/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import order.conditionally_complete_lattice /-! # Tooling to make copies of lattice structures Sometimes it is useful to make a copy of a lattice structure where one replaces the data parts with provably equal definitions that have better definitional properties. -/ open order universe u variables {α : Type u} /-- A function to create a provable equal copy of a bounded order with possibly different definitional equalities. -/ def bounded_order.copy {h : has_le α} {h' : has_le α} (c : @bounded_order α h') (top : α) (eq_top : top = @bounded_order.top α _ c) (bot : α) (eq_bot : bot = @bounded_order.bot α _ c) (le_eq : ∀ (x y : α), ((@has_le.le α h) x y) ↔ x ≤ y) : @bounded_order α h := begin refine { top := top, bot := bot, .. }, all_goals { abstract { subst_vars, casesI c, simp_rw le_eq, assumption } } end /-- A function to create a provable equal copy of a lattice with possibly different definitional equalities. -/ def lattice.copy (c : lattice α) (le : α → α → Prop) (eq_le : le = @lattice.le α c) (sup : α → α → α) (eq_sup : sup = @lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @lattice.inf α c) : lattice α := begin refine { le := le, sup := sup, inf := inf, .. }, all_goals { abstract { subst_vars, casesI c, assumption } } end /-- A function to create a provable equal copy of a distributive lattice with possibly different definitional equalities. -/ def distrib_lattice.copy (c : distrib_lattice α) (le : α → α → Prop) (eq_le : le = @distrib_lattice.le α c) (sup : α → α → α) (eq_sup : sup = @distrib_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @distrib_lattice.inf α c) : distrib_lattice α := begin refine { le := le, sup := sup, inf := inf, .. }, all_goals { abstract { subst_vars, casesI c, assumption } } end /-- A function to create a provable equal copy of a complete lattice with possibly different definitional equalities. -/ def complete_lattice.copy (c : complete_lattice α) (le : α → α → Prop) (eq_le : le = @complete_lattice.le α c) (top : α) (eq_top : top = @complete_lattice.top α c) (bot : α) (eq_bot : bot = @complete_lattice.bot α c) (sup : α → α → α) (eq_sup : sup = @complete_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @complete_lattice.inf α c) (Sup : set α → α) (eq_Sup : Sup = @complete_lattice.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @complete_lattice.Inf α c) : complete_lattice α := begin refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, .. lattice.copy (@complete_lattice.to_lattice α c) le eq_le sup eq_sup inf eq_inf, .. }, all_goals { abstract { subst_vars, casesI c, assumption } } end /-- A function to create a provable equal copy of a frame with possibly different definitional equalities. -/ def frame.copy (c : frame α) (le : α → α → Prop) (eq_le : le = @frame.le α c) (top : α) (eq_top : top = @frame.top α c) (bot : α) (eq_bot : bot = @frame.bot α c) (sup : α → α → α) (eq_sup : sup = @frame.sup α c) (inf : α → α → α) (eq_inf : inf = @frame.inf α c) (Sup : set α → α) (eq_Sup : Sup = @frame.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @frame.Inf α c) : frame α := begin refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, .. complete_lattice.copy (@frame.to_complete_lattice α c) le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf, .. }, all_goals { abstract { subst_vars, casesI c, assumption } } end /-- A function to create a provable equal copy of a coframe with possibly different definitional equalities. -/ def coframe.copy (c : coframe α) (le : α → α → Prop) (eq_le : le = @coframe.le α c) (top : α) (eq_top : top = @coframe.top α c) (bot : α) (eq_bot : bot = @coframe.bot α c) (sup : α → α → α) (eq_sup : sup = @coframe.sup α c) (inf : α → α → α) (eq_inf : inf = @coframe.inf α c) (Sup : set α → α) (eq_Sup : Sup = @coframe.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @coframe.Inf α c) : coframe α := begin refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, .. complete_lattice.copy (@coframe.to_complete_lattice α c) le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf, .. }, all_goals { abstract { subst_vars, casesI c, assumption } } end /-- A function to create a provable equal copy of a complete distributive lattice with possibly different definitional equalities. -/ def complete_distrib_lattice.copy (c : complete_distrib_lattice α) (le : α → α → Prop) (eq_le : le = @complete_distrib_lattice.le α c) (top : α) (eq_top : top = @complete_distrib_lattice.top α c) (bot : α) (eq_bot : bot = @complete_distrib_lattice.bot α c) (sup : α → α → α) (eq_sup : sup = @complete_distrib_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @complete_distrib_lattice.inf α c) (Sup : set α → α) (eq_Sup : Sup = @complete_distrib_lattice.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @complete_distrib_lattice.Inf α c) : complete_distrib_lattice α := { .. frame.copy (@complete_distrib_lattice.to_frame α c) le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf, .. coframe.copy (@complete_distrib_lattice.to_coframe α c) le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf} /-- A function to create a provable equal copy of a conditionally complete lattice with possibly different definitional equalities. -/ def conditionally_complete_lattice.copy (c : conditionally_complete_lattice α) (le : α → α → Prop) (eq_le : le = @conditionally_complete_lattice.le α c) (sup : α → α → α) (eq_sup : sup = @conditionally_complete_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @conditionally_complete_lattice.inf α c) (Sup : set α → α) (eq_Sup : Sup = @conditionally_complete_lattice.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @conditionally_complete_lattice.Inf α c) : conditionally_complete_lattice α := begin refine { le := le, sup := sup, inf := inf, Sup := Sup, Inf := Inf, ..}, all_goals { abstract { subst_vars, casesI c, assumption } } end