(* ========================================================================= *) (* Implementation of Cooper's algorithm via proforma theorems. *) (* ========================================================================= *) prioritize_int();; (* ------------------------------------------------------------------------- *) (* Basic syntax on integer terms. *) (* ------------------------------------------------------------------------- *) let dest_mul = dest_binop `(*)`;; let dest_add = dest_binop `(+)`;; (* ------------------------------------------------------------------------- *) (* Divisibility. *) (* ------------------------------------------------------------------------- *) parse_as_infix("divides",(12,"right"));; let divides = new_definition `a divides b <=> ?x. b = a * x`;; (* ------------------------------------------------------------------------- *) (* Trivial lemmas about integers. *) (* ------------------------------------------------------------------------- *) let INT_DOWN2 = prove (`!a b. ?c. !x. x < c ==> x < a /\ x < b`, MESON_TAC[INT_LE_TOTAL; INT_LET_TRANS]);; (* ------------------------------------------------------------------------- *) (* Trivial lemmas about divisibility. *) (* ------------------------------------------------------------------------- *) let DIVIDES_ADD = prove (`!d a b. d divides a /\ d divides b ==> d divides (a + b)`, MESON_TAC[divides; INT_ADD_LDISTRIB]);; let DIVIDES_SUB = prove (`!d a b. d divides a /\ d divides b ==> d divides (a - b)`, MESON_TAC[divides; INT_SUB_LDISTRIB]);; let DIVIDES_ADD_REVR = prove (`!d a b. d divides a /\ d divides (a + b) ==> d divides b`, MESON_TAC[DIVIDES_SUB; INT_ARITH `(a + b) - a = b`]);; let DIVIDES_ADD_REVL = prove (`!d a b. d divides b /\ d divides (a + b) ==> d divides a`, MESON_TAC[DIVIDES_SUB; INT_ARITH `(a + b) - b = a`]);; let DIVIDES_LMUL = prove (`!d a x. d divides a ==> d divides (x * a)`, ASM_MESON_TAC[divides; INT_ARITH `a * b * c = b * a * c`]);; let DIVIDES_RNEG = prove (`!d a. d divides (--a) <=> d divides a`, REWRITE_TAC[divides] THEN MESON_TAC[INT_MUL_RNEG; INT_NEG_NEG]);; let DIVIDES_LNEG = prove (`!d a. (--d) divides a <=> d divides a`, REWRITE_TAC[divides] THEN MESON_TAC[INT_MUL_RNEG; INT_MUL_LNEG; INT_NEG_NEG]);; (* ------------------------------------------------------------------------- *) (* More specialized lemmas (see footnotes on p4 and p5). *) (* ------------------------------------------------------------------------- *) let INT_DOWN_MUL_LT = prove (`!x y d. &0 < d ==> ?c. x + c * d < y`, MESON_TAC[INT_ARCH; INT_LT_REFL; INT_ARITH `x - y < c * d <=> x + --c * d < y`]);; let INT_MOD_LEMMA = prove (`!d x. &0 < d ==> ?c. &1 <= x + c * d /\ x + c * d <= d`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`x:int`; `&0`] o MATCH_MP INT_DOWN_MUL_LT) THEN DISCH_THEN(X_CHOOSE_TAC `c0:int`) THEN SUBGOAL_THEN `?c1. &0 <= c1 /\ --(x + c0 * d) < c1 * d` MP_TAC THENL [SUBGOAL_THEN `?c1. --(x + c0 * d) < c1 * d` MP_TAC THENL [ASM_MESON_TAC[INT_ARCH; INT_ARITH `&0 < d ==> ~(d = &0)`]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[] THEN MATCH_MP_TAC(INT_ARITH `(&0 < --c1 ==> &0 < --cd) /\ xcod < &0 ==> --xcod < cd ==> &0 <= c1`) THEN ASM_SIMP_TAC[GSYM INT_MUL_LNEG; INT_LT_MUL]; ALL_TAC] THEN REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`; GSYM NOT_FORALL_THM] THEN REWRITE_TAC[GSYM INT_FORALL_POS] THEN REWRITE_TAC[NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN REWRITE_TAC[INT_ARITH `--(x + a * d) < b * d <=> &1 <= x + (a + b) * d`] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `c0 + &n` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN UNDISCH_TAC `&1 <= x + (c0 + &n) * d` THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[ARITH_RULE `SUC n - 1 = n`] THENL [REWRITE_TAC[SUB_0; LT_REFL; INT_ADD_RID] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN INT_ARITH_TAC; REWRITE_TAC[GSYM INT_OF_NUM_SUC; LT] THEN INT_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Shadow for restricted class of formulas. *) (* ------------------------------------------------------------------------- *) let cform_INDUCT,cform_RECURSION = define_type "cform = Lt int | Gt int | Eq int | Ne int | Divides int int | Ndivides int int | And cform cform | Or cform cform | Nox bool";; (* ------------------------------------------------------------------------- *) (* Interpretation of a cform. *) (* ------------------------------------------------------------------------- *) let interp = new_recursive_definition cform_RECURSION `(interp x (Lt e) <=> x + e < &0) /\ (interp x (Gt e) <=> x + e > &0) /\ (interp x (Eq e) <=> (x + e = &0)) /\ (interp x (Ne e) <=> ~(x + e = &0)) /\ (interp x (Divides c e) <=> c divides (x + e)) /\ (interp x (Ndivides c e) <=> ~(c divides (x + e))) /\ (interp x (And p q) <=> interp x p /\ interp x q) /\ (interp x (Or p q) <=> interp x p \/ interp x q) /\ (interp x (Nox P) <=> P)`;; (* ------------------------------------------------------------------------- *) (* The "minus infinity" and "plus infinity" variants. *) (* ------------------------------------------------------------------------- *) let minusinf = new_recursive_definition cform_RECURSION `(minusinf (Lt e) = Nox T) /\ (minusinf (Gt e) = Nox F) /\ (minusinf (Eq e) = Nox F) /\ (minusinf (Ne e) = Nox T) /\ (minusinf (Divides c e) = Divides c e) /\ (minusinf (Ndivides c e) = Ndivides c e) /\ (minusinf (And p q) = And (minusinf p) (minusinf q)) /\ (minusinf (Or p q) = Or (minusinf p) (minusinf q)) /\ (minusinf (Nox P) = Nox P)`;; let plusinf = new_recursive_definition cform_RECURSION `(plusinf (Lt e) = Nox F) /\ (plusinf (Gt e) = Nox T) /\ (plusinf (Eq e) = Nox F) /\ (plusinf (Ne e) = Nox T) /\ (plusinf (Divides c e) = Divides c e) /\ (plusinf (Ndivides c e) = Ndivides c e) /\ (plusinf (And p q) = And (plusinf p) (plusinf q)) /\ (plusinf (Or p q) = Or (plusinf p) (plusinf q)) /\ (plusinf (Nox P) = Nox P)`;; (* ------------------------------------------------------------------------- *) (* All the "dividing" things divide the given constant (e.g. their LCM). *) (* ------------------------------------------------------------------------- *) let alldivide = new_recursive_definition cform_RECURSION `(alldivide d (Lt e) <=> T) /\ (alldivide d (Gt e) <=> T) /\ (alldivide d (Eq e) <=> T) /\ (alldivide d (Ne e) <=> T) /\ (alldivide d (Divides c e) <=> c divides d) /\ (alldivide d (Ndivides c e) <=> c divides d) /\ (alldivide d (And p q) <=> alldivide d p /\ alldivide d q) /\ (alldivide d (Or p q) <=> alldivide d p /\ alldivide d q) /\ (alldivide d (Nox P) <=> T)`;; (* ------------------------------------------------------------------------- *) (* A-sets and B-sets. *) (* ------------------------------------------------------------------------- *) let aset = new_recursive_definition cform_RECURSION `(aset (Lt e) = {(--e)}) /\ (aset (Gt e) = {}) /\ (aset (Eq e) = {(--e + &1)}) /\ (aset (Ne e) = {(--e)}) /\ (aset (Divides c e) = {}) /\ (aset (Ndivides c e) = {}) /\ (aset (And