(* ========================================================================= *) (* Heron's formula for the area of a triangle. *) (* ========================================================================= *) needs "Multivariate/measure.ml";; prioritize_real();; (* ------------------------------------------------------------------------- *) (* Eliminate square roots from formula by the usual method. *) (* ------------------------------------------------------------------------- *) let SQRT_ELIM_TAC = let sqrt_tm = `sqrt:real->real` in let is_sqrt tm = is_comb tm && rator tm = sqrt_tm in fun (asl,w) -> let stms = setify(find_terms is_sqrt w) in let gvs = map (genvar o type_of) stms in (MAP_EVERY (MP_TAC o C SPEC SQRT_POW_2 o rand) stms THEN EVERY (map2 (fun s v -> SPEC_TAC(s,v)) stms gvs)) (asl,w);; (* ------------------------------------------------------------------------- *) (* Main result. *) (* ------------------------------------------------------------------------- *) let HERON = prove (`!A B C:real^2. let a = dist(C,B) and b = dist(A,C) and c = dist(B,A) in let s = (a + b + c) / &2 in measure(convex hull {A,B,C}) = sqrt(s * (s - a) * (s - b) * (s - c))`, REPEAT GEN_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN REWRITE_TAC[MEASURE_TRIANGLE] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SQRT_UNIQUE THEN SIMP_TAC[REAL_LE_DIV; REAL_ABS_POS; REAL_POS] THEN REWRITE_TAC[REAL_POW_DIV; REAL_POW2_ABS] THEN REWRITE_TAC[dist; vector_norm] THEN REWRITE_TAC[dot; SUM_2; DIMINDEX_2] THEN SIMP_TAC[VECTOR_SUB_COMPONENT; ARITH; DIMINDEX_2] THEN SQRT_ELIM_TAC THEN SIMP_TAC[REAL_LE_SQUARE; REAL_LE_ADD] THEN CONV_TAC REAL_RING);;