(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice. From mathcomp Require Import fintype bigop finfun tuple. From mathcomp Require Import ssralg matrix mxalgebra zmodp. (******************************************************************************) (* * Finite dimensional vector spaces *) (* vectType R == interface structure for finite dimensional (more *) (* precisely, detachable) vector spaces over R, which *) (* should be at least a ringType. *) (* Vector.axiom n M <-> type M is linearly isomorphic to 'rV_n. *) (* := {v2r : M -> 'rV_n| linear v2r & bijective v2r}. *) (* VectMixin isoM == packages a proof isoV of Vector.axiom n M as the *) (* vectType mixin for an n-dimensional R-space *) (* structure on a type M that is an lmodType R. *) (* VectType K M mT == packs the vectType mixin mT to into a vectType K *) (* instance for T; T should have an lmodType K *) (* canonical instance. *) (* [vectType R of T for vS] == a copy of the vS : vectType R structure where *) (* the sort is replaced by T; vS : lmodType R should *) (* be convertible to a canonical lmodType for T. *) (* [vectType R of V] == a clone of an existing vectType R structure on V. *) (* {vspace vT} == the type of (detachable) subspaces of vT; vT *) (* should have a vectType structure over a fieldType. *) (* subvs_of U == the subtype of elements of V in the subspace U. *) (* This is canonically a vectType. *) (* vsval u == linear injection of u : subvs_of U into V. *) (* vsproj U v == linear projection of v : V in subvs U. *) (* 'Hom(aT, rT) == the type of linear functions (homomorphisms) from *) (* aT to rT, where aT and rT ARE vectType structures. *) (* Elements of 'Hom(aT, rT) coerce to Coq functions. *) (* --> Caveat: aT and rT must denote actual vectType structures, not their *) (* projections on Type. *) (* linfun f == a vector linear function in 'Hom(aT, rT) that *) (* coincides with f : aT -> rT when f is linear. *) (* 'End(vT) == endomorphisms of vT (:= 'Hom(vT, vT)). *) (* --> The types subvs_of U, 'Hom(aT, rT), 'End(vT), K^o, 'M[K]_(m, n), *) (* vT * wT, {ffun I -> vT}, vT ^ n all have canonical vectType instances. *) (* *) (* Functions: *) (* <[v]>%VS == the vector space generated by v (a line if v != 0).*) (* 0%VS == the trivial vector subspace. *) (* fullv, {:vT} == the complete vector subspace (displays as fullv). *) (* (U + V)%VS == the join (sum) of two subspaces U and V. *) (* (U :&: V)%VS == intersection of vector subspaces U and V. *) (* (U^C)%VS == a complement of the vector subspace U. *) (* (U :\: V)%VS == a local complement to U :& V in the subspace U. *) (* \dim U == dimension of a vector space U. *) (* span X, <>%VS == the subspace spanned by the vector sequence X. *) (* coord X i v == i'th coordinate of v on X, when v \in <>%VS and *) (* where X : n.-tuple vT and i : 'I_n. Note that *) (* coord X i is a scalar function. *) (* vpick U == a nonzero element of U if U= 0%VS, or 0 if U = 0. *) (* vbasis U == a (\dim U).-tuple that is a basis of U. *) (* \1%VF == the identity linear function. *) (* (f \o g)%VF == the composite of two linear functions f and g. *) (* (f^-1)%VF == a linear function that is a right inverse to the *) (* linear function f on the codomain of f. *) (* (f @: U)%VS == the image of vs by the linear function f. *) (* (f @^-1: U)%VS == the pre-image of vs by the linear function f. *) (* lker f == the kernel of the linear function f. *) (* limg f == the image of the linear function f. *) (* fixedSpace f == the fixed space of a linear endomorphism f *) (* daddv_pi U V == projection onto U along V if U and V are disjoint; *) (* daddv_pi U V + daddv_pi V U is then a projection *) (* onto the direct sum (U + V)%VS. *) (* projv U == projection onto U (along U^C, := daddv_pi U U^C). *) (* addv_pi1 U V == projection onto the subspace U :\: V of U along V. *) (* addv_pi2 U V == projection onto V along U :\: V; note that *) (* addv_pi1 U V and addv_pi2 U V are (asymmetrical) *) (* complementary projections on (U + V)%VS. *) (* sumv_pi_for defV i == for defV : V = (V \sum_(j <- r | P j) Vs j)%VS, *) (* j ranging over an eqType, this is a projection on *) (* a subspace of Vs i, along a complement in V, such *) (* that \sum_(j <- r | P j) sumv_pi_for defV j is a *) (* projection onto V if filter P r is duplicate-free *) (* (e.g., when V := \sum_(j | P j) Vs j). *) (* sumv_pi V i == notation the above when defV == erefl V, and V is *) (* convertible to \sum_(j <- r | P j) Vs j)%VS. *) (* *) (* Predicates: *) (* v \in U == v belongs to U (:= (<[v]> <= U)%VS). *) (* (U <= V)%VS == U is a subspace of V. *) (* free B == B is a sequence of nonzero linearly independent *) (* vectors. *) (* basis_of U b == b is a basis of the subspace U. *) (* directv S == S is the expression for a direct sum of subspaces. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope vspace_scope. Declare Scope lfun_scope. Local Open Scope ring_scope. Reserved Notation "{ 'vspace' T }" (at level 0, format "{ 'vspace' T }"). Reserved Notation "''Hom' ( T , rT )" (at level 8, format "''Hom' ( T , rT )"). Reserved Notation "''End' ( T )" (at level 8, format "''End' ( T )"). Reserved Notation "\dim A" (at level 10, A at level 8, format "\dim A"). Delimit Scope vspace_scope with VS. Import GRing.Theory. (* Finite dimension vector space *) Module Vector. Section ClassDef. Variable R : ringType. Definition axiom_def n (V : lmodType R) of phant V := {v2r : V -> 'rV[R]_n | linear v2r & bijective v2r}. Inductive mixin_of (V : lmodType R) := Mixin dim & axiom_def dim (Phant V). Set Primitive Projections. Record class_of V := Class { base : GRing.Lmodule.class_of R V; mixin : mixin_of (GRing.Lmodule.Pack _ base) }. Unset Primitive Projections. Local Coercion base : class_of >-> GRing.Lmodule.class_of. Structure type (phR : phant R) := Pack {sort; _ : class_of sort}. Local Coercion sort : type >-> Sortclass. Variables (phR : phant R) (T : Type) (cT : type phR). Definition class := let: Pack _ c := cT return class_of cT in c. Definition clone c of phant_id class c := @Pack phR T c. Definition dim := let: Mixin n _ := mixin class in n. Definition pack b0 (m0 : mixin_of (@GRing.Lmodule.Pack R _ T b0)) := fun bT b & phant_id (@GRing.Lmodule.class _ phR bT) b => fun m & phant_id m0 m => Pack phR (@Class T b m). Definition eqType := @Equality.Pack cT class. Definition choiceType := @Choice.Pack cT class. Definition zmodType := @GRing.Zmodule.Pack cT class. Definition lmodType := @GRing.Lmodule.Pack R phR cT class. End ClassDef. Notation axiom n V := (axiom_def n (Phant V)). Section OtherDefs. Local Coercion sort : type >-> Sortclass. Local Coercion dim : type >-> nat. Inductive space (K : fieldType) (vT : type (Phant K)) (phV : phant vT) := Space (mx : 'M[K]_vT) & <>%MS == mx. Inductive hom (R : ringType) (vT wT : type (Phant R)) := Hom of 'M[R]_(vT, wT). End OtherDefs. Module Import Exports. Coercion base : class_of >-> GRing.Lmodule.class_of. Coercion mixin : class_of >-> mixin_of. Coercion sort : type >-> Sortclass. Coercion eqType: type >-> Equality.type. Bind Scope ring_scope with sort. Canonical eqType. Coercion choiceType: type >-> Choice.type. Canonical choiceType. Coercion zmodType: type >-> GRing.Zmodule.type. Canonical zmodType. Coercion lmodType: type>-> GRing.Lmodule.type. Canonical lmodType. Notation vectType R := (@type _ (Phant R)). Notation VectType R V mV := (@pack _ (Phant R) V _ mV _ _ id _ id). Notation VectMixin := Mixin. Notation "[ 'vectType' R 'of' T 'for' cT ]" := (@clone _ (Phant R) T cT _ idfun) (at level 0, format "[ 'vectType' R 'of' T 'for' cT ]") : form_scope. Notation "[ 'vectType' R 'of' T ]" := (@clone _ (Phant R) T _ _ idfun) (at level 0, format "[ 'vectType' R 'of' T ]") : form_scope. Notation "{ 'vspace' vT }" := (space (Phant vT)) : type_scope. Notation "''Hom' ( aT , rT )" := (hom aT rT) : type_scope. Notation "''End' ( vT )" := (hom vT vT) : type_scope. Prenex Implicits Hom. Delimit Scope vspace_scope with VS. Bind Scope vspace_scope with space. Delimit Scope lfun_scope with VF. Bind Scope lfun_scope with hom. End Exports. (* The contents of this module exposes the matrix encodings, and should *) (* therefore not be used outside of the vector library implementation. *) Module InternalTheory. Section Iso. Variables (R : ringType) (vT rT : vectType R). Local Coercion dim : vectType >-> nat. Fact v2r_subproof : axiom vT vT. Proof. by case: vT => T [bT []]. Qed. Definition v2r := s2val v2r_subproof. Let v2r_bij : bijective v2r := s2valP' v2r_subproof. Fact r2v_subproof : {r2v | cancel r2v v2r}. Proof. have r2vP r: {v | v2r v = r}. by apply: sig_eqW; have [v _ vK] := v2r_bij; exists (v r). by exists (fun r => sval (r2vP r)) => r; case: (r2vP r). Qed. Definition r2v := sval r2v_subproof. Lemma r2vK : cancel r2v v2r. Proof. exact: svalP r2v_subproof. Qed. Lemma r2v_inj : injective r2v. Proof. exact: can_inj r2vK. Qed. Lemma v2rK : cancel v2r r2v. Proof. by have/bij_can_sym:= r2vK; apply. Qed. Lemma v2r_inj : injective v2r. Proof. exact: can_inj v2rK. Qed. Canonical v2r_linear := Linear (s2valP v2r_subproof : linear v2r). Canonical r2v_linear := Linear (can2_linear v2rK r2vK). End Iso. Section Vspace. Variables (K : fieldType) (vT : vectType K). Local Coercion dim : vectType >-> nat. Definition b2mx n (X : n.