p q) = (aset p) UNION (aset q)) /\ (aset (Or p q) = (aset p) UNION (aset q)) /\ (aset (Nox P) = {})`;; let bset = new_recursive_definition cform_RECURSION `(bset (Lt e) = {}) /\ (bset (Gt e) = {(--e)}) /\ (bset (Eq e) = {(--(e + &1))}) /\ (bset (Ne e) = {(--e)}) /\ (bset (Divides c e) = {}) /\ (bset (Ndivides c e) = {}) /\ (bset (And p q) = (bset p) UNION (bset q)) /\ (bset (Or p q) = (bset p) UNION (bset q)) /\ (bset (Nox P) = {})`;; (* ------------------------------------------------------------------------- *) (* The key minimality case analysis for the integers. *) (* ------------------------------------------------------------------------- *) let INT_EXISTS_CASES = prove (`(?x. P x) <=> (!y. ?x. x < y /\ P x) \/ (?x. P x /\ !y. y < x ==> ~P y)`, EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_TAC `x:int`) THEN MATCH_MP_TAC(TAUT `(~b ==> a) ==> a \/ b`) THEN REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`; NOT_FORALL_THM; NOT_IMP] THEN STRIP_TAC THEN X_GEN_TAC `y:int` THEN DISJ_CASES_TAC(INT_ARITH `x < y \/ &0 <= x - y`) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!n. ?y. y < x - &n /\ P y` MP_TAC THENL [ALL_TAC; REWRITE_TAC[INT_FORALL_POS] THEN DISCH_THEN(MP_TAC o SPEC `x - y`) THEN ASM_REWRITE_TAC[INT_ARITH `x - (x - y) = y`]] THEN INDUCT_TAC THEN REWRITE_TAC[INT_SUB_RZERO; GSYM INT_OF_NUM_SUC] THEN ASM_MESON_TAC[INT_ARITH `z < y /\ y < x - &n ==> z < x - (&n + &1)`]);; (* ------------------------------------------------------------------------- *) (* Lemmas towards the main theorems (following my book). *) (* ------------------------------------------------------------------------- *) let MINUSINF_LEMMA = prove (`!p. ?y. !x. x < y ==> (interp x p <=> interp x (minusinf p))`, MATCH_MP_TAC cform_INDUCT THEN REWRITE_TAC[interp; minusinf] THEN MATCH_MP_TAC(TAUT `(a /\ b /\ c /\ d) /\ (e /\ f) ==> a /\ b /\ c /\ d /\ e /\ f`) THEN CONJ_TAC THENL [MESON_TAC[INT_ARITH `x < --a ==> x + a < &0`; INT_GT; INT_LT_ANTISYM; INT_LT_REFL]; ALL_TAC] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN STRIP_TAC THEN MP_TAC(SPECL [`a:int`; `b:int`] INT_DOWN2) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[]);; let MINUSINF_REPEATS = prove (`!p c d x. alldivide d p ==> (interp x (minusinf p) <=> interp (x + c * d) (minusinf p))`, CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[interp; minusinf; alldivide] THEN ONCE_REWRITE_TAC[INT_ARITH `(x + d) + y = (x + y) + d`] THEN MESON_TAC[DIVIDES_LMUL; DIVIDES_ADD_REVL; DIVIDES_ADD]);; let NOMINIMAL_EQUIV = prove (`alldivide d p /\ &0 < d ==> ((!y. ?x. x < y /\ interp x p) <=> ?j. &1 <= j /\ j <= d /\ interp j (minusinf p))`, ASM_MESON_TAC[MINUSINF_LEMMA; MINUSINF_REPEATS; INT_DOWN_MUL_LT; INT_DOWN2; INT_MOD_LEMMA]);; let BDISJ_REPEATS_LEMMA = prove (`!d p. alldivide d p /\ &0 < d ==> !x. interp x p /\ ~(interp (x - d) p) ==> ?j b. &1 <= j /\ j <= d /\ b IN bset p /\ (x = b + j)`, GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a /\ b ==> c <=> b ==> a ==> c`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC cform_INDUCT THEN REWRITE_TAC[interp; alldivide; bset; NOT_IN_EMPTY] THEN MATCH_MP_TAC(TAUT `(a /\ b /\ c /\ d /\ e /\ f) /\ g /\ h ==> a /\ b /\ c /\ d /\ e /\ f /\ g /\ h`) THEN CONJ_TAC THENL [ALL_TAC; SIMP_TAC[TAUT `~a \/ a`; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`; DE_MORGAN_THM; IN_UNION; EXISTS_OR_THM; FORALL_AND_THM]] THEN REPEAT STRIP_TAC THENL [ALL_TAC; MAP_EVERY EXISTS_TAC [`x + a`; `--a`]; MAP_EVERY EXISTS_TAC [`&1`; `--a - &1`]; MAP_EVERY EXISTS_TAC [`d:int`; `--a`]; ASM_MESON_TAC[INT_ARITH `(x - y) + z = (x + z) - y`; DIVIDES_SUB]; ASM_MESON_TAC[INT_ARITH `(x - y) + z = (x + z) - y`; INT_ARITH `(x - y) + y = x`; DIVIDES_ADD]] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REWRITE_TAC[IN_SING] THEN INT_ARITH_TAC);; let MAINTHM_B = prove (`!p d. alldivide d p /\ &0 < d ==> ((?x. interp x p) <=> ?j. &1 <= j /\ j <= d /\ (interp j (minusinf p) \/ ?b. b IN bset p /\ interp (b + j) p))`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; EXISTS_OR_THM] THEN MATCH_MP_TAC(TAUT `!a1 a2. (a <=> a1 \/ a2) /\ (a1 <=> b) /\ (a2 ==> c) /\ (c ==> a) ==> (a <=> b \/ c)`) THEN EXISTS_TAC `!y. ?x. x < y /\ interp x p` THEN EXISTS_TAC `?x. interp x p /\ !y. y < x ==> ~(interp y p)` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[GSYM INT_EXISTS_CASES]; ASM_MESON_TAC[NOMINIMAL_EQUIV]; ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_THEN `x:int` (CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x - d`))) THEN ASM_SIMP_TAC[INT_ARITH `&0 < d ==> x - d < x`] THEN DISCH_TAC THEN MP_TAC(SPECL [`d:int`; `p:cform`] BDISJ_REPEATS_LEMMA) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:int`) THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Deduce the other one by a symmetry argument rather than a similar proof. *) (* ------------------------------------------------------------------------- *) let mirror = new_recursive_definition cform_RECURSION `(mirror (Lt e) = Gt(--e)) /\ (mirror (Gt e) = Lt(--e)) /\ (mirror (Eq e) = Eq(--e)) /\ (mirror (Ne e) = Ne(--e)) /\ (mirror (Divides c e) = Divides c (--e)) /\ (mirror (Ndivides c e) = Ndivides c (--e)) /\ (mirror (And p q) = And (mirror p) (mirror q)) /\ (mirror (Or p q) = Or (mirror p) (mirror q)) /\ (mirror (Nox P) = Nox P)`;; let INTERP_MIRROR_LEMMA = prove (`!p x. interp (--x) (mirror p) <=> interp x p`, MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; interp] THEN REWRITE_TAC[GSYM INT_NEG_ADD; DIVIDES_RNEG] THEN INT_ARITH_TAC);; let INTERP_MIRROR = prove (`!p x. interp x (mirror p) <=> interp (--x) p`, MESON_TAC[INTERP_MIRROR_LEMMA; INT_NEG_NEG]);; let BSET_MIRROR = prove (`!p. bset(mirror p) = IMAGE (--) (aset p)`, MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; aset; bset] THEN REWRITE_TAC[IMAGE_CLAUSES; IMAGE_UNION] THEN REWRITE_TAC[EXTENSION; IN_SING] THEN INT_ARITH_TAC);; let MINUSINF_MIRROR = prove (`!p. minusinf (mirror p) = mirror (plusinf p)`, MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[plusinf; minusinf; mirror]);; let PLUSINF_MIRROR = prove (`!p. plusinf p = mirror(minusinf (mirror p))`, MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[plusinf; minusinf; mirror; INT_NEG_NEG]);; let ALLDIVIDE_MIRROR = prove (`!p d. alldivide d (mirror p) = alldivide d p`, MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; alldivide]);; let EXISTS_NEG = prove (`(?x. P(--x)) <=> (?x. P(x))`, MESON_TAC[INT_NEG_NEG]);; let FORALL_NEG = prove (`(!x. P(--x)) <=> (!x. P x)`, MESON_TAC[INT_NEG_NEG]);; let EXISTS_MOD_IMP = prove (`!P d. (!c x. P(x + c * d) <=> P(x)) /\ (?j. &1 <= j /\ j <= d /\ P(--j)) ==> ?j. &1 <= j /\ j <= d /\ P(j)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `d:int = j` THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`--(&2)`; `d:int`]) THEN ASM_REWRITE_TAC[INT_ARITH `d + --(&2) * d = --d`] THEN ASM_MESON_TAC[INT_LE_REFL]; FIRST_X_ASSUM(MP_TAC o SPECL [`&1`; `--j`]) THEN ASM_REWRITE_TAC[INT_ARITH `--j + &1 * d = d - j`] THEN DISCH_TAC