /\ !i. i < e ==> ~((a EXP (2 EXP i * k) == n - 1) (mod n))`;; let miller_rabin_pseudoprime = new_definition `miller_rabin_pseudoprime a n <=> n = 2 \/ ODD n /\ let e = index 2 (n - 1) in let k = (n - 1) DIV 2 EXP e in (a EXP k == 1) (mod n) \/ ?i. i < e /\ (a EXP (2 EXP i * k) == n - 1) (mod n)`;; let NOT_MILLER_RABIN_COMPOSITE = prove (`!a n. ~(miller_rabin_composite a n) <=> miller_rabin_pseudoprime a n`, REWRITE_TAC[miller_rabin_composite; miller_rabin_pseudoprime] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[ARITH] THEN ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[GSYM NOT_ODD] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN MESON_TAC[]);; let NOT_MILLER_RABIN_PSEUDOPRIME = prove (`!a n. ~(miller_rabin_pseudoprime a n) <=> miller_rabin_composite a n`, REWRITE_TAC[GSYM NOT_MILLER_RABIN_COMPOSITE]);; (* ------------------------------------------------------------------------- *) (* Primes are Miller-Rabin pseudoprimes to any coprime base. *) (* An odd Miller-Rabin pseudoprime is a Fermat pseodoprime, and for an odd *) (* prime power the reverse is true (not more generally). *) (* ------------------------------------------------------------------------- *) let MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT = prove (`!a q. miller_rabin_pseudoprime a q /\ ~(q = 2) ==> (a EXP (q - 1) == 1) (mod q)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ASM_CASES_TAC `q = 0` THEN ASM_REWRITE_TAC[SUB_0; EXP; CONG_REFL] THEN ASM_REWRITE_TAC[miller_rabin_pseudoprime] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `2 EXP (index 2 (q - 1))` o MATCH_MP CONG_EXP_1) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONG_TRANS) THEN MATCH_MP_TAC EQ_IMP_CONG THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[EXP_EXP] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM DIVIDES_DIV_MULT; EXP_INDEX_DIVIDES]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONG_MINUS1]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `q divides (a + 1) ==> (a EXP 2 == 1) (mod q)`)) THEN REWRITE_TAC[EXP_EXP] THEN DISCH_THEN(MP_TAC o SPEC `2 EXP (index 2 (q - 1) - (i + 1))` o MATCH_MP CONG_EXP_1) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONG_TRANS) THEN MATCH_MP_TAC EQ_IMP_CONG THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[EXP_EXP] THEN AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `((e * d) * 2) * f = ((2 * e) * f) * d`] THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP); GSYM EXP_ADD] THEN ASM_SIMP_TAC[ARITH_RULE `i < j ==> SUC i + j - (i + 1) = j`] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM DIVIDES_DIV_MULT; EXP_INDEX_DIVIDES]]);; let MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME_EXPLICIT = prove (`!a q. (?p k. prime p /\ ODD p /\ p EXP k = q) ==> (miller_rabin_pseudoprime a q <=> (a EXP (q - 1) == 1) (mod q))`, REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT) THEN ASM_MESON_TAC[ODD_EXP; REWRITE_CONV[ARITH] `ODD 2`]; REWRITE_TAC[miller_rabin_pseudoprime] THEN REPEAT LET_TAC THEN DISCH_TAC] THEN DISJ2_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[ODD_EXP]; ALL_TAC] THEN MP_TAC(fst(EQ_IMP_RULE (SPEC `\i. i <= e /\ (a EXP (2 EXP i * k) == 1) (mod q)` num_WOP))) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [EXISTS_TAC `e:num` THEN REWRITE_TAC[LE_REFL] THEN MP_TAC(ISPECL [`q - 1`; `2`] INDEX_DECOMPOSITION) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` (ASSUME_TAC o SYM o CONJUNCT1)) THEN UNDISCH_TAC `(q - 1) DIV 2 EXP e = k` THEN ASM_SIMP_TAC[DIV_MULT; EXP_EQ_0; ARITH_EQ] THEN ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN DISJ2_TAC THEN EXISTS_TAC `n - 1` THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (q \/ r) ==> ~(p /\ q) ==> r`) THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_THEN `p:num` (X_CHOOSE_THEN `j:num` MP_TAC)) THEN ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[GSYM CONG_SQUARE_1_PRIME_POWER] THEN REWRITE_TAC[EXP_EXP; ARITH_RULE `(e * k) * 2 = (2 * e) * k`] THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> SUC(n - 1) = n`]);; let PRIME_IMP_MILLER_RABIN_PSEUDOPRIME = prove (`!a p. prime p /\ coprime(a,p) ==> miller_rabin_pseudoprime a p`, REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 2` THENL [ASM_REWRITE_TAC[miller_rabin_pseudoprime]; STRIP_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME_EXPLICIT o snd) THEN ASM_SIMP_TAC[FERMAT_LITTLE_PRIME] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`p:num`; `1`] THEN ASM_MESON_TAC[PRIME_ODD; EXP_1]);; let PRIME_IMP_MILLER_RABIN_PSEUDOPRIME_ALT = prove (`!a p. prime p /\ ~(p divides a) ==> miller_rabin_pseudoprime a p`, ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM; PRIME_IMP_MILLER_RABIN_PSEUDOPRIME]);; let MILLER_RABIN_COMPOSITE_IMP_COMPOSITE = prove (`!a p. coprime(a,p) /\ miller_rabin_composite a p ==> ~(prime p)`, REWRITE_TAC[GSYM NOT_MILLER_RABIN_PSEUDOPRIME] THEN MESON_TAC[PRIME_IMP_MILLER_RABIN_PSEUDOPRIME]);; let MILLER_RABIN_COMPOSITE_IMP_COMPOSITE_ALT = prove (`!a p. ~(p divides a) /\ miller_rabin_composite a p ==> ~(prime p)`, ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM; MILLER_RABIN_COMPOSITE_IMP_COMPOSITE]);; (* ------------------------------------------------------------------------- *) (* Other miscellaneous properties. *) (* ------------------------------------------------------------------------- *) let MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME = prove (`!a p. miller_rabin_pseudoprime a p ==> p = 2 \/ coprime(a,p)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN ASM_CASES_TAC `p = 0` THENL [ASM_REWRITE_TAC[miller_rabin_pseudoprime; ARITH]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `(a == 1) (mod n) ==> coprime(a,n)`)) THEN REWRITE_TAC[COPRIME_LEXP] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[NUMBER_RULE `coprime(a,1)`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let MILLER_RABIN_PSEUDOPRIME_CONG = prove (`!a b p. (a == b) (mod p) ==> (miller_rabin_pseudoprime a p <=> miller_rabin_pseudoprime b p)`, REWRITE_TAC[FORALL_AND_THM; TAUT `p ==> (q <=> r) <=> (p ==> q ==> r) /\ (p ==> r ==> q)`]THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONG_SYM] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`a:num`; `b:num`; `p:num`] THEN DISCH_TAC THEN REWRITE_TAC[miller_rabin_pseudoprime] THEN REPEAT LET_TAC THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN REWRITE_TAC[] THEN ASM_CASES_TAC `ODD p` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONG_TRANS) THEN ASM_SIMP_TAC[CONG_EXP]);; let MILLER_RABIN_PSEUDOPRIME_1 = prove (`!p. ODD p ==> miller_rabin_pseudoprime 1 p`, REWRITE_TAC[miller_rabin_pseudoprime; EXP_ONE; CONG_REFL] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN SIMP_TAC[]);; let MILLER_RABIN_PSEUDOPRIME_MOD_1 = prove (`!a. miller_rabin_pseudoprime a 1`, REWRITE_TAC[miller_rabin_pseudoprime; CONG_MOD_1] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[ARITH]);; let MILLER_RABIN_PSEUDOPRIME_INVERSE_MOD = prove (`!a p. miller_rabin_pseudoprime a p ==> miller_rabin_pseudoprime (inverse_mod p a) p`, REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THENL [ASM_REWRITE_TAC[inverse_mod; miller_rabin_pseudoprime; ARITH]; ALL_TAC] THEN ASM_CASES_TAC `p = 2` THENL [ASM_REWRITE_TAC[inverse_mod; miller_rabin_pseudoprime; ARITH]; ALL_TAC] THEN ASM_CASES_TAC `coprime(a:num,p)` THENL [ALL_TAC; ASM_MESON_TAC[MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME]] THEN ASM_REWRITE_TAC[miller_rabin_pseudoprime] THEN REPEAT LET_TAC THEN ASM_CASES_TAC `ODD p` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THENL [MATCH_MP_TAC(NUMBER_RULE `(x * y == 1) (mod p) ==> (x == 1) (mod p) ==> (y == 1) (mod p)`) THEN ASM_REWRITE_TAC[GSYM MULT_EXP] THEN MATCH_MP_TAC CONG_EXP_1 THEN REWRITE_TAC[INVERSE_MOD_RMUL_EQ] THEN ASM_MESON_TAC[COPRIME_SYM]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC(NUMBER_RULE `(a EXP 2 == 1) (mod p) /\ (x * y == 1) (mod p) ==> (x == a) (mod p) ==> (y == a) (mod p)`) THEN ASM_REWRITE_TAC[CONG_MINUS1_SQUARED] THEN ASM_REWRITE_TAC[GSYM MULT_EXP] THEN SUBST1_TAC(SYM(SPEC `2 EXP i * k` EXP_ONE)) THEN MATCH_MP_TAC CONG_EXP THEN REWRITE_TAC[INVERSE_MOD_RMUL_EQ] THEN ASM_MESON_TAC[COPRIME_SYM]]);; (* ------------------------------------------------------------------------- *) (* Simple bound on number of k'th powers with a given residue a. *) (* ------------------------------------------------------------------------- *) let BOUND_POWER_RESIDUES_MODULO_ODD_COPRIME = prove (`!n a k. ODD n /\ coprime(k,n) /\ coprime(n,a) ==> CARD {x | x < n /\ (x EXP k == a) (mod n)} <= nproduct {p | prime p /\ p divides n} (\p. gcd(k,p - 1))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THENL [ASM_REWRITE_TAC[COPRIME_0] THEN STRIP_TAC THEN ASM_REWRITE_TAC[MESON[PRIME_1; DIVIDES_ONE] `~(prime p /\ p divides 1)`] THEN ASM_REWRITE_TAC[EMPTY_GSPEC; NPRODUCT_CLAUSES] THEN REWRITE_TAC[CONG_MOD_1; CARD_NUMSEG_LT; LE_REFL]; STRIP_TAC] THEN MP_TAC(ISPECL [`n:num`; `a:num`; `k:num`] COUNT_ROOTS_MODULO_ODD_GEN) THEN REWRITE_TAC[GSYM nproduct] THEN ASM_SIMP_TAC[HAS_SIZE] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_0] THEN MATCH_MP_TAC EQ_IMP_LE THEN MATCH_MP_TAC NPRODUCT_EQ THEN X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN MATCH_MP_TAC(NUMBER_RULE `coprime(k:num,a) ==> gcd(k,a * b) = gcd(k,b)`) THEN REWRITE_TAC[COPRIME_REXP] THEN DISJ1_TAC THEN MAP_EVERY UNDISCH_TAC [`(p:num) divides n`; `coprime(k:num,n)`] THEN CONV_TAC NUMBER_RULE);; (* ------------------------------------------------------------------------- *) (* General upper bound expression for the number of pseudoprime bases. *) (* ------------------------------------------------------------------------- *) let MILLER_RABIN_PSEUDOPRIME_BOUND_GEN = prove (`!n s t v. ~(prime n) /\ 2 EXP s * t = n - 1 /\ ODD t /\ (?p. prime p /\ p divides n /\ ~(2 EXP (v + 2) divides (p - 1))) ==> CARD {a | a < n /\ miller_rabin_pseudoprime a n} <= 2 * nproduct {p | prime p /\ p divides n} (\p. 2 EXP v * gcd(t,p - 1))`, REPEAT GEN_TAC THEN DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THENL [ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[PRIME_2; miller_rabin_pseudoprime; GSYM NOT_EVEN] THEN REWRITE_TAC[EMPTY_GSPEC; CARD_CLAUSES; LE_0]; UNDISCH_TAC `ODD n` THEN REWRITE_TAC[IMP_IMP]] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ODD] THEN ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[ARITH] THEN ASM_CASES_TAC `t = 0` THEN ASM_REWRITE_TAC[ODD] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN TRANS_TAC LE_TRANS `CARD {a | a < n /\ (a EXP (2 EXP v * t) == 1) (mod n)} + CARD {a | a < n /\ (a EXP (2 EXP v * t) == n - 1) (mod n)}` THEN CONJ_TAC THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN W(MP_TAC o PART_MATCH (rand o rand) CARD_UNION o rand o snd) THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | x IN {y | P y} /\ Q x}`] THEN SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN MATCH_MP_TAC(SET_RULE `(!x. ~(Q x /\ R x)) ==> {x | P x /\ Q x} INTER {x | P x /\ R x} = {}`) THEN X_GEN_TAC `a:num` THEN ASM_REWRITE_TAC[CONG_MINUS1] THEN DISCH_THEN(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE `!p. (a == 1) (mod n) /\ n divides (a + 1) ==> p divides n ==> p divides 2`)) THEN ASM_SIMP_TAC[DIVIDES_PRIME_PRIME; PRIME_2] THEN