-tuple vT) := \matrix_i v2r (tnth X i). Lemma b2mxK n (X : n.-tuple vT) i : r2v (row i (b2mx X)) = X`_i. Proof. by rewrite rowK v2rK -tnth_nth. Qed. Definition vs2mx {phV} (U : @space K vT phV) := let: Space mx _ := U in mx. Lemma gen_vs2mx (U : {vspace vT}) : <>%MS = vs2mx U. Proof. by apply/eqP; rewrite /vs2mx; case: U. Qed. Fact mx2vs_subproof m (A : 'M[K]_(m, vT)) : <<(<>)>>%MS == <>%MS. Proof. by rewrite genmx_id. Qed. Definition mx2vs {m} A : {vspace vT} := Space _ (@mx2vs_subproof m A). Canonical space_subType := [subType for @vs2mx (Phant vT)]. Lemma vs2mxK : cancel vs2mx mx2vs. Proof. by move=> v; apply: val_inj; rewrite /= gen_vs2mx. Qed. Lemma mx2vsK m (M : 'M_(m, vT)) : (vs2mx (mx2vs M) :=: M)%MS. Proof. exact: genmxE. Qed. End Vspace. Section Hom. Variables (R : ringType) (aT rT : vectType R). Definition f2mx (f : 'Hom(aT, rT)) := let: Hom A := f in A. Canonical hom_subType := [newType for f2mx]. End Hom. Arguments mx2vs {K vT m%N} A%MS. Prenex Implicits v2r r2v v2rK r2vK b2mx vs2mx vs2mxK f2mx. End InternalTheory. End Vector. Export Vector.Exports. Import Vector.InternalTheory. Section VspaceDefs. Variables (K : fieldType) (vT : vectType K). Implicit Types (u : vT) (X : seq vT) (U V : {vspace vT}). Definition space_eqMixin := Eval hnf in [eqMixin of {vspace vT} by <:]. Canonical space_eqType := EqType {vspace vT} space_eqMixin. Definition space_choiceMixin := Eval hnf in [choiceMixin of {vspace vT} by <:]. Canonical space_choiceType := ChoiceType {vspace vT} space_choiceMixin. Definition dimv U := \rank (vs2mx U). Definition subsetv U V := (vs2mx U <= vs2mx V)%MS. Definition vline u := mx2vs (v2r u). (* Vspace membership is defined as line inclusion. *) Definition pred_of_vspace phV (U : Vector.space phV) : {pred vT} := fun v => (vs2mx (vline v) <= vs2mx U)%MS. Canonical vspace_predType := @PredType _ (unkeyed {vspace vT}) (@pred_of_vspace _). Definition fullv : {vspace vT} := mx2vs 1%:M. Definition addv U V := mx2vs (vs2mx U + vs2mx V). Definition capv U V := mx2vs (vs2mx U :&: vs2mx V). Definition complv U := mx2vs (vs2mx U)^C. Definition diffv U V := mx2vs (vs2mx U :\: vs2mx V). Definition vpick U := r2v (nz_row (vs2mx U)). Fact span_key : unit. Proof. by []. Qed. Definition span_expanded_def X := mx2vs (b2mx (in_tuple X)). Definition span := locked_with span_key span_expanded_def. Canonical span_unlockable := [unlockable fun span]. Definition vbasis_def U := [tuple r2v (row i (row_base (vs2mx U))) | i < dimv U]. Definition vbasis := locked_with span_key vbasis_def. Canonical vbasis_unlockable := [unlockable fun vbasis]. (* coord and directv are defined in the VectorTheory section. *) Definition free X := dimv (span X) == size X. Definition basis_of U X := (span X == U) && free X. End VspaceDefs. Coercion pred_of_vspace : Vector.space >-> pred_sort. Notation "\dim U" := (dimv U) : nat_scope. Notation "U <= V" := (subsetv U V) : vspace_scope. Notation "U <= V <= W" := (subsetv U V && subsetv V W) : vspace_scope. Notation "<[ v ] >" := (vline v) : vspace_scope. Notation "<< X >>" := (span X) : vspace_scope. Notation "0" := (vline 0) : vspace_scope. Arguments fullv {K vT}. Prenex Implicits subsetv addv capv complv diffv span free basis_of. Notation "U + V" := (addv U V) : vspace_scope. Notation "U :&: V" := (capv U V) : vspace_scope. Notation "U ^C" := (complv U) (at level 8, format "U ^C") : vspace_scope. Notation "U :\: V" := (diffv U V) : vspace_scope. Notation "{ : vT }" := (@fullv _ vT) (only parsing) : vspace_scope. Notation "\sum_ ( i <- r | P ) U" := (\big[addv/0%VS]_(i <- r | P%B) U%VS) : vspace_scope. Notation "\sum_ ( i <- r ) U" := (\big[addv/0%VS]_(i <- r) U%VS) : vspace_scope. Notation "\sum_ ( m <= i < n | P ) U" := (\big[addv/0%VS]_(m <= i < n | P%B) U%VS) : vspace_scope. Notation "\sum_ ( m <= i < n ) U" := (\big[addv/0%VS]_(m <= i < n) U%VS) : vspace_scope. Notation "\sum_ ( i | P ) U" := (\big[addv/0%VS]_(i | P%B) U%VS) : vspace_scope. Notation "\sum_ i U" := (\big[addv/0%VS]_i U%VS) : vspace_scope. Notation "\sum_ ( i : t | P ) U" := (\big[addv/0%VS]_(i : t | P%B) U%VS) (only parsing) : vspace_scope. Notation "\sum_ ( i : t ) U" := (\big[addv/0%VS]_(i : t) U%VS) (only parsing) : vspace_scope. Notation "\sum_ ( i < n | P ) U" := (\big[addv/0%VS]_(i < n | P%B) U%VS) : vspace_scope. Notation "\sum_ ( i < n ) U" := (\big[addv/0%VS]_(i < n) U%VS) : vspace_scope. Notation "\sum_ ( i 'in' A | P ) U" := (\big[addv/0%VS]_(i in A | P%B) U%VS) : vspace_scope. Notation "\sum_ ( i 'in' A ) U" := (\big[addv/0%VS]_(i in A) U%VS) : vspace_scope. Notation "\bigcap_ ( i <- r | P ) U" := (\big[capv/fullv]_(i <- r | P%B) U%VS) : vspace_scope. Notation "\bigcap_ ( i <- r ) U" := (\big[capv/fullv]_(i <- r) U%VS) : vspace_scope. Notation "\bigcap_ ( m <= i < n | P ) U" := (\big[capv/fullv]_(m <= i < n | P%B) U%VS) : vspace_scope. Notation "\bigcap_ ( m <= i < n ) U" := (\big[capv/fullv]_(m <= i < n) U%VS) : vspace_scope. Notation "\bigcap_ ( i | P ) U" := (\big[capv/fullv]_(i | P%B) U%VS) : vspace_scope. Notation "\bigcap_ i U" := (\big[capv/fullv]_i U%VS) : vspace_scope. Notation "\bigcap_ ( i : t | P ) U" := (\big[capv/fullv]_(i : t | P%B) U%VS) (only parsing) : vspace_scope. Notation "\bigcap_ ( i : t ) U" := (\big[capv/fullv]_(i : t) U%VS) (only parsing) : vspace_scope. Notation "\bigcap_ ( i < n | P ) U" := (\big[capv/fullv]_(i < n | P%B) U%VS) : vspace_scope. Notation "\bigcap_ ( i < n ) U" := (\big[capv/fullv]_(i < n) U%VS) : vspace_scope. Notation "\bigcap_ ( i 'in' A | P ) U" := (\big[capv/fullv]_(i in A | P%B) U%VS) : vspace_scope. Notation "\bigcap_ ( i 'in' A ) U" := (\big[capv/fullv]_(i in A) U%VS) : vspace_scope. Section VectorTheory. Variables (K : fieldType) (vT : vectType K). Implicit Types (a : K) (u v w : vT) (X Y : seq vT) (U V W : {vspace vT}). Local Notation subV := (@subsetv K vT) (only parsing). Local Notation addV := (@addv K vT) (only parsing). Local Notation capV := (@capv K vT) (only parsing). (* begin hide *) (* Internal theory facts *) Let vs2mxP U V : reflect (U = V) (vs2mx U == vs2mx V)%MS. Proof. by rewrite (sameP genmxP eqP) !gen_vs2mx; apply: eqP. Qed. Let memvK v U : (v \in U) = (v2r v <= vs2mx U)%MS. Proof. by rewrite -genmxE. Qed. Let mem_r2v rv U : (r2v rv \in U) = (rv <= vs2mx U)%MS. Proof. by rewrite memvK r2vK. Qed. Let vs2mx0 : @vs2mx K vT _ 0 = 0. Proof. by rewrite /= linear0 genmx0. Qed. Let vs2mxD U V : vs2mx (U + V) = (vs2mx U + vs2mx V)%MS. Proof. by rewrite /= genmx_adds !gen_vs2mx. Qed. Let vs2mx_sum := big_morph _ vs2mxD vs2mx0. Let vs2mxI U V : vs2mx (U :&: V) = (vs2mx U :&: vs2mx V)%MS. Proof. by rewrite /= genmx_cap !gen_vs2mx. Qed. Let vs2mxF : vs2mx {:vT} = 1%:M. Proof. by rewrite /= genmx1. Qed. Let row_b2mx n (X : n.-tuple vT) i : row i (b2mx X) = v2r X`_i. Proof. by rewrite -tnth_nth rowK. Qed. Let span_b2mx n (X : n.-tuple vT) : span X = mx2vs (b2mx X). Proof. by rewrite unlock tvalK; case: _ / (esym _). Qed. Let mul_b2mx n (X : n.-tuple vT) (rk : 'rV_n) : \sum_i rk 0 i *: X`_i = r2v (rk *m b2mx X). Proof. rewrite mulmx_sum_row linear_sum; apply: eq_bigr => i _. by rewrite row_b2mx linearZ /= v2rK. Qed. Let lin_b2mx n (X : n.-tuple vT) k : \sum_(i < n) k i *: X`_i = r2v (\row_i k i *m b2mx X). Proof. by rewrite -mul_b2mx; apply: eq_bigr => i _; rewrite mxE. Qed. Let free_b2mx n (X : n.-tuple vT) : free X = row_free (b2mx X). Proof. by rewrite /free /dimv span_b2mx genmxE size_tuple. Qed. (* end hide *) Fact vspace_key U : pred_key U. Proof. by []. Qed. Canonical vspace_keyed U := KeyedPred (vspace_key U). Lemma memvE v U : (v \in U) = (<[v]> <= U)%VS. Proof. by []. Qed. Lemma vlineP v1 v2 : reflect (exists k, v1 = k *: v2) (v1 \in <[v2]>)%VS. Proof. apply: (iffP idP) => [|[k ->]]; rewrite memvK genmxE ?linearZ ?scalemx_sub //. by case/sub_rVP=> k; rewrite -linearZ => /v2r_inj->; exists k. Qed. Fact memv_submod_closed U : submod_closed U. Proof. split=> [|a u v]; rewrite !memvK ?linear0 ?sub0mx // => Uu Uv. by rewrite linearP addmx_sub ?scalemx_sub. Qed. Canonical memv_opprPred U := OpprPred (memv_submod_closed U). Canonical memv_addrPred U := AddrPred (memv_submod_closed U). Canonical memv_zmodPred U := ZmodPred (memv_submod_closed U). Canonical memv_submodPred U := SubmodPred (memv_submod_closed U). Lemma mem0v U : 0 \in U. Proof. exact: rpred0. Qed. Lemma memvN U v : (- v \in U) = (v \in U). Proof. exact: rpredN. Qed. Lemma memvD U : {in U &, forall u v, u + v \in U}. Proof. exact: rpredD. Qed. Lemma memvB U : {in U &, forall u v, u - v \in U}. Proof. exact: rpredB. Qed. Lemma memvZ U k : {in U, forall v, k *: v \in U}. Proof. exact: rpredZ. Qed. Lemma memv_suml I r (P : pred I) vs U : (forall i, P i -> vs i \in U) -> \sum_(i <- r | P i) vs i \in U. Proof. exact: rpred_sum. Qed. Lemma memv_line u : u \in <[u]>%VS. Proof. by apply/vlineP; exists 1; rewrite scale1r. Qed. Lemma subvP U V : reflect {subset U <= V} (U <= V)%VS. Proof. apply: (iffP rV_subP) => sU12 u. by rewrite !memvE /subsetv !genmxE => /sU12. by have:= sU12 (r2v u); rewrite !memvE /subsetv !genmxE r2vK. Qed. Lemma subvv U : (U <= U)%VS. Proof. exact/subvP. Qed. Hint