THEN EXISTS_TAC `d - j` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY UNDISCH_TAC [`&1 <= j`; `j <= d`; `~(d:int = j)`] THEN INT_ARITH_TAC]);; let EXISTS_MOD_EQ = prove (`!P d. (!c x. P(x + c * d) <=> P(x)) ==> ((?j. &1 <= j /\ j <= d /\ P(--j)) <=> (?j. &1 <= j /\ j <= d /\ P(j)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MP_TAC(SPEC `P:int->bool` EXISTS_MOD_IMP); MP_TAC(SPEC `\x. P(--x):bool` EXISTS_MOD_IMP)] THEN DISCH_THEN(MP_TAC o SPEC `d:int`) THEN ASM_REWRITE_TAC[INT_NEG_NEG] THEN ASM_REWRITE_TAC[INT_ARITH `--(x + c * d) = --x + --c * d`; FORALL_NEG] THEN MESON_TAC[]);; let MAINTHM_A = prove (`!p d. alldivide d p /\ &0 < d ==> ((?x. interp x p) <=> ?j. &1 <= j /\ j <= d /\ (interp j (plusinf p) \/ ?a. a IN aset p /\ interp (a - j) p))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXISTS_NEG] THEN REWRITE_TAC[GSYM INTERP_MIRROR] THEN MP_TAC(SPECL [`mirror p`; `d:int`] MAINTHM_B) THEN ASM_REWRITE_TAC[ALLDIVIDE_MIRROR] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN BINOP_TAC THENL [ALL_TAC; REWRITE_TAC[INTERP_MIRROR; MINUSINF_MIRROR; BSET_MIRROR] THEN REWRITE_TAC[INT_ARITH `--(b + j) = --b - j`; IN_IMAGE] THEN MESON_TAC[INT_NEG_NEG]] THEN REWRITE_TAC[PLUSINF_MIRROR] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALLDIVIDE_MIRROR]) THEN SPEC_TAC(`mirror p`,`q:cform`) THEN REWRITE_TAC[INTERP_MIRROR] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(GSYM EXISTS_MOD_EQ) THEN ASM_SIMP_TAC[GSYM MINUSINF_REPEATS]);; (* ------------------------------------------------------------------------- *) (* Proforma for elimination of coefficient of main variable. *) (* ------------------------------------------------------------------------- *) let EXISTS_MULTIPLE_THM_1 = prove (`(?x. P(&1 * x)) <=> ?x. P(x)`, REWRITE_TAC[INT_MUL_LID]);; let EXISTS_MULTIPLE_THM = prove (`(?x. P(c * x)) <=> ?x. c divides x /\ P(x)`, MESON_TAC[divides]);; (* ------------------------------------------------------------------------- *) (* Ordering of variables determined by a list, *with* trivial default. *) (* ------------------------------------------------------------------------- *) let rec earlier vars x y = match vars with z::ovs -> if z = y then false else if z = x then true else earlier ovs x y | [] -> x < y;; (* ------------------------------------------------------------------------- *) (* Conversion of integer constant to ML rational number. *) (* This is a tweaked copy of the real-type versions in "real.ml". *) (* ------------------------------------------------------------------------- *) let is_num_const = let ptm = `&` in fun tm -> try let l,r = dest_comb tm in l = ptm && is_numeral r with Failure _ -> false;; let mk_num_const,dest_num_const = let ptm = `&` in (fun n -> mk_comb(ptm,mk_numeral n)), (fun tm -> let l,r = dest_comb tm in if l = ptm then dest_numeral r else failwith "dest_num_const");; let is_int_const = let ptm = `(--)` in fun tm -> is_num_const tm || try let l,r = dest_comb tm in l = ptm && is_num_const r with Failure _ -> false;; let mk_int_const,dest_int_const = let ptm = `(--)` in (fun n -> if n if try rator tm = ptm with Failure _ -> false then minus_num (dest_num_const(rand tm)) else dest_num_const tm);; (* ------------------------------------------------------------------------- *) (* Similar tweaks of all the REAL_INT_..._CONV arith convs in real.ml *) (* ------------------------------------------------------------------------- *) let INT_LE_CONV,INT_LT_CONV, INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV = let tth = TAUT `(F /\ F <=> F) /\ (F /\ T <=> F) /\ (T /\ F <=> F) /\ (T /\ T <=> T)` in let nth = TAUT `(~T <=> F) /\ (~F <=> T)` in let NUM2_EQ_CONV = COMB2_CONV (RAND_CONV NUM_EQ_CONV) NUM_EQ_CONV THENC GEN_REWRITE_CONV I [tth] in let NUM2_NE_CONV = RAND_CONV NUM2_EQ_CONV THENC GEN_REWRITE_CONV I [nth] in let [pth_le1; pth_le2a; pth_le2b; pth_le3] = (CONJUNCTS o prove) (`(--(&m) <= &n <=> T) /\ (&m <= &n <=> m <= n) /\ (--(&m) <= --(&n) <=> n <= m) /\ (&m <= --(&n) <=> (m = 0) /\ (n = 0))`, REWRITE_TAC[INT_LE_NEG2] THEN REWRITE_TAC[INT_LE_LNEG; INT_LE_RNEG] THEN REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_LE; LE_0] THEN REWRITE_TAC[LE; ADD_EQ_0]) in let INT_LE_CONV = FIRST_CONV [GEN_REWRITE_CONV I [pth_le1]; GEN_REWRITE_CONV I [pth_le2a; pth_le2b] THENC NUM_LE_CONV; GEN_REWRITE_CONV I [pth_le3] THENC NUM2_EQ_CONV] in let [pth_lt1; pth_lt2a; pth_lt2b; pth_lt3] = (CONJUNCTS o prove) (`(&m < --(&n) <=> F) /\ (&m < &n <=> m < n) /\ (--(&m) < --(&n) <=> n < m) /\ (--(&m) < &n <=> ~((m = 0) /\ (n = 0)))`, REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; GSYM NOT_LE; GSYM INT_NOT_LE] THEN CONV_TAC TAUT) in let INT_LT_CONV = FIRST_CONV [GEN_REWRITE_CONV I [pth_lt1]; GEN_REWRITE_CONV I [pth_lt2a; pth_lt2b] THENC NUM_LT_CONV; GEN_REWRITE_CONV I [pth_lt3] THENC NUM2_NE_CONV] in let [pth_ge1; pth_ge2a; pth_ge2b; pth_ge3] = (CONJUNCTS o prove) (`(&m >= --(&n) <=> T) /\ (&m >= &n <=> n <= m) /\ (--(&m) >= --(&n) <=> m <= n) /\ (--(&m) >= &n <=> (m = 0) /\ (n = 0))`, REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; INT_GE] THEN CONV_TAC TAUT) in let INT_GE_CONV = FIRST_CONV [GEN_REWRITE_CONV I [pth_ge1]; GEN_REWRITE_CONV I [pth_ge2a; pth_ge2b] THENC NUM_LE_CONV; GEN_REWRITE_CONV I [pth_ge3] THENC NUM2_EQ_CONV] in let [pth_gt1; pth_gt2a; pth_gt2b; pth_gt3] = (CONJUNCTS o prove) (`(--(&m) > &n <=> F) /\ (&m > &n <=> n < m) /\ (--(&m) > --(&n) <=> m < n) /\ (&m > --(&n) <=> ~((m = 0) /\ (n = 0)))`, REWRITE_TAC[pth_lt1; pth_lt2a; pth_lt2b; pth_lt3; INT_GT] THEN CONV_TAC TAUT) in let INT_GT_CONV = FIRST_CONV [GEN_REWRITE_CONV I [pth_gt1]; GEN_REWRITE_CONV I [pth_gt2a; pth_gt2b] THENC NUM_LT_CONV; GEN_REWRITE_CONV I [pth_gt3] THENC NUM2_NE_CONV] in let [pth_eq1a; pth_eq1b; pth_eq2a; pth_eq2b] = (CONJUNCTS o prove) (`((&m = &n) <=> (m = n)) /\ ((--(&m) = --(&n)) <=> (m = n)) /\ ((--(&m) = &n) <=> (m = 0) /\ (n = 0)) /\ ((&m = --(&n)) <=> (m = 0) /\ (n = 0))`, REWRITE_TAC[GSYM INT_LE_ANTISYM; GSYM LE_ANTISYM] THEN REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; LE; LE_0] THEN CONV_TAC TAUT) in let INT_EQ_CONV = FIRST_CONV [GEN_REWRITE_CONV I [pth_eq1a; pth_eq1b] THENC NUM_EQ_CONV; GEN_REWRITE_CONV I [pth_eq2a; pth_eq2b] THENC NUM2_EQ_CONV] in INT_LE_CONV,INT_LT_CONV, INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV;; let INT_NEG_CONV = let pth = prove (`(--(&0) = &0) /\ (--(--(&x)) = &x)`, REWRITE_TAC[INT_NEG_NEG; INT_NEG_0]) in GEN_REWRITE_CONV I [pth];; let INT_MUL_CONV = let pth0 = prove (`(&0 * &x = &0) /\ (&0 * --(&x) = &0) /\ (&x * &0 = &0) /\ (--(&x) * &0 = &0)`, REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO]) and pth1,pth2 = (CONJ_PAIR o prove) (`((&m * &n = &(m * n)) /\ (--(&m) * --(&n) = &(m * n))) /\ ((--(&m) * &n = --(&(m * n))) /\ (&m * --(&n) = --(&(m * n))))`, REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN REWRITE_TAC[INT_OF_NUM_MUL]) in FIRST_CONV [GEN_REWRITE_CONV I [pth0]; GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_MULT_CONV; GEN_REWRITE_CONV