(* ========================================================================= *) (* Trivial adaptation of given clause algorithm to semantic resolution. *) (* ========================================================================= *) let HOLDS_INTERP_SUBSUME = prove (`clause cl /\ clause cl' /\ (!v. holds M v (interp cl)) /\ cl subsumes cl' ==> !v:num->A. holds M v (interp cl')`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [subsumes]) THEN DISCH_THEN(X_CHOOSE_THEN `i:num->term` MP_TAC) THEN UNDISCH_TAC `!v:num->A. holds M v (interp cl)` THEN ASM_SIMP_TAC[CLAUSE_FINITE; HOLDS_INTERP] THEN MESON_TAC[IN_IMAGE; SUBSET; HOLDS_FORMSUBST]);; (* ------------------------------------------------------------------------- *) (* Following is tied to particular model domain for simplicity (only). *) (* ------------------------------------------------------------------------- *) let isaresolvent_sem = new_definition `isaresolvent_sem M cl (c1,c2) <=> isaresolvent cl (c1,c2) /\ (~(!v:num->num. holds M v (interp c1)) \/ ~(!v. holds M v (interp c2)))`;; (* ------------------------------------------------------------------------- *) (* Set of all semantic resolvents. *) (* ------------------------------------------------------------------------- *) let allresolvents_sem = new_definition `allresolvents_sem M s1 s2 = {c | ?c1 c2. c1 IN s1 /\ c2 IN s2 /\ isaresolvent_sem M c (c1,c2)}`;; (* ------------------------------------------------------------------------- *) (* Non-tautological semantic resolvents. *) (* ------------------------------------------------------------------------- *) let allntresolvents_sem = new_definition `allntresolvents_sem M s1 s2 = {r | r IN allresolvents_sem M s1 s2 /\ ~(tautologous r)}`;; (* ------------------------------------------------------------------------- *) (* Lemmas. *) (* ------------------------------------------------------------------------- *) let ISARESOLVENT_SEM_SYM = prove (`!c1 c2 cl. clause c1 /\ clause c2 /\ isaresolvent_sem M cl (c2,c1) ==> ?cl'. isaresolvent_sem M cl' (c1,c2) /\ cl' subsumes cl`, REWRITE_TAC[isaresolvent_sem] THEN MESON_TAC[ISARESOLVENT_SYM]);; let ALLRESOLVENTS_SEM_SYM = prove (`(!c. c IN A ==> clause c) /\ (!c. c IN B ==> clause c) ==> (allresolvents_sem M A B) SUBSUMES (allresolvents_sem M B A)`, REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSUMES; allresolvents_sem; IN_ELIM_THM] THEN X_GEN_TAC `cl:form->bool` THEN DISCH_THEN(X_CHOOSE_THEN `c2:form->bool` (X_CHOOSE_THEN `c1:form->bool` STRIP_ASSUME_TAC)) THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN EXISTS_TAC `c1:form->bool` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN EXISTS_TAC `c2:form->bool` THEN ASM_SIMP_TAC[ISARESOLVENT_SEM_SYM]);; let ALLRESOLVENTS_SEM_UNION = prove (`(allresolvents_sem M (A UNION B) C = (allresolvents_sem M A C) UNION (allresolvents_sem M B C)) /\ (allresolvents_sem M A (B UNION C) = (allresolvents_sem M A B) UNION (allresolvents_sem M A C))`, REWRITE_TAC[EXTENSION; allresolvents_sem; IN_ELIM_THM; IN_UNION] THEN MESON_TAC[]);; let ALLRESOLVENTS_SEM_STEP = prove (`(!c. c IN B ==> clause(c)) /\ (!c. c IN C ==> clause(c)) ==> ((allresolvents_sem M B (A UNION B)) UNION (allresolvents_sem M C (A UNION B UNION C))) SUBSUMES (allresolvents_sem M(B UNION C) (A UNION B UNION C))`, REPEAT STRIP_TAC THEN REWRITE_TAC[ALLRESOLVENTS_SEM_UNION; UNION_ASSOC] THEN ONCE_REWRITE_TAC[AC UNION_ACI `a UNION b UNION c UNION d UNION e UNION f = a UNION b UNION d UNION (c UNION e) UNION f`] THEN GEN_REWRITE_TAC (LAND_CONV o funpow 3 RAND_CONV) [AC UNION_ACI `A UNION B = (A UNION A) UNION B`] THEN REPEAT(MATCH_MP_TAC SUBSUMES_UNION THEN ASM_REWRITE_TAC[SUBSUMES_REFL]) THEN ASM_SIMP_TAC[ALLRESOLVENTS_SEM_SYM]);; (* ------------------------------------------------------------------------- *) (* Asymmetric list-based version used in algorithm. *) (* ------------------------------------------------------------------------- *) let resolvents_sem = new_definition `resolvents_sem M cl cls = list_of_set(allresolvents_sem M {cl} (set_of_list cls))`;; (* ------------------------------------------------------------------------- *) (* Trivial lemmas. *) (* ------------------------------------------------------------------------- *) let ISARESOLVENT_SEM_CLAUSE = prove (`!p q r. clause p /\ clause q /\ isaresolvent_sem M r (p,q) ==> clause r`, MESON_TAC[isaresolvent_sem; ISARESOLVENT_CLAUSE]);; let ALLRESOLVENTS_SEM_CLAUSE = prove (`(!c. c IN s ==> clause c) /\ (!c. c IN t ==> clause c) ==> !c. c IN allresolvents_sem M s t ==> clause c`, REWRITE_TAC[allresolvents_sem; IN_ELIM_THM] THEN MESON_TAC[ISARESOLVENT_SEM_CLAUSE]);; let ISARESOLVENT_SEM_FINITE = prove (`!c1 c2. clause(c1) /\ clause(c2) ==> FINITE {c | isaresolvent_sem M c (c1,c2)}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{c | isaresolvent c (c1,c2)}` THEN ASM_SIMP_TAC[ISARESOLVENT_FINITE] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; isaresolvent_sem]);; let ALLRESOLVENTS_SEM_FINITE = prove (`!s t. FINITE(s) /\ FINITE(t) /\ (!c. c IN s ==> clause c) /\ (!c. c IN t ==> clause