(* ========================================================================= *) (* Liouville approximation theorem. *) (* ========================================================================= *) needs "Library/floor.ml";; needs "Library/poly.ml";; (* ------------------------------------------------------------------------- *) (* Definition of algebraic and transcendental. *) (* ------------------------------------------------------------------------- *) let algebraic = new_definition `algebraic(x) <=> ?p. ALL integer p /\ ~(poly p = poly []) /\ poly p x = &0`;; let transcendental = new_definition `transcendental(x) <=> ~(algebraic x)`;; (* ------------------------------------------------------------------------- *) (* Some trivialities. *) (* ------------------------------------------------------------------------- *) let REAL_INTEGER_EQ_0 = prove (`!x. integer x /\ abs(x) < &1 ==> x = &0`, MESON_TAC[REAL_ABS_INTEGER_LEMMA; REAL_NOT_LE]);; let FACT_LE_REFL = prove (`!n. n <= FACT n`, INDUCT_TAC THEN REWRITE_TAC[FACT; ARITH] THEN MATCH_MP_TAC(ARITH_RULE `x * 1 <= a ==> x <= a`) THEN REWRITE_TAC[LE_MULT_LCANCEL; NOT_SUC; FACT_LT; ARITH_RULE `1 <= n <=> 0 < n`]);; let EXP_LE_REFL = prove (`!a. 1 < a ==> !n. n <= a EXP n`, GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE `n <= x ==> 1 * x < y ==> SUC n <= y`)) THEN REWRITE_TAC[LT_MULT_RCANCEL; EXP_EQ_0] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Inequality variant of mean value theorem. *) (* ------------------------------------------------------------------------- *) let MVT_INEQ = prove (`!f f' a d M. &0 < M /\ &0 < d /\ (!x. abs(x - a) <= d ==> (f diffl f'(x)) x /\ abs(f' x) < M) ==> !x. abs(x - a) <= d ==> abs(f x - f a) < M * d`, REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `x = a \/ x < a \/ a < x`) THENL [ASM_SIMP_TAC[REAL_SUB_REFL; REAL_ABS_NUM; REAL_LT_MUL]; MP_TAC(SPECL [`f:real->real`; `f':real->real`; `x:real`; `a:real`] MVT_ALT); MP_TAC(SPECL [`f:real->real`; `f':real->real`; `a:real`; `x:real`] MVT_ALT)] THEN (ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC; ALL_TAC]) THEN STRIP_TAC THENL [ONCE_REWRITE_TAC[REAL_ABS_SUB]; ALL_TAC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d * abs(f'(z:real))` THEN (CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_RMUL; MATCH_MP_TAC REAL_LT_LMUL THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC]) THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Appropriate multiple of poly on rational is an integer. *) (* ------------------------------------------------------------------------- *) let POLY_MULTIPLE_INTEGER = prove (`!p q l. ALL integer l ==> integer(&q pow (LENGTH l) * poly l (&p / &q))`, GEN_TAC THEN GEN_TAC THEN ASM_CASES_TAC `q = 0` THENL [LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_MUL_RZERO; INTEGER_CLOSED] THEN ASM_REWRITE_TAC[LENGTH; real_pow; REAL_MUL_LZERO; INTEGER_CLOSED]; ALL_TAC] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[poly; REAL_MUL_RZERO; INTEGER_CLOSED] THEN REWRITE_TAC[LENGTH; real_pow; ALL] THEN DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `(q * qp) * (h + pq * pol) = q * h * qp + (q * pq) * (qp * pol)`] THEN ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ] THEN MATCH_MP_TAC(el 1 (CONJUNCTS INTEGER_CLOSED)) THEN ASM_SIMP_TAC[INTEGER_CLOSED]);; (* ------------------------------------------------------------------------- *) (* First show any root is surrounded by an other-root-free zone. *) (* ------------------------------------------------------------------------- *) let SEPARATE_FINITE_SET = prove (`!a s. FINITE s ==> ~(a IN s) ==> ?d. &0 < d /\ !x. x IN s ==> d <= abs(x - a)`, GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN CONJ_TAC THENL [MESON_TAC[REAL_LT_01]; ALL_TAC] THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN EXISTS_TAC `min d (abs(x - a))` THEN ASM_REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; GSYM