ASM_MESON_TAC[DIVIDES_2; NOT_ODD]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC CARD_SUBSET THEN ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | x IN {y | P y} /\ Q x}`] THEN SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT; FINITE_UNION] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN X_GEN_TAC `a:num` THEN SIMP_TAC[] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN FIRST_ASSUM(MP_TAC o MATCH_MP MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [miller_rabin_pseudoprime]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] INDEX_UNIQUE)) THEN ASM_REWRITE_TAC[ARITH_EQ; DIVIDES_2; NOT_EVEN] THEN DISCH_THEN SUBST1_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN SUBGOAL_THEN `(n - 1) DIV 2 EXP s = t` SUBST_ALL_TAC THENL [REWRITE_TAC[SYM(ASSUME `2 EXP s * t = n - 1`)] THEN SIMP_TAC[DIV_MULT; EXP_EQ_0; ARITH_EQ]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [DISJ1_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM EXP_EXP] THEN ASM_SIMP_TAC[CONG_EXP_1]; DISCH_THEN(X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC)] THEN SUBGOAL_THEN `i:num <= v` MP_TAC THENL [ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE `!p:num. (a == b) (mod n) ==> p divides n /\ (b EXP 2 == 1) (mod n) ==> (a EXP 2 == 1) (mod p)`)) THEN ASM_REWRITE_TAC[CONG_MINUS1_SQUARED] THEN FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE `!p:num. (a == b) (mod n) ==> p divides n /\ (a == 1) (mod p) ==> (b == 1) (mod p)`)) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM CONTRAPOS_THM] THEN ANTS_TAC THENL [REWRITE_TAC[NUMBER_RULE `(a == 1) (mod p) <=> (a + 1 == 2) (mod p)`] THEN ASM_SIMP_TAC[SUB_ADD; LE_1] THEN ASM_SIMP_TAC[NUMBER_RULE `p divides n ==> ((n == m) (mod p) <=> p divides m)`] THEN ASM_SIMP_TAC[DIVIDES_PRIME_PRIME; PRIME_2] THEN ASM_MESON_TAC[DIVIDES_2; NOT_EVEN]; ALL_TAC] THEN MP_TAC(NUMBER_RULE `p divides n /\ coprime(a,n) ==> coprime(a:num,p) /\ coprime(p,a)`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN MP_TAC(SPECL [`a:num`; `p:num`] FERMAT_LITTLE_PRIME) THEN ASM_REWRITE_TAC[IMP_IMP; EXP_EXP; GSYM CONJ_ASSOC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ORDER_DIVIDES] THEN ASM_SIMP_TAC[DIVIDES_INDEX; MULT_EQ_0; EXP_EQ_0; ARITH_EQ; ORDER_EQ_0; INDEX_MUL; ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN SIMP_TAC[INDEX_PRIME; PRIME_2] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[PRIME_2] `(!p. prime p ==> P p) /\ ~(!p. prime p ==> Q p) /\ (!p. prime p ==> R p) ==> (!p. ~(p = 2) ==> (Q p <=> R p)) ==> P 2 /\ ~Q 2 /\ R 2`)) THEN ANTS_TAC THENL [SIMP_TAC[ADD_CLAUSES]; ALL_TAC] THEN REWRITE_TAC[ARITH_RULE `~(i <= n) /\ i <= n + 1 <=> i = n + 1`] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [PRIMEPOW_DIVIDES_INDEX]) THEN ASM_SIMP_TAC[INDEX_ZERO; DIVIDES_2; GSYM NOT_ODD; ADD_CLAUSES; INDEX_EXP; INDEX_REFL; PRIME_2; ARITH_LE] THEN ASM_ARITH_TAC; GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `i:num <= v <=> i < v \/ i = v`] THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[LT_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN REWRITE_TAC[ARITH_RULE `i + SUC n = SUC i + n`] THEN REWRITE_TAC[EXP_ADD; EXP; ARITH_RULE `((2 * i) * d) * t = ((i * t) * 2) * d`] THEN ONCE_REWRITE_TAC[GSYM EXP_EXP] THEN MATCH_MP_TAC CONG_EXP_1 THEN ONCE_REWRITE_TAC[GSYM EXP_EXP] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NUMBER_RULE `(x == a) (mod n) ==> (a EXP 2 == 1) (mod n) ==> (x EXP 2 == 1) (mod n)`)) THEN ASM_REWRITE_TAC[CONG_MINUS1_SQUARED]]; MATCH_MP_TAC(ARITH_RULE `x <= b /\ y <= b ==> x + y <= 2 * b`) THEN SUBGOAL_THEN `!z. coprime(n,z) ==> CARD {a | a < n /\ (a EXP (2 EXP v * t) == z) (mod n)} <= nproduct {p | prime p /\ p divides n} (\p. 2 EXP v * gcd(t,p - 1))` MP_TAC THENL [ALL_TAC; DISCH_THEN(fun th -> CONJ_TAC THEN MATCH_MP_TAC th) THEN