I [pth2] THENC RAND_CONV(RAND_CONV NUM_MULT_CONV)];; let INT_ADD_CONV = let neg_tm = `(--)` in let amp_tm = `&` in let add_tm = `(+)` in let dest = dest_binop `(+)` in let m_tm = `m:num` and n_tm = `n:num` in let pth0 = prove (`(--(&m) + &m = &0) /\ (&m + --(&m) = &0)`, REWRITE_TAC[INT_ADD_LINV; INT_ADD_RINV]) in let [pth1; pth2; pth3; pth4; pth5; pth6] = (CONJUNCTS o prove) (`(--(&m) + --(&n) = --(&(m + n))) /\ (--(&m) + &(m + n) = &n) /\ (--(&(m + n)) + &m = --(&n)) /\ (&(m + n) + --(&m) = &n) /\ (&m + --(&(m + n)) = --(&n)) /\ (&m + &n = &(m + n))`, REWRITE_TAC[GSYM INT_OF_NUM_ADD; INT_NEG_ADD] THEN REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID] THEN ONCE_REWRITE_TAC[INT_ADD_SYM] THEN REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID]) in GEN_REWRITE_CONV I [pth0] ORELSEC (fun tm -> try let l,r = dest tm in if rator l = neg_tm then if rator r = neg_tm then let th1 = INST [rand(rand l),m_tm; rand(rand r),n_tm] pth1 in let tm1 = rand(rand(rand(concl th1))) in let th2 = AP_TERM neg_tm (AP_TERM amp_tm (NUM_ADD_CONV tm1)) in TRANS th1 th2 else let m = rand(rand l) and n = rand r in let m' = dest_numeral m and n' = dest_numeral n in if m' <=/ n' then let p = mk_numeral (n' -/ m') in let th1 = INST [m,m_tm; p,n_tm] pth2 in let th2 = NUM_ADD_CONV (rand(rand(lhand(concl th1)))) in let th3 = AP_TERM (rator tm) (AP_TERM amp_tm (SYM th2)) in TRANS th3 th1 else let p = mk_numeral (m' -/ n') in let th1 = INST [n,m_tm; p,n_tm] pth3 in let th2 = NUM_ADD_CONV (rand(rand(lhand(lhand(concl th1))))) in let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in let th4 = AP_THM (AP_TERM add_tm th3) (rand tm) in TRANS th4 th1 else if rator r = neg_tm then let m = rand l and n = rand(rand r) in let m' = dest_numeral m and n' = dest_numeral n in if n' <=/ m' then let p = mk_numeral (m' -/ n') in let th1 = INST [n,m_tm; p,n_tm] pth4 in let th2 = NUM_ADD_CONV (rand(lhand(lhand(concl th1)))) in let th3 = AP_TERM add_tm (AP_TERM amp_tm (SYM th2)) in let th4 = AP_THM th3 (rand tm) in TRANS th4 th1 else let p = mk_numeral (n' -/ m') in let th1 = INST [m,m_tm; p,n_tm] pth5 in let th2 = NUM_ADD_CONV (rand(rand(rand(lhand(concl th1))))) in let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in let th4 = AP_TERM (rator tm) th3 in TRANS th4 th1 else let th1 = INST [rand l,m_tm; rand r,n_tm] pth6 in let tm1 = rand(rand(concl th1)) in let th2 = AP_TERM amp_tm (NUM_ADD_CONV tm1) in TRANS th1 th2 with Failure _ -> failwith "INT_ADD_CONV");; let INT_SUB_CONV = GEN_REWRITE_CONV I [INT_SUB] THENC TRY_CONV(RAND_CONV INT_NEG_CONV) THENC INT_ADD_CONV;; let INT_POW_CONV = let n = `n:num` and x = `x:num` in let pth1,pth2 = (CONJ_PAIR o prove) (`(&x pow n = &(x EXP n)) /\ ((--(&x)) pow n = if EVEN n then &(x EXP n) else --(&(x EXP n)))`, REWRITE_TAC[INT_OF_NUM_POW; INT_POW_NEG]) in let tth = prove (`((if T then x:int else y) = x) /\ ((if F then x:int else y) = y)`, REWRITE_TAC[]) in let neg_tm = `(--)` in (GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_EXP_CONV) ORELSEC (GEN_REWRITE_CONV I [pth2] THENC RATOR_CONV(RATOR_CONV(RAND_CONV NUM_EVEN_CONV)) THENC GEN_REWRITE_CONV I [tth] THENC (fun tm -> if rator tm = neg_tm then RAND_CONV(RAND_CONV NUM_EXP_CONV) tm else RAND_CONV NUM_EXP_CONV tm));; (* ------------------------------------------------------------------------- *) (* Handy utility functions for int arithmetic terms. *) (* ------------------------------------------------------------------------- *) let dest_add = dest_binop `(+)`;; let dest_mul = dest_binop `(*)`;; let dest_pow = dest_binop `(pow)`;; let dest_sub = dest_binop `(-)`;; let is_add = is_binop `(+)`;; let is_mul = is_binop `(*)`;; let is_pow = is_binop `(pow)`;; let is_sub = is_binop `(-)`;; (* ------------------------------------------------------------------------- *) (* Instantiate the normalizer. *) (* ------------------------------------------------------------------------- *) let POLYNOMIAL_NORMALIZERS = let sth = prove (`(!x y z. x + (y + z) = (x + y) + z) /\ (!x y. x + y = y + x) /\ (!x. &0 + x = x) /\ (!x y z. x * (y * z) = (x * y) * z) /\ (!x y. x * y = y * x) /\ (!x. &1 * x = x) /\ (!x. &0 * x = &0) /\ (!x y z. x * (y + z) = x * y + x * z) /\ (!x. x pow 0 = &1) /\ (!x n. x pow (SUC n) = x * x pow n)`, REWRITE_TAC[INT_POW] THEN INT_ARITH_TAC) and rth = prove (`(!x. --x = --(&1) * x) /\ (!x y. x - y = x + --(&1) * y)`, INT_ARITH_TAC) and is_semiring_constant = is_int_const and SEMIRING_ADD_CONV = INT_ADD_CONV and SEMIRING_MUL_CONV = INT_MUL_CONV and SEMIRING_POW_CONV = INT_POW_CONV in let NORMALIZERS = SEMIRING_NORMALIZERS_CONV sth rth (is_semiring_constant, SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV) in fun vars -> NORMALIZERS(earlier vars);; let POLYNOMIAL_NEG_CONV vars = let cnv,_,_,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; let POLYNOMIAL_ADD_CONV vars = let _,cnv,_,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; let POLYNOMIAL_SUB_CONV vars = let _,_,cnv,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; let POLYNOMIAL_MUL_CONV vars = let _,_,_,cnv,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; let POLYNOMIAL_POW_CONV vars = let _,_,_,_,cnv,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; let POLYNOMIAL_CONV vars = let _,_,_,_,_,cnv = POLYNOMIAL_NORMALIZERS vars in cnv;; (* ------------------------------------------------------------------------- *) (* Slight variants of these functions for procedure below. *) (* ------------------------------------------------------------------------- *) let LINEAR_CMUL = let mul_tm = `(*)` in fun vars n tm -> POLYNOMIAL_MUL_CONV vars (mk_comb(mk_comb(mul_tm,mk_int_const n),tm));; (* ------------------------------------------------------------------------- *) (* Linearize a formula, dealing with non-strict inequalities. *) (* ------------------------------------------------------------------------- *) let LINEARIZE_CONV = let rew_conv = GEN_REWRITE_CONV I [CONJ (REFL `c divides e`) (INT_ARITH `(s < t <=> &0 < t - s) /\ (~(s < t) <=> &0 < (s + &1) - t) /\ (s > t <=> &0 < s - t) /\ (~(s > t) <=> &0 < (t + &1) - s) /\ (s <= t <=> &0 < (t + &1) - s) /\ (~(s <= t) <=> &0 < s - t) /\ (s >= t <=> &0 < (s + &1) - t) /\ (~(s >= t) <=> &0 < t - s) /\ ((s = t) <=> (&0 = s - t))`)] and true_tm = `T` and false_tm = `F` in let rec conv vars tm = try (rew_conv THENC RAND_CONV(POLYNOMIAL_CONV vars)) tm with Failure _ -> if is_exists tm || is_forall tm then let x = bndvar(rand tm) in BINDER_CONV (conv (x::vars)) tm else if is_neg tm then RAND_CONV (conv vars) tm else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then BINOP_CONV (conv vars) tm else if tm = true_tm || tm = false_tm then REFL tm else failwith "LINEARIZE_CONV: Unexpected term type" in conv;; (* ------------------------------------------------------------------------- *) (* Get the coefficient of x, assumed to be first term, if there at all. *) (* ------------------------------------------------------------------------- *) let