c) ==> FINITE(allresolvents_sem M s t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `allresolvents s t` THEN ASM_SIMP_TAC[ALLRESOLVENTS_FINITE] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; isaresolvent_sem; allresolvents_sem; allresolvents] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Basic given clause algorithm. *) (* ------------------------------------------------------------------------- *) let step_sem = new_definition `step_sem M (used,unused) = if unused = [] then (used,unused) else let new = resolvents_sem M (HD unused) (CONS (HD unused) used) in (insert (HD unused) used, ITLIST (incorporate (HD unused)) new (TL unused))`;; let STEP_SEM = prove (`(step_sem M(used,[]) = (used,[])) /\ (step_sem M(used,CONS cl cls) = let new = resolvents_sem M cl (CONS cl used) in insert cl used,ITLIST (incorporate cl) new cls)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [step_sem] THEN REWRITE_TAC[NOT_CONS_NIL; HD; TL]);; let given_sem = new_recursive_definition num_RECURSION `(given_sem M 0 p = p) /\ (given_sem M (SUC n) p = step_sem M (given_sem M n p))`;; (* ------------------------------------------------------------------------- *) (* Separation into bits simplifies things a bit. *) (* ------------------------------------------------------------------------- *) let Used_SEM = new_definition `Used_SEM M init n = set_of_list(FST(given_sem M n init))`;; let Unused_SEM = new_definition `Unused_SEM M init n = set_of_list(SND(given_sem M n init))`;; (* ------------------------------------------------------------------------- *) (* Auxiliary concept actually has the cleanest recursion equations. *) (* ------------------------------------------------------------------------- *) let Sub_SEM = new_recursive_definition num_RECURSION `(Sub_SEM M init 0 = {}) /\ (Sub_SEM M init (SUC n) = if SND(given_sem M n init) = [] then Sub_SEM M init n else HD(SND(given_sem M n init)) INSERT (Sub_SEM M init n))`;; (* ------------------------------------------------------------------------- *) (* The main invariant. *) (* ------------------------------------------------------------------------- *) let ALLNTRESOLVENTS_SEM_STEP = prove (`(!c. c IN B ==> clause(c)) /\ (!c. c IN C ==> clause(c)) ==> ((allntresolvents_sem M B (A UNION B)) UNION (allntresolvents_sem M C (A UNION B UNION C))) SUBSUMES (allntresolvents_sem M (B UNION C) (A UNION B UNION C))`, STRIP_TAC THEN MP_TAC ALLRESOLVENTS_SEM_STEP THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSUMES; allntresolvents_sem; IN_ELIM_THM; IN_UNION] THEN MESON_TAC[NONTAUTOLOGOUS_SUBSUMES]);; let ALLNTRESOLVENTS_SEM_UNION = prove (`(allntresolvents_sem M (A UNION B) C = (allntresolvents_sem M A C) UNION (allntresolvents_sem M B C)) /\ (allntresolvents_sem M A (B UNION C) = (allntresolvents_sem M A B) UNION (allntresolvents_sem M A C))`, REWRITE_TAC[EXTENSION; allntresolvents_sem; allresolvents_sem; IN_ELIM_THM; IN_UNION] THEN MESON_TAC[]);; let USED_SUB = prove (`!used unused n. Used_SEM M(used,unused) n = set_of_list(used) UNION Sub_SEM M (used,unused) n`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[Used_SEM; Unused_SEM] THEN INDUCT_TAC THEN REWRITE_TAC[Sub_SEM; given_sem; UNION_EMPTY] THEN ABBREV_TAC `ppp = given_sem M n (used,unused)` THEN SUBST1_TAC(SYM(ISPEC `ppp:(form->bool)list#(form->bool)list` PAIR)) THEN PURE_REWRITE_TAC[step_sem] THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[FST; SET_OF_LIST_INSERT] THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let GIVEN_INVARIANT = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !n. (!c. c IN Used_SEM M(used,unused) n ==> clause c) /\ (!c. c IN Unused_SEM M(used,unused) n ==> clause c) /\ (!c. c IN Sub_SEM M (used,unused) n ==> clause c) /\ (Sub_SEM M (used,unused) n UNION Unused_SEM M(used,unused) n) SUBSUMES allntresolvents_sem M (Sub_SEM M (used,unused) n) (set_of_list(used) UNION Sub_SEM M (used,unused) n)`, let lemma1 = prove(`x INSERT s = s UNION {x}`,SET_TAC[]) and lemma2 = prove (`(x INSERT s) UNION t = (s UNION (t UNION {x})) UNION (t UNION {x})`, SET_TAC[]) and lemma3 = prove (`s UNION t = (s UNION t) UNION t`,SET_TAC[]) and lemma4 = prove (`s UNION {x} = (x INSERT s) UNION {x}`,SET_TAC[]) and lemma5 = prove (`(h INSERT s) UNION t = (s UNION t) UNION {h}`,SET_TAC[]) in REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THENL [REWRITE_TAC[Sub_SEM; UNION_EMPTY] THEN ASM_REWRITE_TAC[Unused_SEM; given_sem; Used_SEM; IN_SET_OF_LIST; NOT_IN_EMPTY] THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `allresolvents_sem M {} (Used_SEM M (used,unused) 0)` THEN ASM_REWRITE_TAC[Unused_SEM; given_sem; Used_SEM; IN_SET_OF_LIST] THEN CONJ_TAC THENL [SUBGOAL_THEN `allresolvents_sem M {} (set_of_list used) = {}` SUBST1_TAC THENL [REWRITE_TAC[allresolvents_sem; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]; REWRITE_TAC[SUBSUMES; NOT_IN_EMPTY]]; MATCH_MP_TAC SUBSUMES_SUBSET THEN EXISTS_TAC `allntresolvents_sem M {} (set_of_list used)` THEN REWRITE_TAC[SUBSUMES_REFL] THEN SIMP_TAC[SUBSET; allntresolvents_sem; IN_ELIM_THM]]; ALL_TAC] THEN FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN REWRITE_TAC[Sub_SEM; Unused_SEM; Used_SEM; given_sem] THEN ABBREV_TAC `ppp = given_sem M n (used,unused)` THEN SUBST1_TAC(SYM(ISPEC `ppp:(form->bool)list#(form->bool)list` PAIR)) THEN ABBREV_TAC `used0 = FST(ppp:(form->bool)list#(form->bool)list)` THEN ABBREV_TAC `unused0 = SND(ppp:(form->bool)list#(form->bool)list)` THEN REWRITE_TAC[FST; SND] THEN ABBREV_TAC `sub0 = Sub_SEM M (used,unused) n` THEN STRIP_TAC THEN REWRITE_TAC[step_sem] THEN DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC (ISPEC `unused0:(form->bool)list` list_CASES) THENL [REWRITE_TAC[] THEN ASM_REWRITE_TAC[set_of_list; NOT_IN_EMPTY]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` (X_CHOOSE_THEN `cls:(form->bool)list` SUBST_ALL_TAC)) THEN REWRITE_TAC[NOT_CONS_NIL; HD; TL] THEN LET_TAC THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN REWRITE_TAC[FST; SND] THEN SUBGOAL_THEN `clause cl` ASSUME_TAC THENL [UNDISCH_TAC `!c. c IN set_of_list (CONS cl cls) ==> clause c` THEN REWRITE_TAC[set_of_list; IN_INSERT] THEN MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [GEN_TAC THEN REWRITE_TAC[insert_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[set_of_list; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `b /\ a /\ c ==> a /\ b /\ c`) THEN CONJ_TAC THENL [REWRITE_TAC[set_of_list; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!c. MEM c new ==> clause c` ASSUME_TAC THENL [EXPAND_TAC "new" THEN REWRITE_TAC[resolvents_sem; set_of_list] THEN SUBGOAL_THEN `!c. MEM c (list_of_set (allresolvents_sem M {cl} (cl INSERT set_of_list used0))) <=> c IN (allresolvents_sem M {cl} (cl INSERT set_of_list used0))` (fun th -> REWRITE_TAC[th]) THENL [MATCH_MP_TAC MEM_LIST_OF_SET THEN MATCH_MP_TAC ALLRESOLVENTS_SEM_FINITE THEN SIMP_TAC[FINITE_RULES; FINITE_SET_OF_LIST]; MATCH_MP_TAC ALLRESOLVENTS_SEM_CLAUSE] THEN ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[IN_SET_OF_LIST] THEN UNDISCH_TAC `!c. MEM c new ==> clause c` THEN SPEC_TAC(`new:(form->bool)list`,`more:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; MEM] THENL [UNDISCH_TAC `!c. c IN set_of_list (CONS cl cls) ==> clause c` THEN REWRITE_TAC[IN_SET_OF_LIST; MEM] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[INCORPORATE]; ALL_TAC] THEN DISCH_TAC THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `allntresolvents_sem M sub0 (set_of_list(used) UNION sub0) UNION allntresolvents_sem M {cl} (set_of_list(used) UNION sub0 UNION {cl})` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; ALL_TAC; GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [lemma1] THEN MATCH_MP_TAC ALLNTRESOLVENTS_SEM_STEP THEN ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY]] THEN GEN_REWRITE_TAC LAND_CONV [lemma2] THEN MATCH_MP_TAC SUBSUMES_UNION THEN CONJ_TAC THENL [REWRITE_TAC[GSYM lemma1] THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `sub0 UNION set_of_list(CONS (cl:form->bool) cls)` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[IN_UNION; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC SUBSUMES_UNION THEN REWRITE_TAC[SUBSUMES_REFL] THEN REWRITE_TAC[set_of_list] THEN ONCE_REWRITE_TAC[lemma1] THEN MATCH_MP_TAC SUBSUMES_UNION THEN REWRITE_TAC[SUBSUMES_REFL] THEN UNDISCH_TAC `!c. MEM c new ==> clause c` THEN UNDISCH_TAC `!c. c IN set_of_list (ITLIST (incorporate cl) new cls) ==> clause c` THEN MATCH_MP_TAC(TAUT `(b ==> a /\ c) ==> a ==> b ==> c`) THEN SPEC_TAC(`new:(form->bool)list`,`added:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; MEM; SUBSUMES_REFL] THENL [UNDISCH_TAC `!c. c IN set_of_list (CONS cl cls) ==> clause c` THEN REWRITE_TAC[set_of_list; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN MP_TAC(SPECL [`cl:form->bool`; `h:form->bool`; `ITLIST (incorporate cl) t cls`] INCORPORATE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[GSYM IN_SET_OF_LIST]; ALL_TAC] THEN SIMP_TAC[IN_SET_OF_LIST] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (K ALL_TAC)) THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `set_of_list(ITLIST (incorporate cl) t cls)` THEN ASM_SIMP_TAC[] THEN ASM_REWRITE_TAC[IN_SET_OF_LIST]; ALL_TAC] THEN REWRITE_TAC[GSYM UNION_ASSOC] THEN SUBGOAL_THEN `set_of_list(used:(form->bool)list) UNION sub0 = set_of_list(used0)` SUBST1_TAC THENL [MAP_EVERY EXPAND_TAC ["sub0"; "used0"; "ppp"] THEN REWRITE_TAC[GSYM Used_SEM] THEN REWRITE_TAC[USED_SUB]; ALL_TAC] THEN SUBGOAL_THEN `allntresolvents_sem M {cl} (set_of_list used0 UNION {cl}) = set_of_list(FILTER (\c. ~(tautologous c)) new)` SUBST1_TAC THENL [REWRITE_TAC[SET_OF_LIST_FILTER] THEN EXPAND_TAC "new" THEN REWRITE_TAC[resolvents_sem] THEN SUBGOAL_THEN `set_of_list(list_of_set (allresolvents_sem M {cl} (set_of_list(CONS cl used0)))) = allresolvents_sem M {cl} (set_of_list(CONS cl used0))` SUBST1_TAC THENL [REWRITE_TAC[set_of_list] THEN MATCH_MP_TAC SET_OF_LIST_OF_SET THEN MATCH_MP_TAC ALLRESOLVENTS_SEM_FINITE THEN SIMP_TAC[FINITE_RULES; FINITE_SET_OF_LIST] THEN ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; allntresolvents_sem; IN_ELIM_THM; set_of_list] THEN REWRITE_TAC[GSYM