REAL_ABS_NZ; REAL_SUB_0] THEN ASM_MESON_TAC[REAL_LE_REFL]);; let POLY_ROOT_SEPARATE_LE = prove (`!p x. poly p x = &0 /\ ~(poly p = poly []) ==> ?d. &0 < d /\ !x'. &0 < abs(x' - x) /\ abs(x' - x) < d ==> ~(poly p x' = &0)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`x:real`; `{x | poly p x = &0} DELETE x`] SEPARATE_FINITE_SET) THEN ASM_SIMP_TAC[POLY_ROOTS_FINITE_SET; FINITE_DELETE; IN_DELETE] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_SUB_0] THEN MESON_TAC[REAL_NOT_LT]);; let POLY_ROOT_SEPARATE_LT = prove (`!p x. poly p x = &0 /\ ~(poly p = poly []) ==> ?d. &0 < d /\ !x'. &0 < abs(x' - x) /\ abs(x' - x) <= d ==> ~(poly p x' = &0)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP POLY_ROOT_SEPARATE_LE) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d / &2` THEN ASM_MESON_TAC[REAL_ARITH `&0 < d ==> &0 < d / &2 /\ (x <= d / &2 ==> x < d)`]);; (* ------------------------------------------------------------------------- *) (* And also there is a positive bound on a polynomial in an interval. *) (* ------------------------------------------------------------------------- *) let POLY_BOUND_INTERVAL = prove (`!p d x. ?M. &0 < M /\ !x'. abs(x' - x) <= d ==> abs(poly p x') < M`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`poly p`; `x - d`; `x + d`] CONT_BOUNDED_ABS) THEN REWRITE_TAC[REWRITE_RULE[ETA_AX] (SPEC_ALL POLY_CONT)] THEN DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN EXISTS_TAC `&1 + abs M` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `M:real` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN POP_ASSUM MP_TAC; ALL_TAC] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Now put these together to get the interval we need. *) (* ------------------------------------------------------------------------- *) let LIOUVILLE_INTERVAL = prove (`!p x. poly p x = &0 /\ ~(poly p = poly []) ==> ?c. &0 < c /\ (!x'. abs(x' - x) <= c ==> abs(poly(poly_diff p) x') < &1 / c) /\ (!x'. &0 < abs(x' - x) /\ abs(x' - x) <= c ==> ~(poly p x' = &0))`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`p:real list`; `x:real`] POLY_ROOT_SEPARATE_LT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`poly_diff p`; `d:real`; `x:real`] POLY_BOUND_INTERVAL) THEN DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN EXISTS_TAC `min d (inv M)` THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_LE_MIN; REAL_LT_INV_EQ] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `M:real` THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_INV_INV] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN] THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ; REAL_LE_REFL]);; (* ------------------------------------------------------------------------- *) (* Liouville's approximation theorem. *) (* ------------------------------------------------------------------------- *) let LIOUVILLE = prove (`!x. algebraic x ==> ?n c. c > &0 /\ !p q. ~(q = 0) ==> &p / &q = x \/ abs(x - &p / &q) > c / &q pow n`, GEN_TAC THEN REWRITE_TAC[algebraic; real_gt] THEN DISCH_THEN(X_CHOOSE_THEN `l:real list` STRIP_ASSUME_TAC) THEN EXISTS_TAC `LENGTH(l:real list)` THEN MP_TAC(SPECL [`l:real list`; `x:real`] LIOUVILLE_INTERVAL) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE] THEN MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN DISCH_TAC THEN ASM_CASES_TAC `&p / &q = x` THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `!x'. &0 < abs(x' - x) /\ abs(x' - x) <= c ==> ~(poly l x' = &0)` THEN DISCH_THEN(MP_TAC o SPEC `&p / &q`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[GSYM REAL_ABS_NZ; REAL_SUB_0]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `abs(x - y) <= d ==> d <= e ==> abs(y - x) <= e`)) THEN ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LE_LDIV_EQ; LT_NZ] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC REAL_POW_LE_1 THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN UNDISCH_TAC `~(q = 0)` THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&q pow (LENGTH(l:real list)) * poly l (&p / &q) = &0` MP_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_OF_NUM_EQ]] THEN MATCH_MP_TAC REAL_INTEGER_EQ_0 THEN ASM_SIMP_TAC[POLY_MULTIPLE_INTEGER] THEN MP_TAC(SPECL [`poly l`; `poly(poly_diff l)`; `x:real`; `c / &q pow (LENGTH(l:real list))`; `&1 / c`] MVT_INEQ) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; LT_NZ; REAL_POW_LT] THEN ANTS_TAC THENL [REWRITE_TAC[REWRITE_RULE[ETA_AX] (SPEC_ALL POLY_DIFF)] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x <= d ==> d <= e ==> x <= e`)) THEN ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LE_LDIV_EQ; LT_NZ] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC REAL_POW_LE_1 THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN UNDISCH_TAC `~(q = 0)` THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[real_div; REAL_MUL_ASSOC; REAL_MUL_LID] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_LT_IMP_NZ] THEN REWRITE_TAC[GSYM real_div] THEN DISCH_THEN(MP_TAC o SPEC `&p / &q`) THEN REWRITE_TAC[REAL_SUB_RZERO] THEN ONCE_REWRITE_TAC[REAL_ABS_SUB] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_POW_LT; REAL_OF_NUM_LT; REAL_LT_RDIV_EQ; LT_NZ] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN REWRITE_TAC[REAL_MUL_AC]);; (* ------------------------------------------------------------------------- *) (* Corollary for algebraic irrationals. *) (* ------------------------------------------------------------------------- *) let LIOUVILLE_IRRATIONAL = prove (`!x. algebraic x /\ ~rational x ==> ?n c. c > &0 /\ !p q. ~(q = 0) ==> abs(x - &p / &q) > c / &q pow n`, REWRITE_TAC[RATIONAL_ALT] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP LIOUVILLE) THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN ASM_MESON_TAC[LIOUVILLE; REAL_ABS_DIV; REAL_ABS_NUM]);; (* ------------------------------------------------------------------------- *) (* Liouville's constant. *) (* ------------------------------------------------------------------------- *) let liouville = new_definition `liouville = suminf (\n. &1 / &10 pow (FACT n))`;; (* ------------------------------------------------------------------------- *) (* Some bounds on the partial sums and hence convergence. *) (* ------------------------------------------------------------------------- *) let LIOUVILLE_SUM_BOUND = prove (`!d n. ~(n = 0) ==> sum(n..n+d) (\k. &1 / &10 pow FACT k) <= &2 / &10 pow (FACT n)`, INDUCT_TAC THEN GEN_TAC THEN DISCH_TAC THENL [REWRITE_TAC[ADD_CLAUSES; SUM_SING_NUMSEG; real_div] THEN MATCH_MP_TAC REAL_LE_RMUL THEN SIMP_TAC[REAL_LE_INV_EQ; REAL_POW_LE; REAL_OF_NUM_LE; ARITH]; ALL_TAC] THEN SIMP_TAC[SUM_CLAUSES_LEFT; LE_ADD] THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC(REAL_ARITH `y <= x ==> &1 * x + y <= &2 * x`) THEN REWRITE_TAC[ARITH_RULE `n + SUC d = (n + 1) + d`; GSYM real_div] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n + 1`) THEN REWRITE_TAC[ADD_EQ_0; ARITH] THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN SIMP_TAC[GSYM REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH; FACT_MONO; LE_ADD] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&10 pow 1` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC REAL_POW_MONO] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM ADD1; FACT] THEN MATCH_MP_TAC(ARITH_RULE `1 * x <= SUC n * x /\ ~(n * x = 0) ==> 1 <= SUC n * x - x`) THEN ASM_SIMP_TAC[LE_MULT_RCANCEL; MULT_EQ_0] THEN REWRITE_TAC[GSYM LT_NZ; FACT_LT] THEN ARITH_TAC);; let LIOUVILLE_PSUM_BOUND = prove (`!n d. ~(n = 0) ==> sum(n,d) (\k. &1 / &10 pow FACT k) <= &2 / &10 pow (FACT n)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `d = 0` THEN ASM_SIMP_TAC[sum; REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN ASM_SIMP_TAC[PSUM_SUM_NUMSEG] THEN ASM_SIMP_TAC[ARITH_RULE `~(d = 0) ==> (n + d) - 1 = n + (d - 