coefficient x tm = try let l,r = dest_add tm in if l = x then Int 1 else let c,y = dest_mul l in if y = x then dest_int_const c else Int 0 with Failure _ -> try let c,y = dest_mul tm in if y = x then dest_int_const c else Int 0 with Failure _ -> Int 1;; (* ------------------------------------------------------------------------- *) (* Find (always positive) LCM of all the multiples of x in formula tm. *) (* ------------------------------------------------------------------------- *) let lcm_num x y = abs_num((x */ y) // gcd_num x y);; let rec formlcm x tm = if is_neg tm then formlcm x (rand tm) else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then lcm_num (formlcm x (lhand tm)) (formlcm x (rand tm)) else if is_forall tm || is_exists tm then formlcm x (body(rand tm)) else if not(mem x (frees tm)) then Int 1 else let c = coefficient x (rand tm) in if c =/ Int 0 then Int 1 else c;; (* ------------------------------------------------------------------------- *) (* Switch from "x [+ ...]" to "&1 * x [+ ...]" to suit later proforma. *) (* ------------------------------------------------------------------------- *) let MULTIPLY_1_CONV = let conv_0 = REWR_CONV(INT_ARITH `x = &1 * x`) and conv_1 = REWR_CONV(INT_ARITH `x + a = &1 * x + a`) in fun vars tm -> let x = hd vars in if tm = x then conv_0 tm else if is_add tm && lhand tm = x then conv_1 tm else REFL tm;; (* ------------------------------------------------------------------------- *) (* Adjust all coefficients of x (head variable) to match l in formula tm. *) (* ------------------------------------------------------------------------- *) let ADJUSTCOEFF_CONV = let op_eq = `(=):int->int->bool` and op_lt = `(<):int->int->bool` and op_gt = `(>):int->int->bool` and op_divides = `(divides):int->int->bool` and c_tm = `c:int` and d_tm = `d:int` and e_tm = `e:int` in let pth_divides = prove (`~(d = &0) ==> (c divides e <=> (d * c) divides (d * e))`, SIMP_TAC[divides; GSYM INT_MUL_ASSOC; INT_EQ_MUL_LCANCEL]) and pth_eq = prove (`~(d = &0) ==> ((&0 = e) <=> (&0 = d * e))`, DISCH_TAC THEN CONV_TAC(BINOP_CONV SYM_CONV) THEN ASM_REWRITE_TAC[INT_ENTIRE]) and pth_lt_pos = prove (`&0 < d ==> (&0 < e <=> &0 < d * e)`, DISCH_TAC THEN SUBGOAL_THEN `&0 < e <=> d * &0 < d * e` SUBST1_TAC THENL [ASM_SIMP_TAC[INT_LT_LMUL_EQ]; REWRITE_TAC[INT_MUL_RZERO]]) and pth_gt_pos = prove (`&0 < d ==> (&0 > e <=> &0 > d * e)`, DISCH_TAC THEN REWRITE_TAC[INT_GT] THEN SUBGOAL_THEN `e < &0 <=> d * e < d * &0` SUBST1_TAC THENL [ASM_SIMP_TAC[INT_LT_LMUL_EQ]; REWRITE_TAC[INT_MUL_RZERO]]) and true_tm = `T` and false_tm = `F` in let pth_lt_neg = prove (`d < &0 ==> (&0 < e <=> &0 > d * e)`, REWRITE_TAC[INT_ARITH `&0 > d * e <=> &0 < --d * e`; INT_ARITH `d < &0 <=> &0 < --d`; pth_lt_pos]) and pth_gt_neg = prove (`d < &0 ==> (&0 > e <=> &0 < d * e)`, REWRITE_TAC[INT_ARITH `&0 < d * e <=> &0 > --d * e`; INT_ARITH `d < &0 <=> &0 < --d`; pth_gt_pos]) in let rec ADJUSTCOEFF_CONV vars l tm = if tm = true_tm || tm = false_tm then REFL tm else if is_exists tm || is_forall tm then BINDER_CONV (ADJUSTCOEFF_CONV vars l) tm else if is_neg tm then RAND_CONV (ADJUSTCOEFF_CONV vars l) tm else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then BINOP_CONV (ADJUSTCOEFF_CONV vars l) tm else let lop,t = dest_comb tm in let op,z = dest_comb lop in let c = coefficient (hd vars) t in if c =/ Int 0 then REFL tm else let th1 = if c =/ l then REFL tm else let m = l // c in let th0 = if op = op_eq then pth_eq else if op = op_divides then pth_divides else if op = op_lt then if m >/ Int 0 then pth_lt_pos else pth_lt_neg else if op = op_gt then if m >/ Int 0 then pth_gt_pos else pth_gt_neg else failwith "ADJUSTCOEFF_CONV: unknown predicate" in let th1 = INST [mk_int_const m,d_tm; z,c_tm; t,e_tm] th0 in let tm1 = lhand(concl th1) in let th2 = if is_neg tm1 then EQF_ELIM(INT_EQ_CONV(rand tm1)) else EQT_ELIM(INT_LT_CONV tm1) in let th3 = MP th1 th2 in if op = op_divides then let th3 = MP th1 th2 in let tm2 = rand(concl th3) in let l,r = dest_comb tm2 in let th4 = AP_TERM (rator l) (INT_MUL_CONV (rand l)) in let th5 = AP_THM th4 r in let tm3 = rator(rand(concl th5)) in let th6 = TRANS th5 (AP_TERM tm3 (LINEAR_CMUL vars m t)) in TRANS th3 th6 else let tm2 = rator(rand(concl th3)) in TRANS th3 (AP_TERM tm2 (LINEAR_CMUL vars m t)) in if l =/ Int 1 then CONV_RULE(funpow 2 RAND_CONV (MULTIPLY_1_CONV vars)) th1 else th1 in ADJUSTCOEFF_CONV;; (* ------------------------------------------------------------------------- *) (* Now normalize all the x terms to have same coefficient and eliminate it. *) (* ------------------------------------------------------------------------- *) let NORMALIZE_COEFF_CONV = let c_tm = `c:int` and pth = prove (`(?x. P(c * x)) <=> (?x. c divides x /\ P x)`, REWRITE_TAC[GSYM EXISTS_MULTIPLE_THM]) in let NORMALIZE_COEFF_CONV vars tm = let x,bod = dest_exists tm in let l = formlcm x tm in let th1 = ADJUSTCOEFF_CONV (x::vars) l tm in let th2 = if l =/ Int 1 then EXISTS_MULTIPLE_THM_1 else INST [mk_int_const l,c_tm] pth in TRANS th1 (REWR_CONV th2 (rand(concl th1))) in NORMALIZE_COEFF_CONV;; (* ------------------------------------------------------------------------- *) (* Convert to shadow syntax. *) (* ------------------------------------------------------------------------- *) let SHADOW_CONV = let pth_trivial = prove (`P = interp x (Nox P)`, REWRITE_TAC[interp]) and pth_composite = prove (`(interp x p /\ interp x q <=> interp x (And p q)) /\ (interp x p \/ interp x q <=> interp x (Or p q))`, REWRITE_TAC[interp]) and pth_literal_nontrivial = prove (`(&0 > x + e <=> interp x (Lt e)) /\ (&0 < x + e <=> interp x (Gt e)) /\ ((&0 = x + e) <=> interp x (Eq e)) /\ (~(&0 = x + e) <=> interp x (Ne e)) /\ (c divides (x + e) <=> interp x (Divides c e)) /\ (~(c divides (x + e)) <=> interp x (Ndivides c e))`, REWRITE_TAC[interp; INT_ADD_RID] THEN INT_ARITH_TAC) and pth_literal_trivial = prove (`(&0 > x <=> interp x (Lt(&0))) /\ (&0 < x <=> interp x (Gt(&0))) /\ ((&0 = x) <=> interp x (Eq(&0))) /\ (~(&0 = x) <=> interp x (Ne(&0))) /\ (c divides x <=> interp x (Divides c (&0))) /\ (~(c divides x) <=> interp x (Ndivides c (&0)))`, REWRITE_TAC[interp; INT_ADD_RID] THEN INT_ARITH_TAC) in let rewr_composite = GEN_REWRITE_CONV I [pth_composite] and rewr_literal = GEN_REWRITE_CONV I [pth_literal_nontrivial] ORELSEC GEN_REWRITE_CONV I [pth_literal_trivial] and x_tm = `x:int` and p_tm = `P:bool` in let rec SHADOW_CONV x tm = if not (mem x (frees tm)) then INST [tm,p_tm; x,x_tm] pth_trivial else if is_conj tm || is_disj tm then let l,r = try dest_conj tm with Failure _ -> dest_disj tm in let thl = SHADOW_CONV x l and thr = SHADOW_CONV x r in let th1 = MK_COMB(AP_TERM (rator(rator tm)) thl,thr) in TRANS th1 (rewr_composite(rand(concl th1))) else rewr_literal tm in fun tm -> let x,bod = dest_exists tm in MK_EXISTS x (SHADOW_CONV x bod);; (* ------------------------------------------------------------------------- *) (* Get the LCM of the dividing