Resolve subvv : core. Lemma subv_trans : transitive subV. Proof. by move=> U V W /subvP sUV /subvP sVW; apply/subvP=> u /sUV/sVW. Qed. Lemma subv_anti : antisymmetric subV. Proof. by move=> U V; apply/vs2mxP. Qed. Lemma eqEsubv U V : (U == V) = (U <= V <= U)%VS. Proof. by apply/eqP/idP=> [-> | /subv_anti//]; rewrite subvv. Qed. Lemma vspaceP U V : U =i V <-> U = V. Proof. split=> [eqUV | -> //]; apply/subv_anti/andP. by split; apply/subvP=> v; rewrite eqUV. Qed. Lemma subvPn {U V} : reflect (exists2 u, u \in U & u \notin V) (~~ (U <= V)%VS). Proof. apply: (iffP idP) => [|[u Uu]]; last by apply: contra => /subvP->. case/row_subPn=> i; set vi := row i _ => V'vi. by exists (r2v vi); rewrite memvK r2vK ?row_sub. Qed. (* Empty space. *) Lemma sub0v U : (0 <= U)%VS. Proof. exact: mem0v. Qed. Lemma subv0 U : (U <= 0)%VS = (U == 0%VS). Proof. by rewrite eqEsubv sub0v andbT. Qed. Lemma memv0 v : v \in 0%VS = (v == 0). Proof. by apply/idP/eqP=> [/vlineP[k ->] | ->]; rewrite (scaler0, mem0v). Qed. (* Full space *) Lemma subvf U : (U <= fullv)%VS. Proof. by rewrite /subsetv vs2mxF submx1. Qed. Lemma memvf v : v \in fullv. Proof. exact: subvf. Qed. (* Picking a non-zero vector in a subspace. *) Lemma memv_pick U : vpick U \in U. Proof. by rewrite mem_r2v nz_row_sub. Qed. Lemma vpick0 U : (vpick U == 0) = (U == 0%VS). Proof. by rewrite -memv0 mem_r2v -subv0 /subV vs2mx0 !submx0 nz_row_eq0. Qed. (* Sum of subspaces. *) Lemma subv_add U V W : (U + V <= W)%VS = (U <= W)%VS && (V <= W)%VS. Proof. by rewrite /subV vs2mxD addsmx_sub. Qed. Lemma addvS U1 U2 V1 V2 : (U1 <= U2 -> V1 <= V2 -> U1 + V1 <= U2 + V2)%VS. Proof. by rewrite /subV !vs2mxD; apply: addsmxS. Qed. Lemma addvSl U V : (U <= U + V)%VS. Proof. by rewrite /subV vs2mxD addsmxSl. Qed. Lemma addvSr U V : (V <= U + V)%VS. Proof. by rewrite /subV vs2mxD addsmxSr. Qed. Lemma addvC : commutative addV. Proof. by move=> U V; apply/vs2mxP; rewrite !vs2mxD addsmxC submx_refl. Qed. Lemma addvA : associative addV. Proof. by move=> U V W; apply/vs2mxP; rewrite !vs2mxD addsmxA submx_refl. Qed. Lemma addv_idPl {U V}: reflect (U + V = U)%VS (V <= U)%VS. Proof. by rewrite /subV (sameP addsmx_idPl eqmxP) -vs2mxD; apply: vs2mxP. Qed. Lemma addv_idPr {U V} : reflect (U + V = V)%VS (U <= V)%VS. Proof. by rewrite addvC; apply: addv_idPl. Qed. Lemma addvv : idempotent addV. Proof. by move=> U; apply/addv_idPl. Qed. Lemma add0v : left_id 0%VS addV. Proof. by move=> U; apply/addv_idPr/sub0v. Qed. Lemma addv0 : right_id 0%VS addV. Proof. by move=> U; apply/addv_idPl/sub0v. Qed. Lemma sumfv : left_zero fullv addV. Proof. by move=> U; apply/addv_idPl/subvf. Qed. Lemma addvf : right_zero fullv addV. Proof. by move=> U; apply/addv_idPr/subvf. Qed. Canonical addv_monoid := Monoid.Law addvA add0v addv0. Canonical addv_comoid := Monoid.ComLaw addvC. Lemma memv_add u v U V : u \in U -> v \in V -> u + v \in (U + V)%VS. Proof. by rewrite !memvK genmxE linearD; apply: addmx_sub_adds. Qed. Lemma memv_addP {w U V} : reflect (exists2 u, u \in U & exists2 v, v \in V & w = u + v) (w \in U + V)%VS. Proof. apply: (iffP idP) => [|[u Uu [v Vv ->]]]; last exact: memv_add. rewrite memvK genmxE => /sub_addsmxP[r /(canRL v2rK)->]. rewrite linearD /=; set u := r2v _; set v := r2v _. by exists u; last exists v; rewrite // mem_r2v submxMl. Qed. Section BigSum. Variable I : finType. Implicit Type P : pred I. Lemma sumv_sup i0 P U Vs : P i0 -> (U <= Vs i0)%VS -> (U <= \sum_(i | P i) Vs i)%VS. Proof. by move=> Pi0 /subv_trans-> //; rewrite (bigD1 i0) ?addvSl. Qed. Arguments sumv_sup i0 [P U Vs]. Lemma subv_sumP {P Us V} : reflect (forall i, P i -> Us i <= V)%VS (\sum_(i | P i) Us i <= V)%VS. Proof. apply: (iffP idP) => [sUV i Pi | sUV]. by apply: subv_trans sUV; apply: sumv_sup Pi _. by elim/big_rec: _ => [|i W Pi sWV]; rewrite ?sub0v // subv_add sUV. Qed. Lemma memv_sumr P vs (Us : I -> {vspace vT}) : (forall i, P i -> vs i \in Us i) -> \sum_(i | P i) vs i \in (\sum_(i | P i) Us i)%VS. Proof. by move=> Uv; apply/rpred_sum=> i Pi; apply/(sumv_sup i Pi)/Uv. Qed. Lemma memv_sumP {P} {Us : I -> {vspace vT}} {v} : reflect (exists2 vs, forall i, P i -> vs i \in Us i & v = \sum_(i | P i) vs i) (v \in \sum_(i | P i) Us i)%VS. Proof. apply: (iffP idP) => [|[vs Uv ->]]; last exact: memv_sumr. rewrite memvK vs2mx_sum => /sub_sumsmxP[r /(canRL v2rK)->]. pose f i := r2v (r i *m vs2mx (Us i)); rewrite linear_sum /=. by exists f => //= i _; rewrite mem_r2v submxMl. Qed. End BigSum. (* Intersection *) Lemma subv_cap U V W : (U <= V :&: W)%VS = (U <= V)%VS && (U <= W)%VS. Proof. by rewrite /subV vs2mxI sub_capmx. Qed. Lemma capvS U1 U2 V1 V2 : (U1 <= U2 -> V1 <= V2 -> U1 :&: V1 <= U2 :&: V2)%VS. Proof. by rewrite /subV !vs2mxI; apply: capmxS. Qed. Lemma capvSl U V : (U :&: V <= U)%VS. Proof. by rewrite /subV vs2mxI capmxSl. Qed. Lemma capvSr U V : (U :&: V <= V)%VS. Proof. by rewrite /subV vs2mxI capmxSr. Qed. Lemma capvC : commutative capV. Proof. by move=> U V; apply/vs2mxP; rewrite !vs2mxI capmxC submx_refl. Qed. Lemma capvA : associative capV. Proof. by move=> U V W; apply/vs2mxP; rewrite !vs2mxI capmxA submx_refl. Qed. Lemma capv_idPl {U V} : reflect (U :&: V = U)%VS (U <= V)%VS. Proof. by rewrite /subV(sameP capmx_idPl eqmxP) -vs2mxI; apply: vs2mxP. Qed. Lemma capv_idPr {U V} : reflect (U :&: V = V)%VS (V <= U)%VS. Proof. by rewrite capvC; apply: capv_idPl. Qed. Lemma capvv : idempotent capV. Proof. by move=> U; apply/capv_idPl. Qed. Lemma cap0v : left_zero 0%VS capV. Proof. by move=> U; apply/capv_idPl/sub0v. Qed. Lemma capv0 : right_zero 0%VS capV. Proof. by move=> U; apply/capv_idPr/sub0v. Qed. Lemma capfv : left_id fullv capV. Proof. by move=> U; apply/capv_idPr/subvf. Qed. Lemma capvf : right_id fullv capV. Proof. by move=> U; apply/capv_idPl/subvf. Qed. Canonical capv_monoid := Monoid.Law capvA capfv capvf. Canonical capv_comoid := Monoid.ComLaw capvC. Lemma memv_cap w U V : (w \in U :&: V)%VS = (w \in U) && (w \in V). Proof. by rewrite !memvE subv_cap. Qed. Lemma memv_capP {w U V} : reflect (w \in U /\ w \in V) (w \in U :&: V)%VS. Proof. by rewrite memv_cap; apply: andP. Qed. Lemma vspace_modl U V W : (U <= W -> U + (V :&: W) = (U + V) :&: W)%VS. Proof. by move=> sUV; apply/vs2mxP; rewrite !(vs2mxD, vs2mxI); apply/eqmxP/matrix_modl. Qed. Lemma vspace_modr U V W : (W <= U -> (U :&: V) + W = U :&: (V + W))%VS. Proof. by rewrite -!(addvC W) !(capvC U); apply: vspace_modl. Qed. Section BigCap. Variable I : finType. Implicit Type P : pred I. Lemma bigcapv_inf i0 P Us V : P i0 -> (Us i0 <= V -> \bigcap_(i | P i) Us i <= V)%VS. Proof. by move=> Pi0; apply: subv_trans; rewrite (bigD1 i0) ?capvSl. Qed. Lemma subv_bigcapP {P U Vs} : reflect (forall i, P i -> U <= Vs i)%VS (U <= \bigcap_(i | P i) Vs i)%VS. Proof. apply: (iffP idP) => [sUV i Pi | sUV]. by rewrite (subv_trans sUV) ?(bigcapv_inf Pi). by elim/big_rec: _ => [|i W Pi]; rewrite ?subvf // subv_cap sUV. Qed. End BigCap. (* Complement *) Lemma addv_complf U : (U + U^C)%VS = fullv. Proof. apply/vs2mxP; rewrite vs2mxD -gen_vs2mx -genmx_adds !genmxE submx1 sub1mx. exact: addsmx_compl_full. Qed. Lemma capv_compl U : (U :&: U^C = 0)%VS. Proof. apply/val_inj; rewrite [val]/= vs2mx0 vs2mxI -gen_vs2mx -genmx_cap. by rewrite capmx_compl genmx0. Qed. (* Difference *) Lemma diffvSl U V : (U :\: V <= U)%VS. Proof. by rewrite /subV genmxE diffmxSl. Qed. Lemma capv_diff U V : ((U :\: V) :&: V = 0)%VS. Proof. apply/val_inj; rewrite [val]/= vs2mx0 vs2mxI -(gen_vs2mx V) -genmx_cap. by rewrite capmx_diff genmx0. Qed. Lemma addv_diff_cap U V : (U :\: V + U :&: V)%VS = U. Proof. apply/vs2mxP; rewrite vs2mxD -genmx_adds !genmxE. exact/eqmxP/addsmx_diff_cap_eq. Qed. Lemma addv_diff U V : (U :\: V + V = U + V)%VS. Proof. by rewrite -{2}(addv_diff_cap U V) -addvA (addv_idPr (capvSr U V)). Qed. (* Subspace dimension. *) Lemma dimv0 : \dim (0%VS : {vspace vT}) = 0%N. Proof. by rewrite /dimv vs2mx0 mxrank0. Qed. Lemma dimv_eq0 U : (\dim U == 0%N) = (U == 0%VS). Proof. by rewrite /dimv /= mxrank_eq0 {2}/eq_op /= linear0 genmx0. Qed. Lemma dimvf : \dim {:vT} = Vector.dim vT. Proof. by rewrite /dimv vs2mxF mxrank1. Qed. Lemma dim_vline v : \dim <[v]> = (v != 0). Proof. by rewrite /dimv mxrank_gen rank_rV (can2_eq v2rK r2vK) linear0. Qed. Lemma dimvS U V : (U <= V)%VS -> \dim U <= \dim V. Proof. exact: mxrankS. Qed. Lemma dimv_leqif_sup U V : (U <= V)%VS -> \dim U <= \dim V ?= iff (V <= U)%VS. Proof. exact: mxrank_leqif_sup. Qed. Lemma dimv_leqif_eq U V : (U <= V)%VS -> \dim U <= \dim V ?= iff (U == V). Proof. by rewrite eqEsubv; apply: mxrank_leqif_eq. Qed. Lemma eqEdim U V : (U == V) = (U <= V)%VS && (\dim V <= \dim U). Proof. by apply/idP/andP=> [/eqP | [/dimv_leqif_eq/geq_leqif]] ->. Qed. Lemma dimv_compl U : \dim U^C = (\dim {:vT} - \dim U)%N. Proof. by rewrite dimvf /dimv mxrank_gen mxrank_compl. Qed. Lemma dimv_cap_compl U V : (\dim (U :&: V) + \dim (U :\: V))%N = \dim U. Proof. by rewrite /dimv !mxrank_gen mxrank_cap_compl. Qed. Lemma dimv_sum_cap U V : (\dim (U + V) + \dim (U :&: V) = \dim U + \dim V)%N. Proof. by rewrite /dimv !mxrank_gen mxrank_sum_cap. Qed. Lemma dimv_disjoint_sum U V : (U :&: V = 0)%VS -> \dim (U + V) = (\dim U + \dim V)%N. Proof. by move=> dxUV; rewrite -dimv_sum_cap dxUV dimv0 addn0. Qed. Lemma dimv_add_leqif U V : \dim (U + V) <= \dim U + \dim V ?