lemma1]; ALL_TAC] THEN UNDISCH_TAC `!c. MEM c new ==> clause c` THEN UNDISCH_TAC `!c. c IN set_of_list (ITLIST (incorporate cl) new cls) ==> clause c` THEN MATCH_MP_TAC(TAUT `(b ==> a /\ c) ==> a ==> b ==> c`) THEN SPEC_TAC(`new:(form->bool)list`,`added:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; MEM; FILTER] THENL [REWRITE_TAC[set_of_list; SUBSUMES; NOT_IN_EMPTY] THEN UNDISCH_TAC `!c. c IN set_of_list (CONS cl cls) ==> clause c` THEN REWRITE_TAC[set_of_list; IN_INSERT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN ASM_CASES_TAC `tautologous h` THEN ASM_SIMP_TAC[] THENL [MP_TAC(SPECL [`cl:form->bool`; `h:form->bool`; `ITLIST (incorporate cl) t cls`] INCORPORATE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[GSYM IN_SET_OF_LIST]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_SET_OF_LIST] THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `set_of_list (ITLIST (incorporate cl) t cls) UNION {cl}` THEN ASM_SIMP_TAC[SUBSUMES_UNION; SUBSUMES_REFL] THEN REWRITE_TAC[IN_UNION; NOT_IN_EMPTY; IN_INSERT; IN_ELIM_THM; IN_SET_OF_LIST] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(SPECL [`cl:form->bool`; `h:form->bool`; `ITLIST (incorporate cl) t cls`] INCORPORATE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[GSYM IN_SET_OF_LIST]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_SET_OF_LIST] THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `set_of_list(CONS h (ITLIST (incorporate cl) t cls)) UNION {cl}` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; IN_UNION] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[IN_SET_OF_LIST]; GEN_REWRITE_TAC LAND_CONV [lemma4] THEN ASM_SIMP_TAC[SUBSUMES_UNION; SUBSUMES_REFL]; REWRITE_TAC[set_of_list] THEN ONCE_REWRITE_TAC[lemma5] THEN GEN_REWRITE_TAC RAND_CONV [lemma1] THEN MATCH_MP_TAC SUBSUMES_UNION THEN REWRITE_TAC[SUBSUMES_REFL] THEN ASM_SIMP_TAC[]]);; (* ------------------------------------------------------------------------- *) (* More useful lemmas. *) (* ------------------------------------------------------------------------- *) let SUB_MONO_SUBSET = prove (`!init m n. m <= n ==> (Sub_SEM M init m) SUBSET (Sub_SEM M init n)`, REPEAT GEN_TAC THEN SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN DISCH_THEN(K ALL_TAC) THEN SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; SUBSET_REFL] THEN REWRITE_TAC[Sub_SEM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET_TRANS; SUBSET; IN_INSERT]);; let SUB_MONO = prove (`!init m n. m <= n ==> (Sub_SEM M init n) SUBSUMES (Sub_SEM M init m)`, MESON_TAC[SUBSUMES_SUBSET_REFL; SUB_MONO_SUBSET]);; let LENGTH_REPLACE = prove (`!cl current. LENGTH current <= LENGTH(replace cl current)`, GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[replace] THEN REWRITE_TAC[LENGTH; LE_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; LE_SUC; LE_REFL]);; let LENGTH_INCORPORATE = prove (`!gcl cl current. LENGTH current <= LENGTH(incorporate gcl cl current)`, REPEAT GEN_TAC THEN REWRITE_TAC[incorporate] THEN COND_CASES_TAC THEN REWRITE_TAC[LE_REFL; LENGTH_REPLACE]);; let LENGTH_UNUSED_CHANGE = prove (`!init m n. LENGTH(SND(given_sem M m init)) <= LENGTH (SND(given_sem M (m + n) init)) + n`, GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`used:(form->bool)list`; `unused:(form->bool)list`] THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; LE_REFL] THEN REWRITE_TAC[given_sem] THEN SUBST1_TAC(SYM(ISPEC `given_sem M (m + n) (used,unused)` PAIR)) THEN PURE_REWRITE_TAC[step_sem] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN COND_CASES_TAC THEN REWRITE_TAC[SND] THEN ASM_SIMP_TAC[ARITH_RULE `m <= n ==> m <= SUC n`] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `LENGTH (SND (given_sem M (m + n) (used,unused))) + n` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(SND (given_sem M (m + n) (used,unused)) = [])` THEN SPEC_TAC(`SND (given_sem M (m + n) (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL; TL; LENGTH] THEN MATCH_MP_TAC(ARITH_RULE `x <= y ==> SUC x + n <= SUC(y + n)`) THEN SPEC_TAC(`(resolvents_sem M (HD (CONS h t)) (CONS (HD (CONS h t)) (FST (given_sem M (m + n) (used,unused)))))`, `k:(form->bool)list`) THEN REWRITE_TAC[HD] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; LE_REFL] THEN ASM_MESON_TAC[LENGTH_INCORPORATE; LE_TRANS]);; let LENGTH_UNUSED_ZERO = prove (`!used unused m n. (SND (given_sem M m (used,unused)) = []) ==> (SND (given_sem M (m + n) (used,unused)) = [])`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[ADD_CLAUSES] THEN REWRITE_TAC[given_sem] THEN SUBST1_TAC(SYM(ISPEC `given_sem M (m + n) (used,unused)` PAIR)) THEN PURE_REWRITE_TAC[step_sem] THEN ASM_SIMP_TAC[]);; let REPLACE_SUBSUMES_SELF = prove (`!cl current n. n < LENGTH current ==> (EL n (replace cl current)) subsumes (EL n current)`, GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[replace; LENGTH; CONJUNCT1 LT] THEN INDUCT_TAC THEN REWRITE_TAC[EL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[HD; TL; EL; subsumes_REFL; LT_SUC]);; let INCORPORATE_SUBSUMES_SELF = prove (`!gcl cl current n. n < LENGTH current ==> (EL