things. *) (* ------------------------------------------------------------------------- *) let dplcm = let divides_tm = `Divides` and ndivides_tm = `Ndivides` and and_tm = `And` and or_tm = `Or` in let rec dplcm tm = let hop,args = strip_comb tm in if hop = divides_tm || hop = ndivides_tm then dest_int_const (hd args) else if hop = and_tm || hop = or_tm then end_itlist lcm_num (map dplcm args) else Int 1 in dplcm;; (* ------------------------------------------------------------------------- *) (* Conversion for true formulas "(--) &m divides (--) &n". *) (* ------------------------------------------------------------------------- *) let PROVE_DIVIDES_CONV_POS = let pth = prove (`(p * m = n) ==> &p divides &n`, DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[divides] THEN EXISTS_TAC `&m` THEN REWRITE_TAC[INT_OF_NUM_MUL]) and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in fun tm -> let n = rand(rand tm) and p = rand(lhand tm) in let m = mk_numeral(dest_numeral n // dest_numeral p) in let th1 = INST [m,m_tm; n,n_tm; p,p_tm] pth in EQT_INTRO(MP th1 (NUM_MULT_CONV (lhand(lhand(concl th1)))));; let PROVE_DIVIDES_CONV = GEN_REWRITE_CONV REPEATC [DIVIDES_LNEG; DIVIDES_RNEG] THENC PROVE_DIVIDES_CONV_POS;; (* ------------------------------------------------------------------------- *) (* General version that works for positive and negative. *) (* ------------------------------------------------------------------------- *) let INT_DIVIDES_NUM = prove (`&p divides &n <=> ?m. (n = p * m)`, REWRITE_TAC[divides] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `x:int` MP_TAC) THEN DISJ_CASES_THEN(X_CHOOSE_THEN `q:num` SUBST1_TAC) (SPEC `x:int` INT_IMAGE) THEN DISCH_THEN(MP_TAC o AP_TERM `abs:int->int`) THEN REWRITE_TAC[INT_ABS_MUL; INT_ABS_NUM; INT_ABS_NEG] THEN REWRITE_TAC[INT_OF_NUM_MUL; INT_OF_NUM_EQ] THEN MESON_TAC[]; MESON_TAC[INT_OF_NUM_MUL]]);; let INT_DIVIDES_POS_CONV = let pth = prove (`(&p divides &n) <=> (p = 0) /\ (n = 0) \/ ~(p = 0) /\ (n MOD p = 0)`, REWRITE_TAC[INT_DIVIDES_NUM] THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN EQ_TAC THENL [ASM_MESON_TAC[MOD_MULT]; DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN MESON_TAC[MULT_SYM]]) in GEN_REWRITE_CONV I [pth] THENC NUM_REDUCE_CONV;; let INT_DIVIDES_CONV = GEN_REWRITE_CONV REPEATC [DIVIDES_LNEG; DIVIDES_RNEG] THENC INT_DIVIDES_POS_CONV;; (* ------------------------------------------------------------------------- *) (* Conversion for "alldivide d p" (which should be true!) *) (* ------------------------------------------------------------------------- *) let ALLDIVIDE_CONV = let pth_atom = prove (`(alldivide d (Lt e) <=> T) /\ (alldivide d (Gt e) <=> T) /\ (alldivide d (Eq e) <=> T) /\ (alldivide d (Ne e) <=> T) /\ (alldivide d (Nox P) <=> T)`, REWRITE_TAC[alldivide]) and pth_div = prove (`(alldivide d (Divides c e) <=> c divides d) /\ (alldivide d (Ndivides c e) <=> c divides d)`, REWRITE_TAC[alldivide]) and pth_comp = prove (`(alldivide d (And p q) <=> alldivide d p /\ alldivide d q) /\ (alldivide d (Or p q) <=> alldivide d p /\ alldivide d q)`, REWRITE_TAC[alldivide]) and pth_taut = TAUT `(T /\ T <=> T)` in let basnet = itlist (fun th -> enter [] (lhand(concl th),REWR_CONV th)) (CONJUNCTS pth_atom) (itlist (fun th -> enter [] (lhand(concl th), REWR_CONV th THENC PROVE_DIVIDES_CONV)) (CONJUNCTS pth_div) empty_net) and comp_rewr = GEN_REWRITE_CONV I [pth_comp] in let rec alldivide_conv tm = try tryfind (fun f -> f tm) (lookup tm basnet) with Failure _ -> let th = (comp_rewr THENC BINOP_CONV alldivide_conv) tm in TRANS th pth_taut in alldivide_conv;; (* ------------------------------------------------------------------------- *) (* Conversion for "?b. b IN bset p /\ P b";; *) (* ------------------------------------------------------------------------- *) let EXISTS_IN_BSET_CONV = let pth_false = prove (`((?b. b IN bset (Lt e) /\ P b) <=> F) /\ ((?b. b IN bset (Divides c e) /\ P b) <=> F) /\ ((?b. b IN bset (Ndivides c e) /\ P b) <=> F) /\ ((?b. b IN bset(Nox Q) /\ P b) <=> F)`, REWRITE_TAC[bset; NOT_IN_EMPTY]) and pth_neg = prove (`((?b. b IN bset (Gt e) /\ P b) <=> P(--e)) /\ ((?b. b IN bset (Ne e) /\ P b) <=> P(--e))`, REWRITE_TAC[bset; IN_SING; INT_MUL_LID; UNWIND_THM2]) and pth_add = prove (`(?b. b IN bset (Eq e) /\ P b) <=> P(--(e + &1))`, REWRITE_TAC[bset; IN_SING; INT_MUL_LID; UNWIND_THM2]) and pth_comp = prove (`((?b. b IN bset (And p q) /\ P b) <=> (?b. b IN bset p /\ P b) \/ (?b. b IN bset q /\ P b)) /\ ((?b. b IN bset (Or p q) /\ P b) <=> (?b. b IN bset p /\ P b) \/ (?b. b IN bset q /\ P b))`, REWRITE_TAC[bset; IN_UNION] THEN MESON_TAC[]) and taut = TAUT `(F \/ P <=> P) /\ (P \/ F <=> P)` in let conv_neg vars = LAND_CONV(LAND_CONV(POLYNOMIAL_NEG_CONV vars)) and conv_add vars = LAND_CONV(LAND_CONV(RAND_CONV(POLYNOMIAL_ADD_CONV vars) THENC POLYNOMIAL_NEG_CONV vars)) and conv_comp = GEN_REWRITE_CONV I [pth_comp] in let net1 = itlist (fun th -> enter [] (lhand(concl th),K (REWR_CONV th))) (CONJUNCTS pth_false) empty_net in let net2 = itlist (fun th -> enter [] (lhand(concl th), let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_neg v)) (CONJUNCTS pth_neg) net1 in let basnet = enter [] (lhand(concl pth_add), let cnv = K (REWR_CONV pth_add) in fun v -> cnv v THENC conv_add v) net2 in let rec baseconv vars tm = try tryfind (fun f -> f vars tm) (lookup tm basnet) with Failure _ -> (conv_comp THENC BINOP_CONV (baseconv vars)) tm in let finconv = GEN_REWRITE_CONV DEPTH_CONV [taut] THENC PURE_REWRITE_CONV [DISJ_ACI] in fun vars tm -> (baseconv vars THENC finconv) tm;; (* ------------------------------------------------------------------------- *) (* Naive conversion for "minusinf p". *) (* ------------------------------------------------------------------------- *) let MINUSINF_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV [minusinf];; (* ------------------------------------------------------------------------- *) (* Conversion for "interp s p" where s is a canonical linear form. *) (* ------------------------------------------------------------------------- *) let INTERP_CONV = let pth_trivial = prove (`interp x (Nox P) <=> P`, REWRITE_TAC[interp]) and pth_comp = prove (`(interp x (And p q) <=> interp x p /\ interp x q) /\ (interp x (Or p q) <=> interp x p \/ interp x q)`, REWRITE_TAC[interp]) and pth_pos,pth_neg = (CONJ_PAIR o prove) (`((interp x (Lt e) <=> &0 > x + e) /\ (interp x (Gt e) <=> &0 < x + e) /\ (interp x (Eq e) <=> (&0 = x + e)) /\ (interp x (Divides c e) <=> c divides (x + e))) /\ ((interp x (Ne e) <=> ~(&0 = x + e)) /\ (interp x (Ndivides c e) <=> ~(c divides (x + e))))`, REWRITE_TAC[interp] THEN INT_ARITH_TAC) in let conv_pos vars = RAND_CONV(POLYNOMIAL_ADD_CONV vars) and conv_neg vars = RAND_CONV(RAND_CONV(POLYNOMIAL_ADD_CONV vars)) and conv_comp = GEN_REWRITE_CONV I [pth_comp] in let net1 = itlist (fun th -> enter [] (lhand(concl th),K (REWR_CONV th))) (CONJUNCTS pth_trivial) empty_net in let net2 = itlist (fun th -> enter [] (lhand(concl