= iff (U :&: V <= 0)%VS. Proof. by rewrite /dimv /subV !mxrank_gen vs2mx0 genmxE; apply: mxrank_adds_leqif. Qed. Lemma diffv_eq0 U V : (U :\: V == 0)%VS = (U <= V)%VS. Proof. rewrite -dimv_eq0 -(eqn_add2l (\dim (U :&: V))) addn0 dimv_cap_compl eq_sym. by rewrite (dimv_leqif_eq (capvSl _ _)) (sameP capv_idPl eqP). Qed. Lemma dimv_leq_sum I r (P : pred I) (Us : I -> {vspace vT}) : \dim (\sum_(i <- r | P i) Us i) <= \sum_(i <- r | P i) \dim (Us i). Proof. elim/big_rec2: _ => [|i d vs _ le_vs_d]; first by rewrite dim_vline eqxx. by apply: (leq_trans (dimv_add_leqif _ _)); rewrite leq_add2l. Qed. Section SumExpr. (* The vector direct sum theory clones the interface types of the matrix *) (* direct sum theory (see mxalgebra for the technical details), but *) (* nevetheless reuses much of the matrix theory. *) Structure addv_expr := Sumv { addv_val :> wrapped {vspace vT}; addv_dim : wrapped nat; _ : mxsum_spec (vs2mx (unwrap addv_val)) (unwrap addv_dim) }. (* Piggyback on mxalgebra theory. *) Definition vs2mx_sum_expr_subproof (S : addv_expr) : mxsum_spec (vs2mx (unwrap S)) (unwrap (addv_dim S)). Proof. by case: S. Qed. Canonical vs2mx_sum_expr S := ProperMxsumExpr (vs2mx_sum_expr_subproof S). Canonical trivial_addv U := @Sumv (Wrap U) (Wrap (\dim U)) (TrivialMxsum _). Structure proper_addv_expr := ProperSumvExpr { proper_addv_val :> {vspace vT}; proper_addv_dim :> nat; _ : mxsum_spec (vs2mx proper_addv_val) proper_addv_dim }. Definition proper_addvP (S : proper_addv_expr) := let: ProperSumvExpr _ _ termS := S return mxsum_spec (vs2mx S) S in termS. Canonical proper_addv (S : proper_addv_expr) := @Sumv (wrap (S : {vspace vT})) (wrap (S : nat)) (proper_addvP S). Section Binary. Variables S1 S2 : addv_expr. Fact binary_addv_subproof : mxsum_spec (vs2mx (unwrap S1 + unwrap S2)) (unwrap (addv_dim S1) + unwrap (addv_dim S2)). Proof. by rewrite vs2mxD; apply: proper_mxsumP. Qed. Canonical binary_addv_expr := ProperSumvExpr binary_addv_subproof. End Binary. Section Nary. Variables (I : Type) (r : seq I) (P : pred I) (S_ : I -> addv_expr). Fact nary_addv_subproof : mxsum_spec (vs2mx (\sum_(i <- r | P i) unwrap (S_ i))) (\sum_(i <- r | P i) unwrap (addv_dim (S_ i))). Proof. by rewrite vs2mx_sum; apply: proper_mxsumP. Qed. Canonical nary_addv_expr := ProperSumvExpr nary_addv_subproof. End Nary. Definition directv_def S of phantom {vspace vT} (unwrap (addv_val S)) := \dim (unwrap S) == unwrap (addv_dim S). End SumExpr. Local Notation directv A := (directv_def (Phantom {vspace _} A%VS)). Lemma directvE (S : addv_expr) : directv (unwrap S) = (\dim (unwrap S) == unwrap (addv_dim S)). Proof. by []. Qed. Lemma directvP {S : proper_addv_expr} : reflect (\dim S = S :> nat) (directv S). Proof. exact: eqnP. Qed. Lemma directv_trivial U : directv (unwrap (@trivial_addv U)). Proof. exact: eqxx. Qed. Lemma dimv_sum_leqif (S : addv_expr) : \dim (unwrap S) <= unwrap (addv_dim S) ?= iff directv (unwrap S). Proof. rewrite directvE; case: S => [[U] [d] /= defUd]; split=> //=. rewrite /dimv; elim: {1}_ {U}_ d / defUd => // m1 m2 A1 A2 r1 r2 _ leA1 _ leA2. by apply: leq_trans (leq_add leA1 leA2); rewrite mxrank_adds_leqif. Qed. Lemma directvEgeq (S : addv_expr) : directv (unwrap S) = (\dim (unwrap S) >= unwrap (addv_dim S)). Proof. by rewrite leq_eqVlt ltnNge eq_sym !dimv_sum_leqif orbF. Qed. Section BinaryDirect. Lemma directv_addE (S1 S2 : addv_expr) : directv (unwrap S1 + unwrap S2) = [&& directv (unwrap S1), directv (unwrap S2) & unwrap S1 :&: unwrap S2 == 0]%VS. Proof. by rewrite /directv_def /dimv vs2mxD -mxdirectE mxdirect_addsE -vs2mxI -vs2mx0. Qed. Lemma directv_addP {U V} : reflect (U :&: V = 0)%VS (directv (U + V)). Proof. by rewrite directv_addE !directv_trivial; apply: eqP. Qed. Lemma directv_add_unique {U V} : reflect (forall u1 u2 v1 v2, u1 \in U -> u2 \in U -> v1 \in V -> v2 \in V -> (u1 + v1 == u2 + v2) = ((u1, v1) == (u2, v2))) (directv (U + V)). Proof. apply: (iffP directv_addP) => [dxUV u1 u2 v1 v2 Uu1 Uu2 Vv1 Vv2 | dxUV]. apply/idP/idP=> [| /eqP[-> ->] //]; rewrite -subr_eq0 opprD addrACA addr_eq0. move/eqP=> eq_uv; rewrite xpair_eqE -subr_eq0 eq_uv oppr_eq0 subr_eq0 andbb. by rewrite -subr_eq0 -memv0 -dxUV memv_cap -memvN -eq_uv !memvB. apply/eqP; rewrite -subv0; apply/subvP=> v /memv_capP[U1v U2v]. by rewrite memv0 -[v == 0]andbb {1}eq_sym -xpair_eqE -dxUV ?mem0v // addrC. Qed. End BinaryDirect. Section NaryDirect. Context {I : finType} {P : pred I}. Lemma directv_sumP {Us : I -> {vspace vT}} : reflect (forall i, P i -> Us i :&: (\sum_(j | P j && (j != i)) Us j) = 0)%VS (directv (\sum_(i | P i) Us i)). Proof. rewrite directvE /= /dimv vs2mx_sum -mxdirectE; apply: (equivP mxdirect_sumsP). by do [split=> dxU i /dxU; rewrite -vs2mx_sum -vs2mxI -vs2mx0] => [/val_inj|->]. Qed. Lemma directv_sumE {Ss : I -> addv_expr} (xunwrap := unwrap) : reflect [/\ forall i, P i -> directv (unwrap (Ss i)) & directv (\sum_(i | P i) xunwrap (Ss i))] (directv (\sum_(i | P i) unwrap (Ss i))). Proof. by rewrite !directvE /= /dimv 2!{1}vs2mx_sum -!mxdirectE; apply: mxdirect_sumsE. Qed. Lemma directv_sum_independent {Us : I -> {vspace vT}} : reflect (forall us, (forall i, P i -> us i \in Us i) -> \sum_(i | P i) us i = 0 -> (forall i, P i -> us i = 0)) (directv (\sum_(i | P i) Us i)). Proof. apply: (iffP directv_sumP) => [dxU us Uu u_0 i Pi | dxU i Pi]. apply/eqP; rewrite -memv0 -(dxU i Pi) memv_cap Uu //= -memvN -sub0r -{1}u_0. by rewrite (bigD1 i) //= addrC addKr memv_sumr // => j /andP[/Uu]. apply/eqP; rewrite -subv0; apply/subvP=> v. rewrite memv_cap memv0 => /andP[Uiv /memv_sumP[us Uu Dv]]. have: \sum_(j | P j) [eta us with i |-> - v] j = 0. rewrite (bigD1 i) //= eqxx {1}Dv addrC -sumrB big1 // => j /andP[_ i'j]. by rewrite (negPf i'j) subrr. move/dxU/(_ i Pi); rewrite /= eqxx -oppr_eq0 => -> // j Pj. by have [-> | i'j] := eqVneq; rewrite ?memvN // Uu ?Pj. Qed. Lemma directv_sum_unique {Us : I -> {vspace vT}} : reflect (forall us vs, (forall i, P i -> us i \in Us i) -> (forall i, P i -> vs i \in Us i) -> (\sum_(i | P i) us i == \sum_(i | P i) vs i) = [forall (i | P i), us i == vs i]) (directv (\sum_(i | P i) Us i)). Proof. apply: (iffP directv_sum_independent) => [dxU us vs Uu Uv | dxU us Uu u_0 i Pi]. apply/idP/forall_inP=> [|eq_uv]; last by apply/eqP/eq_bigr => i /eq_uv/eqP. rewrite -subr_eq0 -sumrB => /eqP/dxU eq_uv i Pi. by rewrite -subr_eq0 eq_uv // => j Pj; apply: memvB; move: j Pj. apply/eqP; have:= esym (dxU us \0 Uu _); rewrite u_0 big1_eq eqxx. by move/(_ _)/forall_inP=> -> // j _; apply: mem0v. Qed. End NaryDirect. (* Linear span generated by a list of vectors *) Lemma memv_span X v : v \in X -> v \in <>%VS. Proof. by case/seq_tnthP=> i {v}->; rewrite unlock memvK genmxE (eq_row_sub i) // rowK. Qed. Lemma memv_span1 v : v \in <<[:: v]>>%VS. Proof. by rewrite memv_span ?mem_head. Qed. Lemma dim_span X : \dim <> <= size X. Proof. by rewrite unlock /dimv genmxE rank_leq_row. Qed. Lemma span_subvP {X U} : reflect {subset X <= U} (<> <= U)%VS. Proof. rewrite /subV [@span _ _]unlock genmxE. apply: (iffP row_subP) => /= [sXU | sXU i]. by move=> _ /seq_tnthP[i ->]; have:= sXU i; rewrite rowK memvK. by rewrite rowK -memvK sXU ?mem_tnth. Qed. Lemma sub_span X Y : {subset X <= Y} -> (<> <= <>)%VS. Proof. by move=> sXY; apply/span_subvP=> v /sXY/memv_span. Qed. Lemma eq_span X Y : X =i Y -> (<> = <>)%VS. Proof. by move=> eqXY; apply: subv_anti; rewrite !sub_span // => u; rewrite eqXY. Qed. Lemma span_def X : span X = (\sum_(u <- X) <[u]>)%VS. Proof. apply/subv_anti/andP; split. by apply/span_subvP=> v Xv; rewrite (big_rem v) // memvE addvSl. by rewrite big_tnth; apply/subv_sumP=> i _; rewrite -memvE memv_span ?mem_tnth. Qed. Lemma span_nil : (<> = 0)%VS. Proof. by rewrite span_def big_nil. Qed. Lemma span_seq1 v : (<<[:: v]>> = <[v]>)%VS. Proof. by rewrite span_def big_seq1. Qed. Lemma span_cons v X : (<> = <[v]> + <>)%VS. Proof. by rewrite !span_def big_cons. Qed. Lemma span_cat X Y : (<> = <> + <>)%VS. Proof. by rewrite !span_def big_cat. Qed. (* Coordinates function; should perhaps be generalized to nat indices. *) Definition coord_expanded_def n (X : n.-tuple vT) i v := (v2r v *m pinvmx (b2mx X)) 0 i. Definition coord := locked_with span_key coord_expanded_def. Canonical coord_unlockable := [unlockable fun coord]. Fact coord_is_scalar n (X : n.-tuple vT) i : scalar (coord X i). Proof. by move=> k u v; rewrite unlock linearP mulmxDl -scalemxAl !mxE. Qed. Canonical coord_addidive n Xn i := Additive (@coord_is_scalar n Xn i). Canonical coord_linear n Xn i := AddLinear (@coord_is_scalar n Xn i). Lemma coord_span n (X : n.-tuple vT) v : v \in span X -> v = \sum_i coord X i v *: X`_i. Proof. rewrite memvK span_b2mx genmxE => Xv. by rewrite unlock_with mul_b2mx mulmxKpV ?v2rK. Qed. Lemma coord0 i v : coord [tuple 0] i v = 0. Proof. rewrite unlock /pinvmx rank_rV; case: negP => [[] | _]. by apply/eqP/rowP=> j; rewrite !mxE (tnth_nth 0) /= linear0 mxE. by rewrite pid_mx_0 !