n (incorporate gcl cl current)) subsumes (EL n current)`, REPEAT GEN_TAC THEN REWRITE_TAC[incorporate] THEN COND_CASES_TAC THEN REWRITE_TAC[subsumes_REFL; REPLACE_SUBSUMES_SELF]);; let REPLACE_CLAUSE = prove (`!cl current. (!c. MEM c current ==> clause c) /\ clause cl ==> !c. MEM c (replace cl current) ==> clause c`, GEN_TAC THEN LIST_INDUCT_TAC THEN SIMP_TAC[replace; MEM] THEN STRIP_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[MEM] THEN ASM_MESON_TAC[]);; let INCORPORATE_CLAUSE = prove (`(!c. MEM c current ==> clause c) /\ clause cl ==> !c. MEM c (incorporate gcl cl current) ==> clause c`, REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN REWRITE_TAC[incorporate] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REPLACE_CLAUSE]);; let INCORPORATE_CLAUSE_EL = prove (`(!c. MEM c current ==> clause c) /\ clause cl /\ p < LENGTH current ==> clause (EL p (incorporate gcl cl current))`, MESON_TAC[MEM_EL; INCORPORATE_CLAUSE; LENGTH_INCORPORATE; LTE_TRANS]);; let UNUSED_SUBSUMES_SELF = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !k m n. n + k < LENGTH(SND(given_sem M m (used,unused))) ==> (EL n (SND(given_sem M (m + k) (used,unused)))) subsumes (EL (n + k) (SND(given_sem M m (used,unused))))`, REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; subsumes_REFL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`SUC m`; `n:num`]) THEN REWRITE_TAC[ADD_CLAUSES] THEN ANTS_TAC THENL [MP_TAC(SPECL [`(used:(form->bool)list,unused:(form->bool)list)`; `m:num`; `1`] LENGTH_UNUSED_CHANGE) THEN REWRITE_TAC[ADD1] THEN MATCH_MP_TAC(ARITH_RULE `SUC x < lm ==> lm <= lm1 + 1 ==> x < lm1`) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ c ==> b ==> d`] subsumes_TRANS) THEN CONJ_TAC THENL [SUBGOAL_THEN `(EL n (SND (given_sem M (SUC (m + k)) (used,unused)))) IN Unused_SEM M(used,unused) (SUC(m + k))` (fun th -> ASM_MESON_TAC[th; GIVEN_INVARIANT]) THEN REWRITE_TAC[Unused_SEM; IN_SET_OF_LIST] THEN MATCH_MP_TAC MEM_EL THEN MP_TAC(SPECL [`(used:(form->bool)list,unused:(form->bool)list)`; `m:num`; `SUC k`] LENGTH_UNUSED_CHANGE) THEN UNDISCH_TAC `SUC (n + k) < LENGTH (SND (given_sem M m (used,unused)))` THEN REWRITE_TAC[ADD_CLAUSES] THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[given_sem] THEN SUBST1_TAC(SYM(ISPEC `given_sem M m (used,unused)` PAIR)) THEN PURE_REWRITE_TAC[step_sem] THEN LET_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[SND] THENL [UNDISCH_TAC `SUC (n + k) < LENGTH (SND (given_sem M m (used,unused)))` THEN ASM_REWRITE_TAC[LENGTH; LT]; ALL_TAC] THEN UNDISCH_TAC `SUC (n + k) < LENGTH (SND (given_sem M m (used,unused)))` THEN SUBGOAL_THEN `!c. MEM c (SND (given_sem M m (used,unused))) ==> clause c` MP_TAC THENL [REWRITE_TAC[GSYM IN_SET_OF_LIST; GSYM Unused_SEM] THEN ASM_MESON_TAC[GIVEN_INVARIANT]; ALL_TAC] THEN SUBGOAL_THEN `!c. MEM c new ==> clause c` MP_TAC THENL [EXPAND_TAC "new" THEN REWRITE_TAC[resolvents_sem; set_of_list] THEN ABBREV_TAC `gcl = HD (SND (given_sem M m (used,unused)))` THEN REWRITE_TAC[GSYM Used_SEM] THEN SUBGOAL_THEN `!c. MEM c (list_of_set (allresolvents_sem M {gcl} (gcl INSERT Used_SEM M (used,unused) m))) <=> c IN (allresolvents_sem M {gcl} (gcl INSERT Used_SEM M (used,unused) m))` (fun th -> REWRITE_TAC[th]) THENL [MATCH_MP_TAC MEM_LIST_OF_SET THEN MATCH_MP_TAC ALLRESOLVENTS_SEM_FINITE THEN SIMP_TAC[FINITE_RULES; FINITE_SET_OF_LIST] THEN ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[FINITE_INSERT] THEN REWRITE_TAC[Used_SEM; FINITE_SET_OF_LIST] THEN REWRITE_TAC[GSYM Used_SEM]; MATCH_MP_TAC ALLRESOLVENTS_SEM_CLAUSE THEN ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY]] THEN SUBGOAL_THEN `clause gcl` (fun th -> ASM_MESON_TAC[th; GIVEN_INVARIANT]) THEN SUBGOAL_THEN `gcl IN Unused_SEM M(used,unused) m` (fun th -> ASM_MESON_TAC[th; GIVEN_INVARIANT]) THEN REWRITE_TAC[Unused_SEM; IN_SET_OF_LIST] THEN EXPAND_TAC "gcl" THEN UNDISCH_TAC `~(SND(given_sem M m (used,unused)) = [])` THEN SPEC_TAC(`SND(given_sem M m (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; HD]; ALL_TAC] THEN DISCH_TAC THEN UNDISCH_TAC `~(SND (given_sem M m (used,unused)) = [])` THEN SPEC_TAC(`SND(given_sem M m (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[NOT_CONS_NIL; EL; HD; TL] THEN REWRITE_TAC[LENGTH; LT_SUC] THEN UNDISCH_TAC `!c. MEM c new ==> clause c` THEN SPEC_TAC(`n + k:num`,`p:num`) THEN SPEC_TAC(`new:(form->bool)list`,`new:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; subsumes_REFL] THEN X_GEN_TAC `p:num` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[MEM]; ALL_TAC] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] subsumes_TRANS) THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC INCORPORATE_SUBSUMES_SELF THEN UNDISCH_TAC `p < LENGTH(t:(form->bool)list)` THEN SPEC_TAC(`t':(form->bool)list`,`k:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST] THEN ASM_MESON_TAC[LENGTH_INCORPORATE; LTE_TRANS]] THEN MATCH_MP_TAC INCORPORATE_CLAUSE_EL THEN CONJ_TAC THENL [ALL_TAC; CONJ_TAC THENL [ASM_MESON_TAC[MEM]; ALL_TAC] THEN SUBGOAL_THEN `!gcl current lis. LENGTH(current) <= LENGTH(ITLIST (incorporate gcl) lis current)` (fun th -> ASM_MESON_TAC[LTE_TRANS; th]) THEN GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; LE_REFL] THEN ASM_MESON_TAC[LE_TRANS; LENGTH_INCORPORATE]] THEN SUBGOAL_THEN `!current gcl new. (!c. MEM c current ==> clause c) /\ (!c. MEM c new ==> clause c) ==> !c. MEM c (ITLIST (incorporate gcl) new current) ==> clause c` MATCH_MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[MEM]] THEN POP_ASSUM_LIST(K ALL_TAC) THEN GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; MEM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INCORPORATE_CLAUSE]);; let SUB_SUBSUMES_UNUSED = prove (`(!