ASM_MESON_TAC[COPRIME_MINUS1; COPRIME_1; COPRIME_SYM]] THEN X_GEN_TAC `z:num` THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) BOUND_POWER_RESIDUES_MODULO_ODD_COPRIME o lhand o snd) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[COPRIME_LMUL; COPRIME_LEXP; COPRIME_2] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `st = n - 1 ==> ~(n = 0) ==> n = st + 1`)) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; CONV_TAC NUMBER_RULE]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LE_TRANS) THEN SUBGOAL_THEN `FINITE {p | prime p /\ p divides n}` MP_TAC THENL [ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS]; SPEC_TAC(`{p | prime p /\ p divides n}`,`s:num->bool`)] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[NPRODUCT_CLAUSES; LE_REFL] THEN MAP_EVERY X_GEN_TAC [`p:num`; `s:num->bool`] THEN STRIP_TAC THEN MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN REWRITE_TAC[NUMBER_RULE `gcd(a * b:num,c) divides a * gcd(b,c)`] THEN REWRITE_TAC[MULT_EQ_0; GCD_ZERO; EXP_EQ_0; ARITH_EQ]]);; (* ------------------------------------------------------------------------- *) (* At most 1/4 of coprime numbers are pseudoprime bases, except for n = 9. *) (* ------------------------------------------------------------------------- *) let MILLER_RABIN_PSEUDOPRIME_BOUND_PHI = prove (`!n. ODD n /\ ~prime n /\ n > 9 ==> CARD {a | a < n /\ miller_rabin_pseudoprime a n} <= (phi n) DIV 4`, GEN_TAC THEN REWRITE_TAC[GT] THEN MAP_EVERY (fun t -> ASM_CASES_TAC t THEN ASM_REWRITE_TAC[ARITH]) [`n = 0`; `n = 1`; `n = 2`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`n - 1`; `2`] INDEX_DECOMPOSITION) THEN ABBREV_TAC `s = index 2 (n - 1)` THEN ASM_REWRITE_TAC[ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`; ARITH_EQ] THEN REWRITE_TAC[DIVIDES_2; NOT_EVEN] THEN DISCH_THEN(X_CHOOSE_THEN `t:num` STRIP_ASSUME_TAC) THEN MP_TAC(fst(EQ_IMP_RULE(SPEC `\v. !p. prime p /\ p divides n ==> 2 EXP v divides p - 1` num_MAX))) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [MESON_TAC[EXP; DIVIDES_1]; ALL_TAC] THEN MP_TAC(SPEC `n:num` PRIME_FACTOR) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `index 2 (p - 1)` THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN ASM_REWRITE_TAC[ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`; ARITH_EQ] THEN ASM_MESON_TAC[PRIME_0; PRIME_1]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL [MATCH_MP_TAC(TAUT `~q ==> p /\ q ==> r`) THEN DISCH_THEN(MP_TAC o SPEC `1`) THEN REWRITE_TAC[ARITH; DIVIDES_2; EVEN_SUB] THEN ASM_MESON_TAC[DIVIDES_2; DIVIDES_TRANS; NOT_EVEN]; X_GEN_TAC `v:num` THEN DISCH_THEN(K ALL_TAC)] THEN REWRITE_TAC[ADD1] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `v + 2`)) THEN REWRITE_TAC[ARITH_RULE `~(v + 2 <= v + 1)`; NOT_FORALL_THM; NOT_IMP] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN DISCH_TAC THEN MP_TAC(SPECL [`n:num`; `s:num`; `t:num`; `v:num`] MILLER_RABIN_PSEUDOPRIME_BOUND_GEN) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LE_TRANS) THEN REWRITE_TAC[ARITH_RULE `2 * x <= y DIV 4 <=> 8 * x <= y`] THEN SUBGOAL_THEN `FINITE {p | prime p /\ p divides n}` ASSUME_TAC THENL [ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS]; ALL_TAC] THEN SUBGOAL_THEN `CARD {p | prime p /\ p divides n} = 0 \/ 3 <= CARD {p | prime p /\ p divides n} \/ {p | prime p /\ p divides n} HAS_SIZE 1 \/ {p | prime p /\ p divides n} HAS_SIZE 2` MP_TAC THENL [ASM_REWRITE_TAC[HAS_SIZE] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THENL [ASM_SIMP_TAC[CARD_EQ_0] THEN MP_TAC(SPEC `n:num` PRIME_FACTOR) THEN ASM SET_TAC[]; (*** The case of >= 3 prime divisors ***) DISCH_TAC THEN SUBST1_TAC(ARITH_RULE `8 = 2 EXP 3`) THEN TRANS_TAC LE_TRANS `2 EXP CARD {p | prime p /\ p divides n} * nproduct {p | prime p /\ p divides n} (\p. 2 EXP v * gcd(t,p - 1))` THEN ASM_REWRITE_TAC[LE_MULT_RCANCEL; LE_EXP] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_SIMP_TAC[GSYM NPRODUCT_CONST; FINITE_SPECIAL_DIVISORS; GSYM NPRODUCT_MUL] THEN GEN_REWRITE_TAC RAND_CONV [PHI_EXPAND] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NPRODUCT_LE THEN ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; LE_0; IN_ELIM_THM] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN MP_TAC(SPECL [`p - 1`; `2`] INDEX_DECOMPOSITION) THEN ASM_REWRITE_TAC[ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`; ARITH_EQ] THEN ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN ASM_REWRITE_TAC[DIVIDES_2; NOT_EVEN; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:num` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GCD_COPRIME_RMUL; COPRIME_LEXP; COPRIME_2] THEN ASM_SIMP_TAC[GCD_ONE; COPRIME_REXP; COPRIME_2] THEN REWRITE_TAC[MULT_CLAUSES; MULT_ASSOC; GSYM(CONJUNCT2 EXP)] THEN REWRITE_TAC[GSYM MULT_ASSOC] THEN GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN REWRITE_TAC[GSYM MULT_ASSOC] THEN MATCH_MP_TAC LE_MULT2 THEN REWRITE_TAC[ADD1; LE_EXP; ARITH_EQ] THEN ASM_SIMP_TAC[LE_INDEX] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(ARITH_RULE `g <= r /\ r * 1 <= r * p ==> g <= r * p`) THEN REWRITE_TAC[GCD_LE; LE_MULT_LCANCEL] THEN CONJ_TAC THENL [ASM_MESON_TAC[ODD]; DISJ2_TAC] THEN ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; ARITH_EQ; EXP_EQ_0]; (*** The case of 1 prime divisor ***) CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN DISCH_THEN(X_CHOOSE_TAC `p:num`) THEN GEN_REWRITE_TAC RAND_CONV [PHI_EXPAND] THEN ASM_REWRITE_TAC[NPRODUCT_SING] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (SET_RULE `{x | P x /\ Q x} = {p} ==> P p /\ Q p`)) THEN ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN REWRITE_TAC[ARITH_RULE `8 * v * g <= p * q <=> (2 * v * g) * 4 <= q * p`] THEN MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THENL [REWRITE_TAC[MULT_ASSOC; GSYM(CONJUNCT2 EXP); ADD1] THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN MATCH_MP_TAC DIVIDES_MUL THEN ASM_SIMP_TAC[GCD; COPRIME_LEXP] THEN DISJ1_TAC THEN MATCH_MP_TAC(NUMBER_RULE `coprime(a,b) ==> coprime(a,gcd(b,c))`) THEN ASM_REWRITE_TAC[COPRIME_2]; ALL_TAC] THEN MP_TAC(SPECL [`\n:num. n`; `n:num`] MULTIPLICATIVE_EXPAND) THEN ASM_REWRITE_TAC[MULTIPLICATIVE_ID; NPRODUCT_SING] THEN SUBGOAL_THEN `3 <= p` MP_TAC THENL [ASM_MESON_TAC[ODD_PRIME; NOT_ODD; DIVIDES_TRANS; DIVIDES_2]; ALL_TAC] THEN REWRITE_TAC[ARITH_RULE `3 <= p <=> p = 3 \/ 4 <= p`] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL [MATCH_MP_TAC(ARITH_RULE `9 < n /\ (3 EXP 2 < i ==> 3 EXP 2 <= j) ==> n = i ==> 4 <= j`) THEN ASM_REWRITE_TAC[LT_EXP; LE_EXP] THEN ARITH_TAC; DISCH_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `prime`) THEN ASM_REWRITE_TAC[PRIME_EXP] THEN DISCH_TAC THEN TRANS_TAC LE_TRANS `4 EXP (index p n - 1)` THEN ASM_REWRITE_TAC[EXP_MONO_LE] THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN REWRITE_TAC[LE_EXP; ARITH_EQ] THEN ASM_REWRITE_TAC[ARITH_RULE `1 <= n - 1 <=> ~(n = 0) /\ ~(n = 1)`] THEN ASM_REWRITE_TAC[INDEX_EQ_0]]; (*** The case of 2 prime divisors ***) CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC(MESON[] `!P. (!p q. R p q ==> R q p) /\ (!p q. P p ==> R p q) /\ (!p q. ~P p /\ ~P q ==> R p q) ==> !p q. R p q`) THEN EXISTS_TAC `\p. 2 <= index p n \/ 2 EXP (v + 2) divides p - 1` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN (SUBGOAL_THEN `prime p /\ prime q /\ p divides n /\ q divides n` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(p = 0) /\ ~(p = 1) /\ ~(q = 0) /\ ~(q = 1)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0; PRIME_1]; ALL_TAC]) THEN GEN_REWRITE_TAC RAND_CONV [PHI_EXPAND] THEN MP_TAC(SPECL [`\n:num. n`; `n:num`] MULTIPLICATIVE_EXPAND) THEN ASM_REWRITE_TAC[MULTIPLICATIVE_ID] THEN ASM_SIMP_TAC[NPRODUCT_CLAUSES; FINITE_INSERT; FINITE_EMPTY; IN_INSERT; NOT_IN_EMPTY; MULT_CLAUSES] THEN DISCH_THEN(ASSUME_TAC o SYM) THENL [FIRST_X_ASSUM DISJ_CASES_TAC THENL [REWRITE_TAC[GSYM(CONJUNCT2 EXP); ADD1; ARITH_RULE `8 * (e1 * g1) * (e2 * g2) <= (p * p') * (q * q') <=> 2 * ((2 * e1) * g1) * ((2 * e2) * g2) <= p * p' * q * q'`] THEN MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THENL [TRANS_TAC LE_TRANS `2 EXP (index p n - 1)` THEN ASM_SIMP_TAC[EXP_MONO_LE; PRIME_GE_2] THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN REWRITE_TAC[LE_EXP; ARITH_EQ] THEN ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> 1 <= n - 1`]; ALL_TAC] THEN MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_0; ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THENL [ALL_TAC; MATCH_MP_TAC DIVIDES_LMUL] THEN MATCH_MP_TAC DIVIDES_MUL THEN ASM_SIMP_TAC[GCD; COPRIME_LEXP] THEN DISJ1_TAC THEN MATCH_MP_TAC(NUMBER_RULE `coprime(a,b) ==> coprime(a,gcd(b,c))`) THEN ASM_REWRITE_TAC[COPRIME_2]; REWRITE_TAC[GSYM(CONJUNCT2 EXP); ADD1; ARITH_RULE `8 * (e1 * g1) * (e2 * g2) <= (p * p') * (q * q') <=> ((2 * 2 * e1) * g1) * ((2 * e2) * g2) <= (p * p') * (q * q')`] THEN MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_0; COPRIME_LEXP; ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN MATCH_MP_TAC DIVIDES_MUL THEN REWRITE_TAC[NUMBER_RULE `gcd(a,b) divides c * b`] THEN ASM_SIMP_TAC[ARITH_RULE `(v + 1) + 1 = v + 2`; DIVIDES_LMUL] THEN ASM_SIMP_TAC[COPRIME_LEXP] THEN DISJ1_TAC THEN MATCH_MP_TAC(NUMBER_RULE `coprime(a,b) ==> coprime(a,gcd(b,c))`) THEN ASM_REWRITE_TAC[COPRIME_2]]; REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM])) THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(2 <= n) ==> n = 0 \/ n = 1`))) THEN ASM_REWRITE_TAC[INDEX_EQ_0] THEN REPEAT(DISCH_THEN SUBST_ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[EXP_1]) THEN REWRITE_TAC[SUB_REFL; EXP; MULT_CLAUSES] THEN MP_TAC(SPECL [`q - 1`; `2`] INDEX_DECOMPOSITION) THEN MP_TAC(SPECL [`p - 1`; `2`] INDEX_DECOMPOSITION) THEN SUBGOAL_THEN `index 2 (p - 1) = v + 1 /\ index 2 (q - 1) = v + 1` (CONJUNCTS_THEN SUBST1_TAC) THENL [ASM_REWRITE_TAC[INDEX_UNIQUE_ALT; ARITH_EQ; ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN ASM_SIMP_TAC[ARITH_RULE `(n + 1) + 1 = n + 2`]; ASM_REWRITE_TAC[ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN REWRITE_TAC[ARITH_EQ; LEFT_IMP_EXISTS_THM; DIVIDES_2; NOT_EVEN]] THEN X_GEN_TAC `a:num` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN X_GEN_TAC `b:num` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_SIMP_TAC[COPRIME_REXP; COPRIME_2; NUMBER_RULE `coprime(a,b) ==> gcd(a,b * c) = gcd(a,c)`] THEN REWRITE_TAC[EXP_ADD; EXP_1; ARITH_RULE `8 * (v * g1) * (v * g2) <= ((v * 2) * a) * (v * 2) * b <=> (v * v) * 2 * g1 * g2 <= (v * v) * a * b`] THEN REWRITE_TAC[LE_MULT_LCANCEL] THEN DISJ2_TAC THEN MATCH_MP_TAC(ARITH_RULE `~(a' = a /\ b' = b) /\ (~(b' = b) ==> a' * (2 * b') <= a * b) /\ (~(a' = a) ==> b' * (2 * a') <= b * a) ==> 2 * a' * b' <= a * b`) THEN CONJ_TAC THENL [REWRITE_TAC[GSYM DIVIDES_GCD_RIGHT] THEN STRIP_TAC; CONJ_TAC THEN DISCH_TAC THEN MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[GCD_LE] THEN (CONJ_TAC THENL [ASM_MESON_TAC[ODD]; ALL_TAC]) THEN MATCH_MP_TAC PROPERLY_DIVIDES_LE_IMP THEN REWRITE_TAC[GCD] THEN ASM_MESON_TAC[ODD]] THEN UNDISCH_TAC `~(p:num = q)` THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `m = n - 1 ==> ~(n = 0) ==> m + 1 = n`)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `n - 1 = m ==> ~(n = 0) ==> m + 1 = n`))) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "n" THEN REPLICATE_TAC 2 (DISCH_THEN(SUBST1_TAC o SYM)) THEN REWRITE_TAC[EQ_ADD_RCANCEL] THEN