(mulmx0, mul0mx) mxE. Qed. (* Free generator sequences. *) Lemma nil_free : free (Nil vT). Proof. by rewrite /free span_nil dimv0. Qed. Lemma seq1_free v : free [:: v] = (v != 0). Proof. by rewrite /free span_seq1 dim_vline; case: (~~ _). Qed. Lemma perm_free X Y : perm_eq X Y -> free X = free Y. Proof. by move=> eqXY; rewrite /free (perm_size eqXY) (eq_span (perm_mem eqXY)). Qed. Lemma free_directv X : free X = (0 \notin X) && directv (\sum_(v <- X) <[v]>). Proof. have leXi i (v := tnth (in_tuple X) i): true -> \dim <[v]> <= 1 ?= iff (v != 0). by rewrite -seq1_free -span_seq1 => _; apply/leqif_eq/dim_span. have [_ /=] := leqif_trans (dimv_sum_leqif _) (leqif_sum leXi). rewrite sum1_card card_ord !directvE /= /free andbC span_def !(big_tnth _ _ X). by congr (_ = _ && _); rewrite -has_pred1 -all_predC -big_all big_tnth big_andE. Qed. Lemma free_not0 v X : free X -> v \in X -> v != 0. Proof. by rewrite free_directv andbC => /andP[_ /memPn]; apply. Qed. Lemma freeP n (X : n.-tuple vT) : reflect (forall k, \sum_(i < n) k i *: X`_i = 0 -> (forall i, k i = 0)) (free X). Proof. rewrite free_b2mx; apply: (iffP idP) => [t_free k kt0 i | t_free]. suffices /rowP/(_ i): \row_i k i = 0 by rewrite !mxE. by apply/(row_free_inj t_free)/r2v_inj; rewrite mul0mx -lin_b2mx kt0 linear0. rewrite -kermx_eq0; apply/rowV0P=> rk /sub_kermxP kt0. by apply/rowP=> i; rewrite mxE {}t_free // mul_b2mx kt0 linear0. Qed. Lemma coord_free n (X : n.-tuple vT) (i j : 'I_n) : free X -> coord X j (X`_i) = (i == j)%:R. Proof. rewrite unlock free_b2mx => /row_freeP[Ct CtK]; rewrite -row_b2mx. by rewrite -row_mul -[pinvmx _]mulmx1 -CtK 2!mulmxA mulmxKpV // CtK !mxE. Qed. Lemma coord_sum_free n (X : n.-tuple vT) k j : free X -> coord X j (\sum_(i < n) k i *: X`_i) = k j. Proof. move=> Xfree; rewrite linear_sum (bigD1 j) ?linearZ //= coord_free // eqxx. rewrite mulr1 big1 ?addr0 // => i /negPf j'i. by rewrite linearZ /= coord_free // j'i mulr0. Qed. Lemma cat_free X Y : free (X ++ Y) = [&& free X, free Y & directv (<> + <>)]. Proof. rewrite !free_directv mem_cat directvE /= !big_cat -directvE directv_addE /=. rewrite negb_or -!andbA; do !bool_congr; rewrite -!span_def. by rewrite (sameP eqP directv_addP). Qed. Lemma catl_free Y X : free (X ++ Y) -> free X. Proof. by rewrite cat_free => /and3P[]. Qed. Lemma catr_free X Y : free (X ++ Y) -> free Y. Proof. by rewrite cat_free => /and3P[]. Qed. Lemma filter_free p X : free X -> free (filter p X). Proof. rewrite -(perm_free (etrans (perm_filterC p X _) (perm_refl X))). exact: catl_free. Qed. Lemma free_cons v X : free (v :: X) = (v \notin <>)%VS && free X. Proof. rewrite (cat_free [:: v]) seq1_free directvEgeq /= span_seq1 dim_vline. case: eqP => [-> | _] /=; first by rewrite mem0v. rewrite andbC ltnNge (geq_leqif (dimv_leqif_sup _)) ?addvSr //. by rewrite subv_add subvv andbT -memvE. Qed. Lemma freeE n (X : n.-tuple vT) : free X = [forall i : 'I_n, X`_i \notin <>%VS]. Proof. case: X => X /= /eqP <-{n}; rewrite -(big_andE xpredT) /=. elim: X => [|v X IH_X] /=; first by rewrite nil_free big_ord0. by rewrite free_cons IH_X big_ord_recl drop0. Qed. Lemma freeNE n (X : n.-tuple vT) : ~~ free X = [exists i : 'I_n, X`_i \in <>%VS]. Proof. by rewrite freeE -negb_exists negbK. Qed. Lemma free_uniq X : free X -> uniq X. Proof. elim: X => //= v b IH_X; rewrite free_cons => /andP[X'v /IH_X->]. by rewrite (contra _ X'v) // => /memv_span. Qed. Lemma free_span X v (sumX := fun k => \sum_(x <- X) k x *: x) : free X -> v \in <>%VS -> {k | v = sumX k & forall k1, v = sumX k1 -> {in X, k1 =1 k}}. Proof. rewrite -{2}[X]in_tupleE => freeX /coord_span def_v. pose k x := oapp (fun i => coord (in_tuple X) i v) 0 (insub (index x X)). exists k => [|k1 {}def_v _ /(nthP 0)[i ltiX <-]]. rewrite /sumX (big_nth 0) big_mkord def_v; apply: eq_bigr => i _. by rewrite /k index_uniq ?free_uniq // valK. rewrite /k /= index_uniq ?free_uniq // insubT //= def_v. by rewrite /sumX (big_nth 0) big_mkord coord_sum_free. Qed. Lemma linear_of_free (rT : lmodType K) X (fX : seq rT) : {f : {linear vT -> rT} | free X -> size fX = size X -> map f X = fX}. Proof. pose f u := \sum_i coord (in_tuple X) i u *: fX`_i. have lin_f: linear f. move=> k u v; rewrite scaler_sumr -big_split; apply: eq_bigr => i _. by rewrite /= scalerA -scalerDl linearP. exists (Linear lin_f) => freeX eq_szX. apply/esym/(@eq_from_nth _ 0); rewrite ?size_map eq_szX // => i ltiX. rewrite (nth_map 0) //= /f (bigD1 (Ordinal ltiX)) //=. rewrite big1 => [|j /negbTE neqji]; rewrite (coord_free (Ordinal _)) //. by rewrite eqxx scale1r addr0. by rewrite eq_sym neqji scale0r. Qed. (* Subspace bases *) Lemma span_basis U X : basis_of U X -> <>%VS = U. Proof. by case/andP=> /eqP. Qed. Lemma basis_free U X : basis_of U X -> free X. Proof. by case/andP. Qed. Lemma coord_basis U n (X : n.-tuple vT) v : basis_of U X -> v \in U -> v = \sum_i coord X i v *: X`_i. Proof. by move/span_basis <-; apply: coord_span. Qed. Lemma nil_basis : basis_of 0 (Nil vT). Proof. by rewrite /basis_of span_nil eqxx nil_free. Qed. Lemma seq1_basis v : v != 0 -> basis_of <[v]> [:: v]. Proof. by move=> nz_v; rewrite /basis_of span_seq1 // eqxx seq1_free. Qed. Lemma basis_not0 x U X : basis_of U X -> x \in X -> x != 0. Proof. by move/basis_free/free_not0; apply. Qed. Lemma basis_mem x U X : basis_of U X -> x \in X -> x \in U. Proof. by move/span_basis=> <- /memv_span. Qed. Lemma cat_basis U V X Y : directv (U + V) -> basis_of U X -> basis_of V Y -> basis_of (U + V) (X ++ Y). Proof. move=> dxUV /andP[/eqP defU freeX] /andP[/eqP defV freeY]. by rewrite /basis_of span_cat cat_free defU defV // eqxx freeX freeY. Qed. Lemma size_basis U n (X : n.-tuple vT) : basis_of U X -> \dim U = n. Proof. by case/andP=> /eqP <- /eqnP->; apply: size_tuple. Qed. Lemma basisEdim X U : basis_of U X = (U <= <>)%VS && (size X <= \dim U). Proof. apply/andP/idP=> [[defU /eqnP <-]| ]; first by rewrite -eqEdim eq_sym. case/andP=> sUX leXU; have leXX := dim_span X. rewrite /free eq_sym eqEdim sUX eqn_leq !(leq_trans leXX) //. by rewrite (leq_trans leXU) ?dimvS. Qed. Lemma basisEfree X U : basis_of U X = [&& free X, (<> <= U)%VS & \dim U <= size X]. Proof. by rewrite andbC; apply: andb_id2r => freeX; rewrite eqEdim (eqnP freeX). Qed. Lemma perm_basis X Y U : perm_eq X Y -> basis_of U X = basis_of U Y. Proof. move=> eqXY; congr ((_ == _) && _); last exact: perm_free. exact/eq_span/perm_mem. Qed. Lemma vbasisP U : basis_of U (vbasis U). Proof. rewrite /basis_of free_b2mx span_b2mx (sameP eqP (vs2mxP _ _)) !genmxE. have ->: b2mx (vbasis U) = row_base (vs2mx U). by apply/row_matrixP=> i; rewrite unlock rowK tnth_mktuple r2vK. by rewrite row_base_free !eq_row_base submx_refl. Qed. Lemma vbasis_mem v U : v \in (vbasis U) -> v \in U. Proof. exact: basis_mem (vbasisP _). Qed. Lemma coord_vbasis v U : v \in U -> v = \sum_(i < \dim U) coord (vbasis U) i v *: (vbasis U)`_i. Proof. exact: coord_basis (vbasisP U). Qed. Section BigSumBasis. Variables (I : finType) (P : pred I) (Xs : I -> seq vT). Lemma span_bigcat : (<<\big[cat/[::]]_(i | P i) Xs i>> = \sum_(i | P i) <>)%VS. Proof. by rewrite (big_morph _ span_cat span_nil). Qed. Lemma bigcat_free : directv (\sum_(i | P i) <>) -> (forall i, P i -> free (Xs i)) -> free (\big[cat/[::]]_(i | P i) Xs i). Proof. rewrite /free directvE /= span_bigcat => /directvP-> /= freeXs. rewrite (big_morph _ (@size_cat _) (erefl _)) /=. by apply/eqP/eq_bigr=> i /freeXs/eqP. Qed. Lemma bigcat_basis Us (U := (\sum_(i | P i) Us i)%VS) : directv U -> (forall i, P i -> basis_of (Us i) (Xs i)) -> basis_of U (\big[cat/[::]]_(i | P i) Xs i). Proof. move=> dxU XsUs; rewrite /basis_of span_bigcat. have defUs i: P i -> span (Xs i) = Us i by case/XsUs/andP=> /eqP. rewrite (eq_bigr _ defUs) eqxx bigcat_free // => [|_ /XsUs/andP[]//]. apply/directvP; rewrite /= (eq_bigr _ defUs) (directvP dxU) /=. by apply/eq_bigr=> i /defUs->. Qed. End BigSumBasis. End VectorTheory. #[global] Hint Resolve subvv : core. Arguments subvP {K vT U V}. Arguments addv_idPl {K vT U V}. Arguments addv_idPr {K vT U V}. Arguments memv_addP {K vT w U V }. Arguments sumv_sup [K vT I] i0 [P U Vs]. Arguments memv_sumP {K vT I P Us v}. Arguments subv_sumP {K vT I P Us V}. Arguments capv_idPl {K vT U V}. Arguments capv_idPr {K vT U V}. Arguments memv_capP {K vT w U V}. Arguments bigcapv_inf [K vT I] i0 [P Us V]. Arguments subv_bigcapP {K vT I P U Vs}. Arguments directvP {K vT S}. Arguments directv_addP {K vT U V}. Arguments directv_add_unique {K vT U V}. Arguments directv_sumP {K vT I P Us}. Arguments directv_sumE {K vT I P Ss}. Arguments directv_sum_independent {K vT I P Us}. Arguments directv_sum_unique {K vT I P Us}. Arguments span_subvP {K vT X U}. Arguments freeP {K vT n X}. Prenex Implicits coord. Notation directv S := (directv_def (Phantom _ S%VS)). (* Linear functions over a vectType *) Section LfunDefs. Variable R : ringType. Implicit Types aT vT rT : vectType R. Fact lfun_key : unit. Proof. by []. Qed. Definition fun_of_lfun_def aT rT (f : 'Hom(aT, rT)) := r2v \o mulmxr (f2mx f) \o v2r. Definition fun_of_lfun := locked_with lfun_key fun_of_lfun_def. Canonical fun_of_lfun_unlockable := [unlockable fun fun_of_lfun]. Definition linfun_def aT rT (f : aT -> rT) := Vector.Hom (lin1_mx (v2r \o f \o r2v)). Definition linfun := locked_with lfun_key linfun_def. Canonical linfun_unlockable := [unlockable fun linfun]. Definition id_lfun vT := @linfun vT