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !n. Sub_SEM M (used,unused) (n + LENGTH(SND(given_sem M n (used,unused)))) SUBSUMES (Sub_SEM M (used,unused) n UNION Unused_SEM M(used,unused) n)`, let lemma = prove(`x INSERT s = {x} UNION s`,SET_TAC[]) in REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!m n. Sub_SEM M (used,unused) (m + n) SUBSUMES Sub_SEM M (used,unused) m UNION set_of_list(FIRSTN n (SND(given_sem M m (used,unused))))` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[LE_REFL; FIRSTN_TRIVIAL; Unused_SEM]] THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THENL [REWRITE_TAC[FIRSTN; set_of_list; UNION_EMPTY; SUBSUMES_REFL]; ALL_TAC] THEN REWRITE_TAC[Sub_SEM] THEN COND_CASES_TAC THENL [SUBGOAL_THEN `FIRSTN (SUC n) (SND(given_sem M m (used,unused))) = FIRSTN n (SND(given_sem M m (used,unused)))` (fun th -> ASM_REWRITE_TAC[th]) THEN SUBGOAL_THEN `LENGTH(SND (given_sem M m (used,unused))) <= n` (fun th -> MESON_TAC[th; FIRSTN_TRIVIAL; LE_REFL; ARITH_RULE `x <= n ==> x <= SUC n`]) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `LENGTH(SND (given_sem M (m + n) (used,unused))) + n` THEN ASM_REWRITE_TAC[LENGTH_UNUSED_CHANGE; LENGTH; ADD_CLAUSES; LE_REFL]; ALL_TAC] THEN REWRITE_TAC[FIRSTN] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[LENGTH_UNUSED_ZERO]; ALL_TAC] THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `HD(SND (given_sem M (m + n) (used,unused))) INSERT (Sub_SEM M (used,unused) m UNION set_of_list (FIRSTN n (SND (given_sem M m (used,unused)))))` THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT] THEN SUBGOAL_THEN `HD(SND(given_sem M (m + n) (used,unused))) IN Unused_SEM M (used,unused) (m + n)` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[GIVEN_INVARIANT]] THEN UNDISCH_TAC `~(SND(given_sem M (m + n) (used,unused)) = [])` THEN REWRITE_TAC[Unused_SEM; IN_SET_OF_LIST] THEN SPEC_TAC(`SND(given_sem M(m + n) (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; HD]; ALL_TAC] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[lemma] THEN MATCH_MP_TAC SUBSUMES_UNION THEN ASM_REWRITE_TAC[SUBSUMES_REFL]; ALL_TAC] THEN REWRITE_TAC[set_of_list] THEN ONCE_REWRITE_TAC[lemma] THEN GEN_REWRITE_TAC LAND_CONV [AC UNION_ACI `s UNION t UNION u = t UNION u UNION s`] THEN MATCH_MP_TAC SUBSUMES_UNION THEN ASM_REWRITE_TAC[SUBSUMES_REFL] THEN SUBGOAL_THEN `{(HD (SND (given_sem M m (used,unused))))} UNION set_of_list(FIRSTN n (TL (SND (given_sem M m (used,unused))))) = set_of_list(FIRSTN (SUC n) (SND (given_sem M m (used,unused))))` SUBST1_TAC THENL [ASM_REWRITE_TAC[FIRSTN] THEN UNDISCH_TAC `~(SND (given_sem M m (used,unused)) = [])` THEN REWRITE_TAC[set_of_list] THEN SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `LENGTH(SND (given_sem M m (used,unused))) <= n` THENL [ASM_SIMP_TAC[FIRSTN_SHORT] THEN MATCH_MP_TAC SUBSUMES_SUBSET THEN EXISTS_TAC `set_of_list(FIRSTN n (SND (given_sem M m (used,unused))))` THEN REWRITE_TAC[SUBSUMES_REFL] THEN SIMP_TAC[SUBSET; IN_UNION]; ALL_TAC] THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `set_of_list(FIRSTN n (SND (given_sem M m (used,unused)))) UNION {(EL n (SND (given_sem M m (used,unused))))}` THEN CONJ_TAC THENL [REWRITE_TAC[IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM Unused_SEM] THEN REWRITE_TAC[IN_SET_OF_LIST] THEN X_GEN_TAC `c:form->bool` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [DISCH_THEN(MP_TAC o MATCH_MP FIRSTN_SUBLIST) THEN REWRITE_TAC[GSYM IN_SET_OF_LIST; GSYM Unused_SEM] THEN ASM_MESON_TAC[GIVEN_INVARIANT]; ALL_TAC] THEN DISCH_THEN SUBST1_TAC THEN SUBGOAL_THEN `(HD(SND (given_sem M (m + n) (used,unused)))) IN Unused_SEM M(used,unused) (m + n)` (fun th -> ASM_MESON_TAC[th; GIVEN_INVARIANT]) THEN REWRITE_TAC[Unused_SEM; IN_SET_OF_LIST] THEN UNDISCH_TAC `~(SND (given_sem M (m + n) (used,unused)) = [])` THEN SPEC_TAC(`SND (given_sem M (m + n) (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; HD]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC SUBSUMES_SUBSET THEN EXISTS_TAC `set_of_list (FIRSTN (SUC n) (SND (given_sem M m (used,unused))))` THEN REWRITE_TAC[SUBSUMES_REFL] THEN MP_TAC(GEN `x:form->bool` (ISPECL [`x:form->bool`; `n:num`; `SND (given_sem M m (used,unused))`] FIRSTN_SUC)) THEN REWRITE_TAC[GSYM IN_SET_OF_LIST; SET_OF_LIST_APPEND; set_of_list] THEN REWRITE_TAC[SUBSET; IN_UNION; IN_INSERT; NOT_IN_EMPTY]] THEN MATCH_MP_TAC SUBSUMES_UNION THEN REWRITE_TAC[SUBSUMES_REFL] THEN REWRITE_TAC[SUBSUMES; IN_INSERT; NOT_IN_EMPTY] THEN