MATCH_MP_TAC(NUMBER_RULE `a divides t /\ b divides t /\ coprime(a,v) /\ coprime(b,v) ==> s * t + 1 = (v * a + 1) * (v * b + 1) ==> v * a = v * b`) THEN ASM_REWRITE_TAC[COPRIME_REXP; COPRIME_2]]]);; (* ------------------------------------------------------------------------- *) (* There are no non-trivial absolute Miller-Rabin pseudoprimes *) (* ------------------------------------------------------------------------- *) let ABSOLUTE_MILLER_RABIN_PSEUDOPRIME = prove (`!n. (!a. coprime(a,n) ==> miller_rabin_pseudoprime a n) <=> n = 1 \/ prime n`, GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[MILLER_RABIN_PSEUDOPRIME_MOD_1] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[PRIME_IMP_MILLER_RABIN_PSEUDOPRIME]] THEN ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[PRIME_2] THEN ASM_CASES_TAC `ODD n` THENL [ALL_TAC; ASM_REWRITE_TAC[miller_rabin_pseudoprime] THEN MESON_TAC[COPRIME_1]] THEN ASM_CASES_TAC `n > 9` THENL [GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `{a | a < n /\ miller_rabin_pseudoprime a n} PSUBSET {a | coprime(a,n) /\ a < n} ==> ~(!a. coprime (a,n) ==> miller_rabin_pseudoprime a n)`) THEN MATCH_MP_TAC CARD_PSUBSET_IMP THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME]; REWRITE_TAC[GSYM PHI_ALT]] THEN MATCH_MP_TAC(ARITH_RULE `a <= b DIV 4 /\ ~(b = 0) ==> ~(a = b)`) THEN ASM_SIMP_TAC[MILLER_RABIN_PSEUDOPRIME_BOUND_PHI] THEN ASM_MESON_TAC[PHI_EQ_0; ODD]; REPEAT(POP_ASSUM MP_TAC)] THEN ASM_CASES_TAC `n < 10` THENL [ALL_TAC; ASM_ARITH_TAC] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `2`) THEN CONV_TAC(ONCE_DEPTH_CONV COPRIME_CONV) THEN REWRITE_TAC[miller_rabin_pseudoprime] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[ARITH_RULE `8 = 2 EXP 3`] THEN SIMP_TAC[INDEX_EXP; INDEX_REFL; PRIME_2] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN CONV_TAC(TOP_DEPTH_CONV EXPAND_CASES_CONV) THEN REWRITE_TAC[CONG] THEN CONV_TAC NUM_REDUCE_CONV);; (* ------------------------------------------------------------------------- *) (* Less than 1/4 of numbers are pseudoprime bases, for any odd composite n. *) (* ------------------------------------------------------------------------- *) let MILLER_RABIN_PSEUDOPRIME_BOUND_LT = prove (`!n. ODD n /\ ~prime n /\ ~(n = 1) ==> 4 * CARD {a | a < n /\ miller_rabin_pseudoprime a n} < n`, MATCH_MP_TAC(MESON[] `!Q. (!n. ~Q n ==> P n) /\ (!n. Q n ==> P n) ==> !n. P n`) THEN EXISTS_TAC `\n. n < 10` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [X_GEN_TAC `n:num` THEN REWRITE_TAC[ARITH_RULE `~(n < 10) <=> n > 9`] THEN REPEAT STRIP_TAC THEN TRANS_TAC LET_TRANS `n - 1` THEN CONJ_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN TRANS_TAC LE_TRANS `phi n` THEN ASM_SIMP_TAC[PHI_LIMIT_STRONG] THEN REWRITE_TAC[ARITH_RULE `4 * m <= n <=> m <= n DIV 4`] THEN ASM_SIMP_TAC[MILLER_RABIN_PSEUDOPRIME_BOUND_PHI]; CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN REWRITE_TAC[]] THEN SUBGOAL_THEN `{a | a < 9 /\ miller_rabin_pseudoprime a 9} = {1,8}` SUBST1_TAC THENL [MATCH_MP_TAC(SET_RULE `(!i. i IN s ==> R i) /\ (!i. R i ==> (P i <=> i IN s)) ==> {i | R i /\ P i} = s`) THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[miller_rabin_pseudoprime] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[ARITH_RULE `8 = 2 EXP 3`] THEN SIMP_TAC[INDEX_EXP; INDEX_REFL; PRIME_2] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN CONV_TAC(TOP_DEPTH_CONV EXPAND_CASES_CONV) THEN REWRITE_TAC[CONG] THEN CONV_TAC NUM_REDUCE_CONV; SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH]]);; let MILLER_RABIN_PSEUDOPRIME_BOUND = prove (`!n. ODD n /\ ~prime n /\ ~(n = 1) ==> CARD {a | a < n /\ miller_rabin_pseudoprime a n} <= n DIV 4`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP MILLER_RABIN_PSEUDOPRIME_BOUND_LT) THEN ARITH_TAC);;