vT idfun. Definition comp_lfun aT vT rT (f : 'Hom(vT, rT)) (g : 'Hom(aT, vT)) := linfun (fun_of_lfun f \o fun_of_lfun g). End LfunDefs. Coercion fun_of_lfun : Vector.hom >-> Funclass. Notation "\1" := (@id_lfun _ _) : lfun_scope. Notation "f \o g" := (comp_lfun f g) : lfun_scope. Section LfunVspaceDefs. Variable K : fieldType. Implicit Types aT rT : vectType K. Definition inv_lfun aT rT (f : 'Hom(aT, rT)) := Vector.Hom (pinvmx (f2mx f)). Definition lker aT rT (f : 'Hom(aT, rT)) := mx2vs (kermx (f2mx f)). Fact lfun_img_key : unit. Proof. by []. Qed. Definition lfun_img_def aT rT f (U : {vspace aT}) : {vspace rT} := mx2vs (vs2mx U *m f2mx f). Definition lfun_img := locked_with lfun_img_key lfun_img_def. Canonical lfun_img_unlockable := [unlockable fun lfun_img]. Definition lfun_preim aT rT (f : 'Hom(aT, rT)) W := (lfun_img (inv_lfun f) (W :&: lfun_img f fullv) + lker f)%VS. End LfunVspaceDefs. Prenex Implicits linfun lfun_img lker lfun_preim. Notation "f ^-1" := (inv_lfun f) : lfun_scope. Notation "f @: U" := (lfun_img f%VF%R U) (at level 24) : vspace_scope. Notation "f @^-1: W" := (lfun_preim f%VF%R W) (at level 24) : vspace_scope. Notation limg f := (lfun_img f fullv). Section LfunZmodType. Variables (R : ringType) (aT rT : vectType R). Implicit Types f g h : 'Hom(aT, rT). Definition lfun_eqMixin := Eval hnf in [eqMixin of 'Hom(aT, rT) by <:]. Canonical lfun_eqType := EqType 'Hom(aT, rT) lfun_eqMixin. Definition lfun_choiceMixin := [choiceMixin of 'Hom(aT, rT) by <:]. Canonical lfun_choiceType := ChoiceType 'Hom(aT, rT) lfun_choiceMixin. Fact lfun_is_linear f : linear f. Proof. by rewrite unlock; apply: linearP. Qed. Canonical lfun_additive f := Additive (lfun_is_linear f). Canonical lfun_linear f := AddLinear (lfun_is_linear f). Lemma lfunE (ff : {linear aT -> rT}) : linfun ff =1 ff. Proof. by move=> v; rewrite 2!unlock /= mul_rV_lin1 /= !v2rK. Qed. Lemma fun_of_lfunK : cancel (@fun_of_lfun R aT rT) linfun. Proof. move=> f; apply/val_inj/row_matrixP=> i. by rewrite 2!unlock /= !rowE mul_rV_lin1 /= !r2vK. Qed. Lemma lfunP f g : f =1 g <-> f = g. Proof. split=> [eq_fg | -> //]; rewrite -[f]fun_of_lfunK -[g]fun_of_lfunK unlock. by apply/val_inj/row_matrixP=> i; rewrite !rowE !mul_rV_lin1 /= eq_fg. Qed. Definition zero_lfun : 'Hom(aT, rT) := linfun \0. Definition add_lfun f g := linfun (f \+ g). Definition opp_lfun f := linfun (-%R \o f). Fact lfun_addA : associative add_lfun. Proof. by move=> f g h; apply/lfunP=> v; rewrite !lfunE /= !lfunE addrA. Qed. Fact lfun_addC : commutative add_lfun. Proof. by move=> f g; apply/lfunP=> v; rewrite !lfunE /= addrC. Qed. Fact lfun_add0 : left_id zero_lfun add_lfun. Proof. by move=> f; apply/lfunP=> v; rewrite lfunE /= lfunE add0r. Qed. Lemma lfun_addN : left_inverse zero_lfun opp_lfun add_lfun. Proof. by move=> f; apply/lfunP=> v; rewrite !lfunE /= lfunE addNr. Qed. Definition lfun_zmodMixin := ZmodMixin lfun_addA lfun_addC lfun_add0 lfun_addN. Canonical lfun_zmodType := Eval hnf in ZmodType 'Hom(aT, rT) lfun_zmodMixin. Lemma zero_lfunE x : (0 : 'Hom(aT, rT)) x = 0. Proof. exact: lfunE. Qed. Lemma add_lfunE f g x : (f + g) x = f x + g x. Proof. exact: lfunE. Qed. Lemma opp_lfunE f x : (- f) x = - f x. Proof. exact: lfunE. Qed. Lemma sum_lfunE I (r : seq I) (P : pred I) (fs : I -> 'Hom(aT, rT)) x : (\sum_(i <- r | P i) fs i) x = \sum_(i <- r | P i) fs i x. Proof. by elim/big_rec2: _ => [|i _ f _ <-]; rewrite lfunE. Qed. End LfunZmodType. Arguments fun_of_lfunK {R aT rT}. Section LfunVectType. Variables (R : comRingType) (aT rT : vectType R). Implicit Types f : 'Hom(aT, rT). Definition scale_lfun k f := linfun (k \*: f). Local Infix "*:l" := scale_lfun (at level 40). Fact lfun_scaleA k1 k2 f : k1 *:l (k2 *:l f) = (k1 * k2) *:l f. Proof. by apply/lfunP=> v; rewrite !lfunE /= lfunE scalerA. Qed. Fact lfun_scale1 f : 1 *:l f = f. Proof. by apply/lfunP=> v; rewrite lfunE /= scale1r. Qed. Fact lfun_scaleDr k f1 f2 : k *:l (f1 + f2) = k *:l f1 + k *:l f2. Proof. by apply/lfunP=> v; rewrite !lfunE /= !lfunE scalerDr. Qed. Fact lfun_scaleDl f k1 k2 : (k1 + k2) *:l f = k1 *:l f + k2 *:l f. Proof. by apply/lfunP=> v; rewrite !lfunE /= !lfunE scalerDl. Qed. Definition lfun_lmodMixin := LmodMixin lfun_scaleA lfun_scale1 lfun_scaleDr lfun_scaleDl. Canonical lfun_lmodType := Eval hnf in LmodType R 'Hom(aT, rT) lfun_lmodMixin. Lemma scale_lfunE k f x : (k *: f) x = k *: f x. Proof. exact: lfunE. Qed. Fact lfun_vect_iso : Vector.axiom (Vector.dim aT * Vector.dim rT) 'Hom(aT, rT). Proof. exists (mxvec \o f2mx) => [a f g|]. rewrite /= -linearP /= -[A in _ = mxvec A]/(f2mx (Vector.Hom _)). congr (mxvec (f2mx _)); apply/lfunP=> v; do 2!rewrite lfunE /=. by rewrite unlock /= -linearP mulmxDr scalemxAr. exists (Vector.Hom \o vec_mx) => [[A]|A] /=; last exact: vec_mxK. by rewrite mxvecK. Qed. Definition lfun_vectMixin := VectMixin lfun_vect_iso. Canonical lfun_vectType := VectType R 'Hom(aT, rT) lfun_vectMixin. End LfunVectType. Section CompLfun. Variables (R : ringType) (wT aT vT rT : vectType R). Implicit Types (f : 'Hom(vT, rT)) (g : 'Hom(aT, vT)) (h : 'Hom(wT, aT)). Lemma id_lfunE u: \1%VF u = u :> aT. Proof. exact: lfunE. Qed. Lemma comp_lfunE f g u : (f \o g)%VF u = f (g u). Proof. exact: lfunE. Qed. Lemma comp_lfunA f g h : (f \o (g \o h) = (f \o g) \o h)%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfun1l f : (\1 \o f)%VF = f. Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfun1r f : (f \o \1)%VF = f. Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfun0l g : (0 \o g)%VF = 0 :> 'Hom(aT, rT). Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfun0r f : (f \o 0)%VF = 0 :> 'Hom(aT, rT). Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linear0. Qed. Lemma comp_lfunDl f1 f2 g : ((f1 + f2) \o g = (f1 \o g) + (f2 \o g))%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfunDr f g1 g2 : (f \o (g1 + g2) = (f \o g1) + (f \o g2))%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linearD. Qed. Lemma comp_lfunNl f g : ((- f) \o g = - (f \o g))%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfunNr f g : (f \o (- g) = - (f \o g))%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linearN. Qed. End CompLfun. Definition lfun_simp := (comp_lfunE, scale_lfunE, opp_lfunE, add_lfunE, sum_lfunE, lfunE). Section ScaleCompLfun. Variables (R : comRingType) (aT vT rT : vectType R). Implicit Types (f : 'Hom(vT, rT)) (g : 'Hom(aT, vT)). Lemma comp_lfunZl k f g : (k *: (f \o g) = (k *: f) \o g)%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=. Qed. Lemma comp_lfunZr k f g : (k *: (f \o g) = f \o (k *: g))%VF. Proof. by apply/lfunP=> u; do !rewrite lfunE /=; rewrite linearZ. Qed. End ScaleCompLfun. Section LinearImage. Variables (K : fieldType) (aT rT : vectType K). Implicit Types (f g : 'Hom(aT, rT)) (U V : {vspace aT}) (W : {vspace rT}). Lemma limgS f U V : (U <= V)%VS -> (f @: U <= f @: V)%VS. Proof. by rewrite unlock /subsetv !genmxE; apply: submxMr. Qed. Lemma limg_line f v : (f @: <[v]> = <[f v]>)%VS. Proof. apply/eqP; rewrite 2!unlock eqEsubv /subsetv /= r2vK !genmxE. by rewrite !(eqmxMr _ (genmxE _)) submx_refl. Qed. Lemma limg0 f : (f @: 0 = 0)%VS. Proof. by rewrite limg_line linear0. Qed. Lemma memv_img f v U : v \in U -> f v \in (f @: U)%VS. Proof. by move=> Uv; rewrite memvE -limg_line limgS. Qed. Lemma memv_imgP f w U : reflect (exists2 u, u \in U & w = f u) (w \in f @: U)%VS. Proof. apply: (iffP idP) => [|[u Uu ->]]; last exact: memv_img. rewrite 2!unlock memvE /subsetv !genmxE => /submxP[ku Drw]. exists (r2v (ku *m vs2mx U)); last by rewrite /= r2vK -mulmxA -Drw v2rK. by rewrite memvE /subsetv !genmxE r2vK submxMl. Qed. Lemma lim0g U : (0 @: U = 0 :> {vspace rT})%VS. Proof. apply/eqP; rewrite -subv0; apply/subvP=> _ /memv_imgP[u _ ->]. by rewrite lfunE rpred0. Qed. Lemma eq_in_limg V f g : {in V, f =1 g} -> (f @: V = g @: V)%VS. Proof. move=> eq_fg; apply/vspaceP=> y. by apply/memv_imgP/memv_imgP=> [][x Vx ->]; exists x; rewrite ?eq_fg. Qed. Lemma limgD f : {morph lfun_img f : U V / U + V}%VS. Proof. move=> U V; apply/eqP; rewrite unlock eqEsubv /subsetv /= -genmx_adds. by rewrite !genmxE !