SUBGOAL_THEN `HD(SND(given_sem M (m + n) (used,unused))) subsumes (EL n (SND (given_sem M m (used,unused))))` (fun th -> MESON_TAC[th]) THEN GEN_REWRITE_TAC LAND_CONV [GSYM(CONJUNCT1 EL)] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [ARITH_RULE `n = 0 + n`] THEN MP_TAC(SPECL [`used:(form->bool)list`; `unused:(form->bool)list`] UNUSED_SUBSUMES_SELF) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN UNDISCH_TAC `~(LENGTH (SND (given_sem M m (used,unused))) <= n)` THEN ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Separation into levels. *) (* ------------------------------------------------------------------------- *) let break_sem = new_recursive_definition num_RECURSION `(break_sem M init 0 = LENGTH(SND(given_sem M 0 init))) /\ (break_sem M init (SUC n) = break_sem M init n + LENGTH(SND(given_sem M (break_sem M init n) init)))`;; let level_sem = new_definition `level_sem M init n = Sub_SEM M init (break_sem M init n)`;; let LEVEL_0 = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> level_sem M (used,unused) 0 SUBSUMES set_of_list(unused)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUB_SUBSUMES_UNUSED) THEN DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[ADD_CLAUSES; Sub_SEM; UNION_EMPTY] THEN REWRITE_TAC[Unused_SEM; given_sem; level_sem; Sub_SEM; break_sem]);; let LEVEL_STEP = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !n. level_sem M (used,unused) (SUC n) SUBSUMES allntresolvents_sem M (level_sem M (used,unused) (n)) (set_of_list(used) UNION level_sem M (used,unused) (n))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `Sub_SEM M (used,unused) (break_sem M(used,unused) n) UNION Unused_SEM M(used,unused) (break_sem M(used,unused) n)` THEN REWRITE_TAC[level_sem] THEN (**** why does ASM_SIMP_TAC[GIVEN_INVARIANT] seem to loop??? ***) REPEAT CONJ_TAC THENL [ASM_MESON_TAC[GIVEN_INVARIANT]; ALL_TAC; ASM_MESON_TAC[GIVEN_INVARIANT]] THEN REWRITE_TAC[break_sem] THEN ASM_SIMP_TAC[SUB_SUBSUMES_UNUSED]);; let level_CLAUSE = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !n c. c IN (level_sem M (used,unused) n) ==> clause c`, REWRITE_TAC[level_sem] THEN MESON_TAC[GIVEN_INVARIANT]);; let BREAK_MONO = prove (`!init m n. m <= n ==> break_sem M init m <= break_sem M init n`, SUBGOAL_THEN `!init m d. break_sem M init m <= break_sem M init (m + d)` (fun th -> MESON_TAC[th; LE_EXISTS]) THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; break_sem; LE_REFL] THEN ASM_MESON_TAC[LE_TRANS; LE_ADD]);; let level_MONO_SUBSET = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !m n. m <= n ==> level_sem M (used,unused) m SUBSET level_sem M (used,unused) n`, REWRITE_TAC[level_sem] THEN MESON_TAC[SUB_MONO_SUBSET; BREAK_MONO]);; let level_MONO = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) ==> !m n. m <= n ==> level_sem M (used,unused) n SUBSUMES level_sem M (used,unused) m`, REWRITE_TAC[level_sem] THEN MESON_TAC[SUB_MONO; BREAK_MONO]);; (* ------------------------------------------------------------------------- *) (* Show how subsumption propagates through resolvents_sem. *) (* ------------------------------------------------------------------------- *) let ISARESOLVENT_SEM_SUBSUME_L = prove (`!p p' q r. clause p /\ clause p' /\ clause q /\ p' subsumes p /\ isaresolvent_sem M r (p,q) ==> p' subsumes r \/ ?r'. isaresolvent_sem M r' (p',q) /\ r' subsumes r`, REWRITE_TAC[isaresolvent_sem] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[HOLDS_INTERP_SUBSUME; ISARESOLVENT_SUBSUME_L]);; let ISARESOLVENT_SEM_SUBSUME_R = prove (`!p q q' r. clause p /\ clause q /\ clause q' /\ q' subsumes q /\ isaresolvent_sem M r (p,q) ==> q' subsumes r \/ ?r'. isaresolvent_sem M r' (p,q') /\ r' subsumes r`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`q:form->bool`; `p:form->bool`; `r:form->bool`] ISARESOLVENT_SEM_SYM) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r':form->bool` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`q:form->bool`; `q':form->bool`; `p:form->bool`; `r':form->bool`] ISARESOLVENT_SEM_SUBSUME_L) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [DISJ1_TAC THEN MATCH_MP_TAC subsumes_TRANS THEN EXISTS_TAC `r':form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r'':form->bool` STRIP_ASSUME_TAC) THEN DISJ2_TAC THEN MP_TAC(SPECL [`p:form->bool`; `q':form->bool`; `r'':form->bool`] ISARESOLVENT_SEM_SYM) THEN ASM_REWRITE_TAC[] THEN ASM MESON_TAC[ISARESOLVENT_SEM_CLAUSE; subsumes_TRANS]);; let ISARESOLVENT_SEM_SUBSUME = prove (`!p p' q q' r. clause p /\ clause p' /\ clause q /\ clause q' /\ p' subsumes p /\ q' subsumes q /\ isaresolvent_sem M r (p,q) ==> p' subsumes r \/ q' subsumes r \/ ?r'. isaresolvent_sem M r' (p',q') /\ r' subsumes r`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:form->bool`; `q:form->bool`; `q':form->bool`; `r:form->bool`] ISARESOLVENT_SEM_SUBSUME_R) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `r':form->bool` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`p:form->bool`; `p':form->bool`; `q':form->bool`; `r':form->bool`] ISARESOLVENT_SEM_SUBSUME_L) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[subsumes_TRANS; ISARESOLVENT_SEM_CLAUSE]);; let