th), let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_pos v)) (CONJUNCTS pth_pos) net1 in let basnet = itlist (fun th -> enter [] (lhand(concl th), let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_neg v)) (CONJUNCTS pth_neg) net2 in let rec baseconv vars tm = try tryfind (fun f -> f vars tm) (lookup tm basnet) with Failure _ -> (conv_comp THENC BINOP_CONV (baseconv vars)) tm in baseconv;; (* ------------------------------------------------------------------------- *) (* Expand `?j. &1 <= j /\ j <= &[n] /\ P[j]` cases. *) (* ------------------------------------------------------------------------- *) let EXPAND_INT_CASES_CONV = let pth_base = prove (`(?j. n <= j /\ j <= n /\ P(j)) <=> P(n)`, MESON_TAC[INT_LE_ANTISYM]) and pth_step = prove (`(?j. &1 <= j /\ j <= &(SUC n) /\ P(j)) <=> (?j. &1 <= j /\ j <= &n /\ P(j)) \/ P(&(SUC n))`, REWRITE_TAC[GSYM INT_OF_NUM_SUC] THEN REWRITE_TAC[INT_ARITH `x <= y + &1 <=> (x = y + &1) \/ x < y + &1`] THEN REWRITE_TAC[INT_LT_DISCRETE; INT_LE_RADD] THEN MESON_TAC[INT_ARITH `&0 <= x ==> &1 <= x + &1`; INT_POS; INT_LE_REFL]) in let base_conv = REWR_CONV pth_base and step_conv = BINDER_CONV(RAND_CONV(LAND_CONV(funpow 2 RAND_CONV num_CONV))) THENC REWR_CONV pth_step THENC RAND_CONV(ONCE_DEPTH_CONV NUM_SUC_CONV) in let rec conv tm = try base_conv tm with Failure _ -> (step_conv THENC LAND_CONV conv) tm in conv;; (* ------------------------------------------------------------------------- *) (* Canonicalize "t + c" in all "interp (t + c) P"s assuming t is canonical. *) (* ------------------------------------------------------------------------- *) let CANON_INTERP_ADD = let pat = `interp (t + c) P` in fun vars -> let net = net_of_conv pat (LAND_CONV(POLYNOMIAL_ADD_CONV vars)) empty_net in ONCE_DEPTH_CONV(REWRITES_CONV net);; (* ------------------------------------------------------------------------- *) (* Conversion to evaluate constant expressions. *) (* ------------------------------------------------------------------------- *) let EVAL_CONSTANT_CONV = let net = itlist (uncurry net_of_conv) ([`x < y`,INT_LT_CONV; `x > y`,INT_GT_CONV; `x:int = y`,INT_EQ_CONV; `x divides y`,INT_DIVIDES_CONV] @ map (fun t -> t,REWR_CONV(REWRITE_CONV[] t)) [`~F`; `~T`; `a /\ T`; `T /\ a`; `a /\ F`; `F /\ a`; `a \/ T`; `T \/ a`; `a \/ F`; `F \/ a`]) empty_net in DEPTH_CONV(REWRITES_CONV net);; (* ------------------------------------------------------------------------- *) (* Basic quantifier elimination conversion. *) (* ------------------------------------------------------------------------- *) let BASIC_COOPER_CONV = let p_tm = `p:cform` and d_tm = `d:int` in let pth_B = SPECL [p_tm; d_tm] MAINTHM_B in fun vars tm -> let x,bod = dest_exists tm in let th1 = (NORMALIZE_COEFF_CONV vars THENC SHADOW_CONV) tm in let p = rand(snd(dest_exists(rand(concl th1)))) in let th2 = INST [p,p_tm; mk_int_const(dplcm p),d_tm] pth_B in let tm2a,tm2b = dest_conj(lhand(concl th2)) in let th3 = CONJ (EQT_ELIM(ALLDIVIDE_CONV tm2a)) (EQT_ELIM(INT_LT_CONV tm2b)) in let th4 = TRANS th1 (MP th2 th3) in let th5 = CONV_RULE(RAND_CONV(BINDER_CONV(funpow 2 RAND_CONV(LAND_CONV MINUSINF_CONV)))) th4 in let th6 = CONV_RULE(RAND_CONV(BINDER_CONV(funpow 3 RAND_CONV (EXISTS_IN_BSET_CONV vars)))) th5 in let th7 = CONV_RULE(RAND_CONV EXPAND_INT_CASES_CONV) th6 in let th8 = CONV_RULE(RAND_CONV(CANON_INTERP_ADD vars)) th7 in let th9 = CONV_RULE(RAND_CONV(ONCE_DEPTH_CONV(INTERP_CONV vars))) th8 in CONV_RULE(RAND_CONV EVAL_CONSTANT_CONV) th9;; (* ------------------------------------------------------------------------- *) (* NNF transformation that also eliminates negated inequalities. *) (* ------------------------------------------------------------------------- *) let NNF_POSINEQ_CONV = let pth = prove (`(~(&0 < x) <=> &0 < &1 - x) /\ (~(&0 > x) <=> &0 < &1 + x)`, REWRITE_TAC[INT_NOT_LT; INT_GT] THEN REWRITE_TAC[INT_LT_DISCRETE; INT_GT_DISCRETE] THEN INT_ARITH_TAC) in let conv1 vars = REWR_CONV(CONJUNCT1 pth) THENC RAND_CONV (POLYNOMIAL_SUB_CONV vars) and conv2 vars = REWR_CONV(CONJUNCT2 pth) THENC RAND_CONV (POLYNOMIAL_ADD_CONV vars) and pat1 = `~(&0 < x)` and pat2 = `~(&0 > x)` and net = itlist (fun t -> net_of_conv (lhand t) (REWR_CONV(TAUT t))) [`~(~ p) <=> p`; `~(p /\ q) <=> ~p \/ ~q`; `~(p \/ q) <=> ~p /\ ~q`] empty_net in fun vars -> let net' = net_of_conv pat1 (conv1 vars) (net_of_conv pat2 (conv2 vars) net) in TOP_SWEEP_CONV(REWRITES_CONV net');; (* ------------------------------------------------------------------------- *) (* Overall function. *) (* ------------------------------------------------------------------------- *) let COOPER_CONV = let FORALL_ELIM_CONV = GEN_REWRITE_CONV I [prove(`(!x. P x) <=> ~(?x. ~(P x))`,MESON_TAC[])] and not_tm = `(~)` in let rec conv vars tm = if is_conj tm || is_disj tm then let lop,r = dest_comb tm in let op,l = dest_comb lop in MK_COMB(AP_TERM op (conv vars l),conv vars r) else if is_neg tm then let l,r = dest_comb tm in AP_TERM l (conv vars r) else if is_exists tm then let x,bod = dest_exists tm in let th1 = MK_EXISTS x (conv (x::vars) bod) in TRANS th1 (BASIC_COOPER_CONV vars (rand(concl th1))) else if is_forall tm then let x,bod = dest_forall tm in let th1 = AP_TERM not_tm (conv (x::vars) bod) in let th2 = CONV_RULE(RAND_CONV (NNF_POSINEQ_CONV (x::vars))) th1 in let th3 = MK_EXISTS x th2 in let th4 = CONV_RULE(RAND_CONV (BASIC_COOPER_CONV vars)) th3 in let th5 = CONV_RULE(RAND_CONV (NNF_POSINEQ_CONV (x::vars))) (AP_TERM not_tm th4) in TRANS (FORALL_ELIM_CONV tm) th5 else REFL tm in let init_CONV = PRESIMP_CONV THENC GEN_REWRITE_CONV ONCE_DEPTH_CONV [INT_ABS; INT_ARITH `max m n = if m <= n then n else m`; INT_ARITH `min m n = if m <= n then m else n`] THENC CONDS_ELIM_CONV THENC NNF_CONV in fun tm -> let vars = frees tm in let th1 = (init_CONV THENC LINEARIZE_CONV vars) tm in let th2 = TRANS th1 (conv vars (rand(concl th1))) in TRANS th2 (EVAL_CONSTANT_CONV(rand(concl th2)));; (* ------------------------------------------------------------------------- *) (* Examples from the book. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!x y. x < y ==> &2 * x + &1 < &2 * y`;; time COOPER_CONV `!x y. ~(&2 * x + &1 = &2 * y)`;; time COOPER_CONV `?x y. x > &0 /\ y >= &0 /\ (&3 * x - &5 * y = &1)`;; time COOPER_CONV `?x y z. &4 * x - &6 * y = &1`;; time COOPER_CONV `!x. b < x ==> a <= x`;; time COOPER_CONV `!x. a < &3 * x ==> b < &3 * x`;; time COOPER_CONV `!x y. x <= y ==> &2 * x + &1 < &2 * y`;; time COOPER_CONV `(?d. y = &65 * d) ==> (?d. y = &5 * d)`;; time COOPER_CONV `!y. (?d. y = &65 * d) ==> (?d. y = &5 * d)`;; time COOPER_CONV `!x y. ~(&2 * x + &1 = &2 * y)`;; time COOPER_CONV `!x y z. (&2 * x + &1 = &2 * y) ==> x + y + z > &129`;; time COOPER_CONV `!x. a < x ==> b < x`;; time COOPER_CONV `!x. a <= x ==> b < x`;; (* ------------------------------------------------------------------------- *) (* Formula examples from Cooper's paper. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!a b. ?x. a < &20 * x /\ &20 * x < b`;; time COOPER_CONV `?x. a < &20 * x /\ &20 * x < b`;; time COOPER_CONV `!b. ?x. a < &20 * x /\ &20 * x < b`;; time COOPER_CONV `!a. ?b. a < &4 * b + &3 * a \/ (~(a < b) /\ a > b + &1)`;; time COOPER_CONV `?y. !x. x + &5 * y > &1 /\ &13 * x - y > &1 /\ x + &2 < &0`;; (* ------------------------------------------------------------------------- *) (* More of my own. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!x y. x >= &0 /\ y >= &0 ==> &12 * x - &8 * y < &0 \/ &12 * x - &8 * y > &2`;; time COOPER_CONV `?x y. &5 * x + &3 * y = &1`;; time COOPER_CONV `?x y. &5 * x + &10 * y = &1`;; time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&5 * x - &6 * y = &1)`;; time COOPER_CONV `?w x y z. &2 * w + &3 * x + &4 * y + &5 * z = &1`;; time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&5 * x - &3 * y = &1)`;; time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&3 * x - &5 * y = &1)`;; time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&6 * x - &3 * y = &1)`;; time COOPER_CONV `!x y. ~(x = &0) ==> &5 * y < &6 * x \/ &5 * y > &6 * x`;; time COOPER_CONV `!x y. ~(&5 divides x) /\ ~(&6 divides y) ==> ~(&6 * x = &5 * y)`;; time COOPER_CONV `!x y. ~(&5 divides x) ==> ~(&6 * x = &5 * y)`;; time COOPER_CONV `!x y. ~(&6 * x = &5 * y)`;; time COOPER_CONV `!x y. (&6 * x = &5 * y) ==> (?d. y = &3 * d)`;; time COOPER_CONV `(&6 * x = &5 * y) ==> (?d. y = &3 * d)`;; (* ------------------------------------------------------------------------- *) (* Positive variant of the Bezout theorem (see the exercise). *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!z. z > &7 ==> ?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)`;; time COOPER_CONV `!z. z > &2 ==> ?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)`;; time COOPER_CONV `!z. z <= &7 ==> ((?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)) <=> ~(?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = &7 - z)))`;; (* ------------------------------------------------------------------------- *) (* Basic result about congruences. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!x. ~(&2 divides x) /\ &3 divides (x - &1) <=> &12 divides (x - &1) \/ &12 divides (x - &7)`;; time COOPER_CONV `!x. ~(?m. x = &2 * m) /\ (?m. x = &3 * m + &1) <=> (?m. x = &12 * m + &1) \/ (?m. x = &12 * m + &7)`;; (* ------------------------------------------------------------------------- *) (* Something else. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!x. ~(&2 divides x) ==> &4 divides (x - &1) \/ &8 divides (x - &1) \/ &8 divides (x - &3) \/ &6 divides (x - &1) \/ &14 divides (x - &1) \/ &14 divides (x - &9) \/ &14 divides (x - &11) \/ &24 divides (x - &5) \/ &24 divides (x - &11)`;; (* ------------------------------------------------------------------------- *) (* Testing fix for an earlier version with negative result from formlcm. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!a b v_1 v_2 v_3. (a + &2 = b) /\ (v_3 = b - a + &1) /\ (v_2 = b - &2) /\ (v_1 = &3) ==> F`;; (* ------------------------------------------------------------------------- *) (* Inspired by the Collatz conjecture. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `?a b. ~(a = &1) /\ ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ (a = b)`;; time COOPER_CONV `?a b. a > &1 /\ b > &1 /\ ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ (a = b)`;; time COOPER_CONV `?b. a > &1 /\ b > &1 /\ ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ ((&2 * a = b) \/ (&2 * a = &3 * b + &1))`;; (*************** These seem to take a long time time COOPER_CONV `?a b. a > &1 /\ b > &1 /\ ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ ((&2 * a = b) \/ (&2 * a = &3 * b + &1))`;; let fm = (dnf ** parse) `((2 * b = a) \/ (2 * b = &3 * a + 1)) /\ ((2 * c = b) \/ (2 * c = &3 * b + 1)) /\ ((2 * d = c) \/ (2 * d = &3 * c + 1)) /\ ((2 * e = d) \/ (2 * e = &3 * d + 1)) /\ ((2 * f = e) \/ (2 * f = &3 * e + 1)) /\ (f = a)`;; let fms = map (itlist (fun x p -> Exists(x,And(Atom(R(`>`,[Var x; Fn(`1`,[])])),p))) [`b`; `c`; `d`; `e`; `f`]) (disjuncts fm);; let fm = el &15 fms;; integer_qelim fm;; ******************) (* ------------------------------------------------------------------------- *) (* More old examples. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `?x. &5 * x + x + x < x \/ (y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/ &3 divides &4 * x + z /\ (x + y + z = &7 * z)`;; time COOPER_CONV `?x. &5 * x + x + x < x \/ (y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/ &3 divides (&4 * x + z) /\ (x + y + z = &7 * z)`;; time COOPER_CONV `?x. &5 * x + x + x < x \/ (y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/ &3 divides (&4 * x + z) /\ (x + y + z = &7 * z)`;; (**** This also seems very slow; one quantifier less maybe? time COOPER_CONV `?z y x. &5 * x + x + x < x \/ (y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/ &3 divides (&4 * x + z) /\ (x + y + z = &7 * z)`;; time COOPER_CONV `?y x. &5 * x + x + x < x \/ (y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/ &3 divides (&4 * x + z) /\ (x + y + z = &7 * z)`;; *****) time COOPER_CONV `?x. x + &1 < &2 * y /\ &3 divides (&4 * x + z) /\ (&6 * x + y + z = &7 * z)`;; time COOPER_CONV `?x. &5 * x + x + x < x \/ (y = &7 - x) /\ &33 + z < x /\ x + &1 < &2 * y \/ &3 divides (&4 * x + z) /\ (x + y + z = &7 * z)`;; (* ------------------------------------------------------------------------- *) (* Stamp problem. *) (* ------------------------------------------------------------------------- *) time COOPER_CONV `!x. x >= &8 ==> ?u v. u >= &0 /\ v >= &0 /\ (x = &3 * u + &5 * v)`;; time COOPER_CONV `!x. x >= &10 ==> ?u v. u >= &0 /\ v >= &0 /\ (x = &3 * u + &7 * v)`;; time COOPER_CONV `!x. x >= &30 ==> ?u v. u >= &0 /\ v >= &0 /\ (x = &3 * u + &7 * v)`;; (* ------------------------------------------------------------------------- *) (* Decision procedures in the style of INT_ARITH and ARITH_RULE. *) (* *) (* Really I should locate the free alien subterms. *) (* ------------------------------------------------------------------------- *) let INT_COOPER tm = let fvs = frees tm in let tm' = list_mk_forall(fvs,tm) in SPECL fvs (EQT_ELIM(COOPER_CONV tm'));; let COOPER_RULE tm = let fvs = frees tm in let tm' = list_mk_forall(fvs,tm) in let th = (NUM_TO_INT_CONV THENC COOPER_CONV) tm' in SPECL fvs (EQT_ELIM th);; (* ------------------------------------------------------------------------- *) (* Examples. *) (* ------------------------------------------------------------------------- *) time INT_COOPER `abs(x) < &1 ==> (x = &0)`;; time COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;; time COOPER_RULE `!n. EVEN(n) ==> (2 * n DIV 2 = n)`;; time COOPER_RULE `!n. ODD n <=> 2 * n DIV 2 < n`;; (**** This seems quite slow (maybe not very) as well time COOPER_RULE `n DIV 3 <= n DIV 2`;; ****) (*** This one too? time COOPER_RULE `!x. ?y. if EVEN x then x = 2 * y else x = 2 * (y - 1) + 1`;; ***) time COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;;