(eqmxMr _ (genmxE _)) !addsmxMr submx_refl. Qed. Lemma limg_sum f I r (P : pred I) Us : (f @: (\sum_(i <- r | P i) Us i) = \sum_(i <- r | P i) f @: Us i)%VS. Proof. exact: (big_morph _ (limgD f) (limg0 f)). Qed. Lemma limg_cap f U V : (f @: (U :&: V) <= f @: U :&: f @: V)%VS. Proof. by rewrite subv_cap !limgS ?capvSl ?capvSr. Qed. Lemma limg_bigcap f I r (P : pred I) Us : (f @: (\bigcap_(i <- r | P i) Us i) <= \bigcap_(i <- r | P i) f @: Us i)%VS. Proof. elim/big_rec2: _ => [|i V U _ sUV]; first exact: subvf. by rewrite (subv_trans (limg_cap f _ U)) ?capvS. Qed. Lemma limg_span f X : (f @: <> = <>)%VS. Proof. by rewrite !span_def big_map limg_sum; apply: eq_bigr => x _; rewrite limg_line. Qed. Lemma lfunPn f g : reflect (exists u, f u != g u) (f != g). Proof. apply: (iffP idP) => [f'g|[x]]; last by apply: contraNneq => /lfunP->. suffices /subvPn[_ /memv_imgP[u _ ->]]: ~~ (limg (f - g) <= 0)%VS. by rewrite lfunE /= lfunE /= memv0 subr_eq0; exists u. apply: contra f'g => /subvP fg0; apply/eqP/lfunP=> u; apply/eqP. by rewrite -subr_eq0 -opp_lfunE -add_lfunE -memv0 fg0 ?memv_img ?memvf. Qed. Lemma inv_lfun_def f : (f \o f^-1 \o f)%VF = f. Proof. apply/lfunP=> u; do !rewrite lfunE /=; rewrite unlock /= !r2vK. by rewrite mulmxKpV ?submxMl. Qed. Lemma limg_lfunVK f : {in limg f, cancel f^-1%VF f}. Proof. by move=> _ /memv_imgP[u _ ->]; rewrite -!comp_lfunE inv_lfun_def. Qed. Lemma lkerE f U : (U <= lker f)%VS = (f @: U == 0)%VS. Proof. rewrite unlock -dimv_eq0 /dimv /subsetv !genmxE mxrank_eq0. by rewrite (sameP sub_kermxP eqP). Qed. Lemma memv_ker f v : (v \in lker f) = (f v == 0). Proof. by rewrite -memv0 !memvE subv0 lkerE limg_line. Qed. Lemma eqlfunP f g v : reflect (f v = g v) (v \in lker (f - g)). Proof. by rewrite memv_ker !lfun_simp subr_eq0; apply: eqP. Qed. Lemma eqlfun_inP V f g : reflect {in V, f =1 g} (V <= lker (f - g))%VS. Proof. by apply: (iffP subvP) => E x /E/eqlfunP. Qed. Lemma limg_ker_compl f U : (f @: (U :\: lker f) = f @: U)%VS. Proof. rewrite -{2}(addv_diff_cap U (lker f)) limgD; apply/esym/addv_idPl. by rewrite (subv_trans _ (sub0v _)) // subv0 -lkerE capvSr. Qed. Lemma limg_ker_dim f U : (\dim (U :&: lker f) + \dim (f @: U) = \dim U)%N. Proof. rewrite unlock /dimv /= genmx_cap genmx_id -genmx_cap !genmxE. by rewrite addnC mxrank_mul_ker. Qed. Lemma limg_dim_eq f U : (U :&: lker f = 0)%VS -> \dim (f @: U) = \dim U. Proof. by rewrite -(limg_ker_dim f U) => ->; rewrite dimv0. Qed. Lemma limg_basis_of f U X : (U :&: lker f = 0)%VS -> basis_of U X -> basis_of (f @: U) (map f X). Proof. move=> injUf /andP[/eqP defU /eqnP freeX]. by rewrite /basis_of /free size_map -limg_span -freeX defU limg_dim_eq ?eqxx. Qed. Lemma lker0P f : reflect (injective f) (lker f == 0%VS). Proof. rewrite -subv0; apply: (iffP subvP) => [injf u v eq_fuv | injf u]. apply/eqP; rewrite -subr_eq0 -memv0 injf //. by rewrite memv_ker linearB /= eq_fuv subrr. by rewrite memv_ker memv0 -(inj_eq injf) linear0. Qed. Lemma limg_ker0 f U V : lker f == 0%VS -> (f @: U <= f @: V)%VS = (U <= V)%VS. Proof. move/lker0P=> injf; apply/idP/idP=> [/subvP sfUV | ]; last exact: limgS. by apply/subvP=> u Uu; have /memv_imgP[v Vv /injf->] := sfUV _ (memv_img f Uu). Qed. Lemma eq_limg_ker0 f U V : lker f == 0%VS -> (f @: U == f @: V)%VS = (U == V). Proof. by move=> injf; rewrite !eqEsubv !limg_ker0. Qed. Lemma lker0_lfunK f : lker f == 0%VS -> cancel f f^-1%VF. Proof. by move/lker0P=> injf u; apply: injf; rewrite limg_lfunVK ?memv_img ?memvf. Qed. Lemma lker0_compVf f : lker f == 0%VS -> (f^-1 \o f = \1)%VF. Proof. by move/lker0_lfunK=> fK; apply/lfunP=> u; rewrite !lfunE /= fK. Qed. End LinearImage. Arguments memv_imgP {K aT rT f w U}. Arguments lfunPn {K aT rT f g}. Arguments lker0P {K aT rT f}. Arguments eqlfunP {K aT rT f g v}. Arguments eqlfun_inP {K aT rT V f g}. Arguments limg_lfunVK {K aT rT f} [x] f_x. Section FixedSpace. Variables (K : fieldType) (vT : vectType K). Implicit Types (f : 'End(vT)) (U : {vspace vT}). Definition fixedSpace f : {vspace vT} := lker (f - \1%VF). Lemma fixedSpaceP f a : reflect (f a = a) (a \in fixedSpace f). Proof. by rewrite memv_ker add_lfunE opp_lfunE id_lfunE subr_eq0; apply: eqP. Qed. Lemma fixedSpacesP f U : reflect {in U, f =1 id} (U <= fixedSpace f)%VS. Proof. by apply: (iffP subvP) => cUf x /cUf/fixedSpaceP. Qed. Lemma fixedSpace_limg f U : (U <= fixedSpace f -> f @: U = U)%VS. Proof. move/fixedSpacesP=> cUf; apply/vspaceP=> x. by apply/memv_imgP/idP=> [[{}x Ux ->] | Ux]; last exists x; rewrite ?cUf. Qed. Lemma fixedSpace_id : fixedSpace \1 = {:vT}%VS. Proof. by apply/vspaceP=> x; rewrite memvf; apply/fixedSpaceP; rewrite lfunE. Qed. End FixedSpace. Arguments fixedSpaceP {K vT f a}. Arguments fixedSpacesP {K vT f U}. Section LinAut. Variables (K : fieldType) (vT : vectType K) (f : 'End(vT)). Hypothesis kerf0 : lker f == 0%VS. Lemma lker0_limgf : limg f = fullv. Proof. by apply/eqP; rewrite eqEdim subvf limg_dim_eq //= (eqP kerf0) capv0. Qed. Lemma lker0_lfunVK : cancel f^-1%VF f. Proof. by move=> u; rewrite limg_lfunVK // lker0_limgf memvf. Qed. Lemma lker0_compfV : (f \o f^-1 = \1)%VF. Proof. by apply/lfunP=> u; rewrite !lfunE /= lker0_lfunVK. Qed. Lemma lker0_compVKf aT g : (f \o (f^-1 \o g))%VF = g :> 'Hom(aT, vT). Proof. by rewrite comp_lfunA lker0_compfV comp_lfun1l. Qed. Lemma lker0_compKf aT g : (f^-1 \o (f \o g))%VF = g :> 'Hom(aT, vT). Proof. by rewrite comp_lfunA lker0_compVf ?comp_lfun1l. Qed. Lemma lker0_compfK rT h : ((h \o f) \o f^-1)%VF = h :> 'Hom(vT, rT). Proof. by rewrite -comp_lfunA lker0_compfV comp_lfun1r. Qed. Lemma lker0_compfVK rT h : ((h \o f^-1) \o f)%VF = h :> 'Hom(vT, rT). Proof. by rewrite -comp_lfunA lker0_compVf ?comp_lfun1r. Qed. End LinAut. Section LinearImageComp. Variables (K : fieldType) (aT vT rT : vectType K). Implicit Types (f : 'Hom(aT, vT)) (g : 'Hom(vT, rT)) (U : {vspace aT}). Lemma lim1g U : (\1 @: U)%VS = U. Proof. have /andP[/eqP <- _] := vbasisP U; rewrite limg_span map_id_in // => u _. by rewrite lfunE. Qed. Lemma limg_comp f g U : ((g \o f) @: U = g @: (f @: U))%VS. Proof. have /andP[/eqP <- _] := vbasisP U; rewrite !limg_span; congr (span _). by rewrite -map_comp; apply/eq_map => u; rewrite lfunE. Qed. End LinearImageComp. Section LinearPreimage. Variables (K : fieldType) (aT rT : vectType K). Implicit Types (f : 'Hom(aT, rT)) (U : {vspace aT}) (V W : {vspace rT}). Lemma lpreim_cap_limg f W : (f @^-1: (W :&: limg f))%VS = (f @^-1: W)%VS. Proof. by rewrite /lfun_preim -capvA capvv. Qed. Lemma lpreim0 f : (f @^-1: 0)%VS = lker f. Proof. by rewrite /lfun_preim cap0v limg0 add0v. Qed. Lemma lpreimS f V W : (V <= W)%VS-> (f @^-1: V <= f @^-1: W)%VS. Proof. by move=> sVW; rewrite addvS // limgS // capvS. Qed. Lemma lpreimK f W : (W <= limg f)%VS -> (f @: (f @^-1: W))%VS = W. Proof. move=> sWf; rewrite limgD (capv_idPl sWf) // -limg_comp. have /eqP->: (f @: lker f == 0)%VS by rewrite -lkerE. have /andP[/eqP defW _] := vbasisP W; rewrite addv0 -defW limg_span. rewrite map_id_in // => x Xx; rewrite lfunE /= limg_lfunVK //. by apply: span_subvP Xx; rewrite defW. Qed. Lemma memv_preim f u W : (f u \in W) = (u \in f @^-1: W)%VS. Proof. apply/idP/idP=> [Wfu | /(memv_img f)]; last first. by rewrite -lpreim_cap_limg lpreimK ?capvSr // => /memv_capP[]. rewrite -[u](addNKr (f^-1%VF (f u))) memv_add ?memv_img //. by rewrite memv_cap Wfu memv_img ?memvf. by rewrite memv_ker addrC linearB /= subr_eq0 limg_lfunVK ?memv_img ?memvf. Qed. End LinearPreimage. Arguments lpreimK {K aT rT f} [W] fW. Section LfunAlgebra. (* This section is a bit of a place holder: the instances we build here can't *) (* be canonical because we are missing an interface for proper vectTypes, *) (* would sit between Vector and Falgebra. For now, we just supply structure *) (* definitions here and supply actual instances for F-algebras in a submodule *) (* of the algebra library (there is currently no actual use of the End(vT) *) (* algebra structure). Also note that the unit ring structure is missing. *) Variables (R : comRingType) (vT : vectType R). Hypothesis vT_proper : Vector.dim vT > 0. Fact lfun1_neq0 : \1%VF != 0 :> 'End(vT). Proof. apply/eqP=> /lfunP/(_ (r2v (const_mx 1))); rewrite !lfunE /= => /(canRL r2vK). by move=> /rowP/(_ (Ordinal vT_proper))/eqP; rewrite linear0 !mxE oner_eq0. Qed. Prenex Implicits comp_lfunA comp_lfun1l comp_lfun1r comp_lfunDl comp_lfunDr. Definition lfun_comp_ringMixin := RingMixin comp_lfunA comp_lfun1l comp_lfun1r comp_lfunDl comp_lfunDr lfun1_neq0. Definition lfun_comp_ringType := RingType 'End(vT) lfun_comp_ringMixin. (* In the standard endomorphism ring product is categorical composition. *) Definition lfun_ringMixin : GRing.Ring.mixin_of (lfun_zmodType vT vT) := GRing.converse_ringMixin lfun_comp_ringType. Definition lfun_ringType := Eval hnf in RingType 'End(vT) lfun_ringMixin. Definition lfun_lalgType := Eval hnf in [lalgType R of 'End(vT) for LalgType R lfun_ringType (fun k x y => comp_lfunZr k y x)]. Definition lfun_algType := Eval hnf in [algType R of 'End(vT) for AlgType R _ (fun k (x y : lfun_lalgType) => comp_lfunZl k y x)]. End LfunAlgebra. Section Projection. Variables (K : fieldType) (vT : vectType K). Implicit Types U V : {vspace vT}. Definition daddv_pi U V := Vector.Hom (proj_mx (vs2mx U) (vs2mx V)). Definition projv U := daddv_pi U U^C. Definition addv_pi1 U V := daddv_pi (U :\: V) V. Definition addv_pi2 U V := daddv_pi V (U :\: V). Lemma memv_pi U V w : (daddv_pi U V) w \in U. Proof. by rewrite unlock memvE /subsetv genmxE /= r2vK proj_mx_sub. Qed. Lemma memv_proj U w : projv U w \in U. Proof. exact: memv_pi. Qed. Lemma memv_pi1 U V w : (addv_pi1 U V) w \in U. Proof. by rewrite (subvP (diffvSl U V)) ?memv_pi. Qed. Lemma memv_pi2 U V w : (addv_pi2 U V) w \in V. Proof. exact: memv_pi. Qed. Lemma daddv_pi_id U V u : (U :&: V = 0)%VS -> u \in U -> daddv_pi U V u = u. Proof. move/eqP; rewrite -dimv_eq0 memvE /subsetv /dimv !genmxE mxrank_eq0 => /eqP. by move=> dxUV Uu; rewrite unlock /= proj_mx_id ?v2rK. Qed. Lemma daddv_pi_proj U V w (pi := daddv_pi U V) : (U :&: V = 0)%VS -> pi (pi w) = pi w. Proof. by move/daddv_pi_id=> -> //; apply: memv_pi. Qed. Lemma daddv_pi_add U V w : (U :&: V = 0)%VS -> (w \in U + V)%VS -> daddv_pi U V w + daddv_pi V U w = w. Proof. move/eqP; rewrite -dimv_eq0 memvE /subsetv /dimv !genmxE mxrank_eq0 => /eqP. by move=> dxUW UVw; rewrite unlock /= -linearD /= add_proj_mx ?v2rK. Qed. Lemma projv_id U u : u \in U -> projv U u = u. Proof. exact: daddv_pi_id (capv_compl _). Qed. Lemma projv_proj U w : projv U (projv U w) = projv U w. Proof. exact: daddv_pi_proj (capv_compl _). Qed. Lemma memv_projC U w : w - projv U w \in (U^C)%VS. Proof. rewrite -{1}[w](daddv_pi_add (capv_compl U)) ?addv_complf ?memvf //. by rewrite addrC addKr memv_pi. Qed. Lemma limg_proj U : limg (projv U) = U. Proof. apply/vspaceP=> u; apply/memv_imgP/idP=> [[u1 _ ->] | ]; first exact: memv_proj. by exists (projv U u); rewrite ?projv_id ?memv_img ?memvf. Qed. Lemma lker_proj U : lker (projv U) = (U^C)%VS. Proof. apply/eqP; rewrite eqEdim andbC; apply/andP; split. by rewrite dimv_compl -(limg_ker_dim (projv U) fullv) limg_proj addnK capfv. by apply/subvP=> v; rewrite memv_ker -{2}[v]subr0 => /eqP <-; apply: memv_projC. Qed. Lemma addv_pi1_proj U V w (pi1 := addv_pi1 U V) : pi1 (pi1 w) = pi1 w. Proof. by rewrite daddv_pi_proj // capv_diff. Qed. Lemma addv_pi2_id U V v : v \in V -> addv_pi2 U V v = v. Proof. by apply: daddv_pi_id; rewrite capvC capv_diff. Qed. Lemma addv_pi2_proj U V w (pi2 := addv_pi2 U V) : pi2 (pi2 w) = pi2 w. Proof. by rewrite addv_pi2_id ?memv_pi2. Qed. Lemma addv_pi1_pi2 U V w : w \in (U + V)%VS -> addv_pi1 U V w + addv_pi2 U V w = w. Proof. by rewrite -addv_diff; exact/daddv_pi_add/capv_diff. Qed. Section Sumv_Pi. Variables (I : eqType) (r0 : seq I) (P : pred I) (Vs : I -> {vspace vT}). Let sumv_pi_rec i := fix loop r := if r is j :: r1 then let V1 := (\sum_(k <- r1) Vs k)%VS in if j == i then addv_pi1 (Vs j) V1 else (loop r1 \o addv_pi2 (Vs j) V1)%VF else 0. Notation sumV := (\sum_(i <- r0 | P i) Vs i)%VS. Definition sumv_pi_for V of V = sumV := fun i => sumv_pi_rec i (filter P r0). Variables (V : {vspace vT}) (defV : V = sumV). Lemma memv_sum_pi i v : sumv_pi_for defV i v \in Vs i. Proof. rewrite /sumv_pi_for. elim: (filter P r0) v => [|j r IHr] v /=; first by rewrite lfunE mem0v. by case: eqP => [->|_]; rewrite ?lfunE ?memv_pi1 /=. Qed. Lemma sumv_pi_uniq_sum v : uniq (filter P r0) -> v \in V -> \sum_(i <- r0 | P i) sumv_pi_for defV i v = v. Proof. rewrite /sumv_pi_for defV -!(big_filter r0 P). elim: (filter P r0) v => [|i r IHr] v /= => [_ | /andP[r'i /IHr{}IHr]]. by rewrite !big_nil memv0 => /eqP. rewrite !big_cons eqxx => /addv_pi1_pi2; congr (_ + _ = v). rewrite -[_ v]IHr ?memv_pi2 //; apply: eq_big_seq => j /=. by case: eqP => [<- /idPn | _]; rewrite ?lfunE. Qed. End Sumv_Pi. End Projection. Prenex Implicits daddv_pi projv addv_pi1 addv_pi2. Notation sumv_pi V := (sumv_pi_for (erefl V)). Section SumvPi. Variable (K : fieldType) (vT : vectType K). Lemma sumv_pi_sum (I : finType) (P : pred I) Vs v (V : {vspace vT}) (defV : V = (\sum_(i | P i) Vs i)%VS) : v \in V -> \sum_(i | P i) sumv_pi_for defV i v = v :> vT. Proof. by apply: sumv_pi_uniq_sum; have [e _ []] := big_enumP. Qed. Lemma sumv_pi_nat_sum m n (P : pred nat) Vs v (V : {vspace vT}) (defV : V = (\sum_(m <= i < n | P i) Vs i)%VS) : v \in V -> \sum_(m <= i < n | P i) sumv_pi_for defV i v = v :> vT. Proof. by apply: sumv_pi_uniq_sum; apply/filter_uniq/iota_uniq. Qed. End SumvPi. Section SubVector. (* Turn a {vspace V} into a vectType *) Variable (K : fieldType) (vT : vectType K) (U : {vspace vT}). Inductive subvs_of : predArgType := Subvs u & u \in U. Definition vsval w := let: Subvs u _ := w in u. Canonical subvs_subType := Eval hnf in [subType for vsval]. Definition subvs_eqMixin := Eval hnf in [eqMixin of subvs_of by <:]. Canonical subvs_eqType := Eval hnf in EqType subvs_of subvs_eqMixin. Definition subvs_choiceMixin := [choiceMixin of subvs_of by <:]. Canonical subvs_choiceType := ChoiceType subvs_of subvs_choiceMixin. Definition subvs_zmodMixin := [zmodMixin of subvs_of by <:]. Canonical subvs_zmodType := ZmodType subvs_of subvs_zmodMixin. Definition subvs_lmodMixin := [lmodMixin of subvs_of by <:]. Canonical subvs_lmodType := LmodType K subvs_of subvs_lmodMixin. Lemma subvsP w : vsval w \in U. Proof. exact: valP. Qed. Lemma subvs_inj : injective vsval. Proof. exact: val_inj. Qed. Lemma congr_subvs u v : u = v -> vsval u = vsval v. Proof. exact: congr1. Qed. Lemma vsval_is_linear : linear vsval. Proof. by []. Qed. Canonical vsval_additive := Additive vsval_is_linear. Canonical vsval_linear := AddLinear vsval_is_linear. Fact vsproj_key : unit. Proof. by []. Qed. Definition vsproj_def u := Subvs (memv_proj U u). Definition vsproj := locked_with vsproj_key vsproj_def. Canonical vsproj_unlockable := [unlockable fun vsproj]. Lemma vsprojK : {in U, cancel vsproj vsval}. Proof. by rewrite unlock; apply: projv_id. Qed. Lemma vsvalK : cancel vsval vsproj. Proof. by move=> w; apply/val_inj/vsprojK/subvsP. Qed. Lemma vsproj_is_linear : linear vsproj. Proof. by move=> k w1 w2; apply: val_inj; rewrite unlock /= linearP. Qed. Canonical vsproj_additive := Additive vsproj_is_linear. Canonical vsproj_linear := AddLinear vsproj_is_linear. Fact subvs_vect_iso : Vector.axiom (\dim U) subvs_of. Proof. exists (fun w => \row_i coord (vbasis U) i (vsval w)). by move=> k w1 w2; apply/rowP=> i; rewrite !mxE linearP. exists (fun rw : 'rV_(\dim U) => vsproj (\sum_i rw 0 i *: (vbasis U)`_i)). move=> w /=; congr (vsproj _ = w): (vsvalK w). by rewrite {1}(coord_vbasis (subvsP w)); apply: eq_bigr => i _; rewrite mxE. move=> rw; apply/rowP=> i; rewrite mxE vsprojK. by rewrite coord_sum_free ?(basis_free (vbasisP U)). by apply: rpred_sum => j _; rewrite rpredZ ?vbasis_mem ?memt_nth. Qed. Definition subvs_vectMixin := VectMixin subvs_vect_iso. Canonical subvs_vectType := VectType K subvs_of subvs_vectMixin. End SubVector. Prenex Implicits vsval vsproj vsvalK. Arguments subvs_inj {K vT U} [x1 x2]. Arguments vsprojK {K vT U} [x] Ux. Section MatrixVectType. Variables (R : ringType) (m n : nat). (* The apparently useless => /= in line 1 of the proof performs some evar *) (* expansions that the Ltac interpretation of exists is incapable of doing. *) Fact matrix_vect_iso : Vector.axiom (m * n) 'M[R]_(m, n). Proof. exists mxvec => /=; first exact: linearP. by exists vec_mx; [apply: mxvecK | apply: vec_mxK]. Qed. Definition matrix_vectMixin := VectMixin matrix_vect_iso. Canonical matrix_vectType := VectType R 'M[R]_(m, n) matrix_vectMixin. End MatrixVectType. (* A ring is a one-dimension vector space *) Section RegularVectType. Variable R : ringType. Fact regular_vect_iso : Vector.axiom 1 R^o. Proof. exists (fun a => a%:M) => [a b c|]; first by rewrite rmorphD scale_scalar_mx. by exists (fun A : 'M_1 => A 0 0) => [a | A]; rewrite ?mxE // -mx11_scalar. Qed. Definition regular_vectMixin := VectMixin regular_vect_iso. Canonical regular_vectType := VectType R R^o regular_vectMixin. End RegularVectType. (* External direct product of two vectTypes. *) Section ProdVector. Variables (R : ringType) (vT1 vT2 : vectType R). Fact pair_vect_iso : Vector.axiom (Vector.dim vT1 + Vector.dim vT2) (vT1 * vT2). Proof. pose p2r (u : vT1 * vT2) := row_mx (v2r u.1) (v2r u.2). pose r2p w := (r2v (lsubmx w) : vT1, r2v (rsubmx w) : vT2). have r2pK : cancel r2p p2r by move=> w; rewrite /p2r !r2vK hsubmxK. have p2rK : cancel p2r r2p by case=> u v; rewrite /r2p row_mxKl row_mxKr !v2rK. have r2p_lin: linear r2p by move=> a u v; congr (_ , _); rewrite /= !linearP. by exists p2r; [apply: (@can2_linear _ _ _ (Linear r2p_lin)) | exists r2p]. Qed. Definition pair_vectMixin := VectMixin pair_vect_iso. Canonical pair_vectType := VectType R (vT1 * vT2) pair_vectMixin. End ProdVector. (* Function from a finType into a ring form a vectype. *) Section FunVectType. Variable (I : finType) (R : ringType) (vT : vectType R). (* Type unification with exist is again a problem in this proof. *) Fact ffun_vect_iso : Vector.axiom (#|I| * Vector.dim vT) {ffun I -> vT}. Proof. pose fr (f : {ffun I -> vT}) := mxvec (\matrix_(i < #|I|) v2r (f (enum_val i))). exists fr => /= [k f g|]. rewrite /fr -linearP; congr (mxvec _); apply/matrixP=> i j. by rewrite !mxE /= !ffunE linearP !mxE. exists (fun r => [ffun i => r2v (row (enum_rank i) (vec_mx r)) : vT]) => [g|r]. by apply/ffunP=> i; rewrite ffunE mxvecK rowK v2rK enum_rankK. by apply/(canLR vec_mxK)/matrixP=> i j; rewrite mxE ffunE r2vK enum_valK mxE. Qed. Definition ffun_vectMixin := VectMixin ffun_vect_iso. Canonical ffun_vectType := VectType R {ffun I -> vT} ffun_vectMixin. End FunVectType. Canonical exp_vectType (K : fieldType) (vT : vectType K) n := [vectType K of vT ^ n]. (* Solving a tuple of linear equations. *) Section Solver. Variable (K : fieldType) (vT : vectType K). Variables (n : nat) (lhs : n.-tuple 'End(vT)) (rhs : n.-tuple vT). Let lhsf u := finfun ((tnth lhs)^~ u). Definition vsolve_eq U := finfun (tnth rhs) \in (linfun lhsf @: U)%VS. Lemma vsolve_eqP (U : {vspace vT}) : reflect (exists2 u, u \in U & forall i, tnth lhs i u = tnth rhs i) (vsolve_eq U). Proof. have lhsZ: linear lhsf by move=> a u v; apply/ffunP=> i; rewrite !ffunE linearP. apply: (iffP memv_imgP) => [] [u Uu sol_u]; exists u => //. by move=> i; rewrite -[tnth rhs i]ffunE sol_u (lfunE (Linear lhsZ)) ffunE. by apply/ffunP=> i; rewrite (lfunE (Linear lhsZ)) !ffunE sol_u. Qed. End Solver.