ALLRESOLVENTS_SEM_SUBSUME_L = prove (`!s t u. (!c. c IN s ==> clause c) /\ (!c. c IN t ==> clause c) /\ (!c. c IN u ==> clause c) /\ s SUBSUMES t ==> (s UNION (allresolvents_sem M s u)) SUBSUMES (allresolvents_sem M t u)`, REWRITE_TAC[SUBSUMES; IN_UNION; allresolvents_sem; IN_ELIM_THM] THEN MESON_TAC[ISARESOLVENT_SEM_SUBSUME_L; subsumes_REFL]);; let ALLRESOLVENTS_SEM_SUBSUME_R = prove (`!s t u. (!c. c IN s ==> clause c) /\ (!c. c IN t ==> clause c) /\ (!c. c IN u ==> clause c) /\ t SUBSUMES u ==> (t UNION (allresolvents_sem M s t)) SUBSUMES (allresolvents_sem M s u)`, REWRITE_TAC[SUBSUMES; IN_UNION; allresolvents_sem; IN_ELIM_THM] THEN MESON_TAC[ISARESOLVENT_SEM_SUBSUME_R; subsumes_REFL]);; let ALLRESOLVENTS_SEM_SUBSUME = prove (`!s t s' t'. (!c. c IN s ==> clause c) /\ (!c. c IN s' ==> clause c) /\ (!c. c IN t ==> clause c) /\ (!c. c IN t' ==> clause c) /\ s SUBSUMES s' /\ t SUBSUMES t' ==> (s UNION t UNION (allresolvents_sem M s t)) SUBSUMES (allresolvents_sem M s' t')`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSUMES_TRANS THEN EXISTS_TAC `s UNION (allresolvents_sem M s t')` THEN ASM_SIMP_TAC[ALLRESOLVENTS_SEM_SUBSUME_L; ALLRESOLVENTS_SEM_SUBSUME_R; SUBSUMES_UNION; SUBSUMES_REFL; IN_UNION] THEN ASM_MESON_TAC[ALLRESOLVENTS_SEM_CLAUSE]);; (* ------------------------------------------------------------------------- *) (* Show how the tautology elimination doesn't hurt us. *) (* ------------------------------------------------------------------------- *) let ISARESOLVENT_SEM_TAUTOLOGY_L = prove (`!p q r. clause p /\ clause q /\ tautologous(p) /\ isaresolvent_sem M r (p,q) ==> tautologous(r) \/ q subsumes r`, MESON_TAC[isaresolvent_sem; ISARESOLVENT_TAUTOLOGY_L]);; let TAUTOLOGOUS_SUBSUMES = prove (`!p q. p subsumes q /\ tautologous(p) ==> tautologous(q)`, MESON_TAC[subsumes; tautologous; SUBSET; TAUTOLOGOUS_INSTANCE]);; let ISARESOLVENT_SEM_TAUTOLOGY_R = prove (`!p q r. clause p /\ clause q /\ tautologous(p) /\ isaresolvent_sem M r (q,p) ==> tautologous(r) \/ q subsumes r`, MESON_TAC[ISARESOLVENT_SEM_SYM; ISARESOLVENT_SEM_TAUTOLOGY_L; subsumes_TRANS; TAUTOLOGOUS_SUBSUMES]);; (* ------------------------------------------------------------------------- *) (* Show that everything in the levels comes from initial unused or one of *) (* the new resolvents generated. Hence, unless it was in the initial unused, *) (* it will be detected if we just scan the new resolvents each cycle. *) (* ------------------------------------------------------------------------- *) let UNUSED_FROMNEW = prove (`!used unused c n. MEM c (SND(given_sem M n (used,unused))) ==> MEM c unused \/ ?m. m < n /\ MEM c (resolvents_sem M (HD(SND(given_sem M m (used,unused)))) (CONS (HD(SND(given_sem M m (used,unused)))) (FST(given_sem M m (used,unused)))))`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[given_sem] THEN SUBST1_TAC(SYM(ISPEC `given_sem M n (used,unused)` PAIR)) THEN PURE_REWRITE_TAC[step_sem] THEN COND_CASES_TAC THEN REWRITE_TAC[] THENL [ASM_MESON_TAC[ARITH_RULE `x < n ==> x < SUC n`]; ALL_TAC] THEN LET_TAC THEN REWRITE_TAC[SND] THEN DISCH_THEN(MP_TAC o MATCH_MP ITLIST_INCORPORATE_FROMNEW) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[LT]; ALL_TAC] THEN SUBGOAL_THEN `MEM c (SND (given_sem M n (used,unused)))` (fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THENL [UNDISCH_TAC `MEM c (TL (SND (given_sem M n (used,unused))))` THEN UNDISCH_TAC `~(SND (given_sem M n (used,unused)) = [])` THEN SPEC_TAC(`SND (given_sem M n (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN SIMP_TAC[MEM; TL]; ALL_TAC] THEN MESON_TAC[ARITH_RULE `x < n ==> x < SUC n`]);; let SUB_FROMNEW = prove (`!used unused c n. c IN Sub_SEM M (used,unused) n ==> MEM c unused \/ ?m. m < n /\ MEM c (resolvents_sem M (HD(SND(given_sem M m (used,unused)))) (CONS (HD(SND(given_sem M m (used,unused)))) (FST(given_sem M m (used,unused)))))`, let lemma = prove (`!l. ~(l = []) ==> MEM (HD l) l`, LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; HD]) in GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[Sub_SEM; NOT_IN_EMPTY] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[ARITH_RULE `x < n ==> x < SUC n`]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT] THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[ARITH_RULE `x < n ==> x < SUC n`]] THEN SUBGOAL_THEN `MEM c (SND(given_sem M n (used,unused)))` (fun th -> MP_TAC(MATCH_MP UNUSED_FROMNEW th)) THENL [ALL_TAC; MESON_TAC[ARITH_RULE `x < n ==> x < SUC n`]] THEN UNDISCH_TAC `~(SND (given_sem M n (used,unused)) = [])` THEN ASM_REWRITE_TAC[] THEN SPEC_TAC(`SND (given_sem M n (used,unused))`,`l:(form->bool)list`) THEN LIST_INDUCT_TAC THEN SIMP_TAC[MEM; TL; HD]);; let LEVEL_FROMNEW = prove (`!used unused c n. c IN level_sem M (used,unused) n ==> MEM c unused \/ ?m. MEM c (resolvents_sem M (HD(SND(given_sem M m (used,unused)))) (CONS (HD(SND(given_sem M m (used,unused)))) (FST(given_sem M m (used,unused)))))`, REWRITE_TAC[level_sem] THEN MESON_TAC[SUB_FROMNEW]);;