1)`] THEN ASM_SIMP_TAC[LIOUVILLE_SUM_BOUND]);; let LIOUVILLE_SUMS = prove (`(\k. &1 / &10 pow FACT k) sums liouville`, REWRITE_TAC[liouville] THEN MATCH_MP_TAC SUMMABLE_SUM THEN REWRITE_TAC[SER_CAUCHY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(SPEC `inv(e)` REAL_ARCH_SIMPLE) THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `2 * N + 1` THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&2 / &10 pow (FACT m)` THEN CONJ_TAC THENL [MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a ==> abs x <= a`) THEN ASM_SIMP_TAC[SUM_POS; REAL_LE_DIV; REAL_POW_LE; REAL_POS] THEN MATCH_MP_TAC LIOUVILLE_PSUM_BOUND THEN UNDISCH_TAC `2 * N + 1 <= m` THEN ARITH_TAC; ALL_TAC] THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `e * &(2 * N + 1)` THEN CONJ_TAC THENL [REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN MATCH_MP_TAC(REAL_ARITH `&1 < (n + &1 / &2) * e ==> &2 < e * (&2 * n + &1)`) THEN ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; real_div; REAL_MUL_LID] THEN UNDISCH_TAC `inv(e) <= &N` THEN REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `10 EXP m` THEN REWRITE_TAC[FACT_LE_REFL; LE_EXP; ARITH] THEN SIMP_TAC[EXP_LE_REFL; ARITH]);; let LIOUVILLE_PSUM_LE = prove (`!n. sum(0,n) (\k. &1 / &10 pow FACT k) <= liouville`, GEN_TAC THEN REWRITE_TAC[suminf] THEN MATCH_MP_TAC SEQ_LE THEN EXISTS_TAC `\j:num. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN EXISTS_TAC `\n:num. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN REWRITE_TAC[SEQ_CONST; GSYM sums; LIOUVILLE_SUMS] THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN SIMP_TAC[GE; LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN REWRITE_TAC[GSYM SUM_SPLIT; ADD_CLAUSES; REAL_LE_ADDR] THEN SIMP_TAC[SUM_POS; REAL_LE_DIV; REAL_POW_LE; REAL_POS]);; let LIOUVILLE_PSUM_LT = prove (`!n. sum(0,n) (\k. &1 / &10 pow FACT k) < liouville`, GEN_TAC THEN MP_TAC(SPEC `SUC n` LIOUVILLE_PSUM_LE) THEN SIMP_TAC[sum] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e ==> x + e <= y ==> x < y`) THEN SIMP_TAC[REAL_LT_DIV; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]);; let LIOVILLE_PSUM_DIFF = prove (`!n. ~(n = 0) ==> liouville <= sum(0,n) (\k. &1 / &10 pow FACT k) + &2 / &10 pow (FACT n)`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SEQ_LE THEN EXISTS_TAC `\n. sum(0,n) (\k. &1 / &10 pow FACT k)` THEN EXISTS_TAC `\j:num. sum (0,n) (\k. &1 / &10 pow FACT k) + &2 / &10 pow FACT n` THEN REWRITE_TAC[SEQ_CONST; GSYM sums; LIOUVILLE_SUMS] THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN SIMP_TAC[GE; LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN REWRITE_TAC[GSYM SUM_SPLIT; REAL_LE_LADD] THEN ASM_SIMP_TAC[ADD_CLAUSES; LIOUVILLE_PSUM_BOUND]);; (* ------------------------------------------------------------------------- *) (* Main proof. *) (* ------------------------------------------------------------------------- *) let TRANSCENDENTAL_LIOUVILLE = prove (`transcendental(liouville)`, REWRITE_TAC[transcendental] THEN DISCH_THEN(MP_TAC o MATCH_MP LIOUVILLE) THEN REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(a /\ b) <=> a ==> ~b`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN MAP_EVERY X_GEN_TAC [`m:num`; `c:real`] THEN REWRITE_TAC[DE_MORGAN_THM; real_gt; REAL_NOT_LT] THEN DISCH_TAC THEN MP_TAC(SPECL [`&10`; `&2 / c`] REAL_ARCH_POW) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN(X_CHOOSE_TAC `k:num`) THEN ABBREV_TAC `n = m + k + 1` THEN EXISTS_TAC `nsum(0..n-1) (\i. 10 EXP (FACT(n-1) - FACT i))` THEN EXISTS_TAC `10 EXP (FACT(n-1))` THEN REWRITE_TAC[EXP_EQ_0; ARITH] THEN SUBGOAL_THEN `&(nsum(0..n-1) (\i. 10 EXP (FACT(n-1) - FACT i))) / &(10 EXP (FACT(n-1))) = sum(0..n-1) (\k. &1 / &10 pow (FACT k))` SUBST1_TAC THENL [REWRITE_TAC[real_div] THEN GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN REWRITE_TAC[REAL_OF_NUM_SUM_NUMSEG; GSYM SUM_LMUL] THEN SIMP_TAC[GSYM REAL_OF_NUM_POW; REAL_POW_SUB; REAL_OF_NUM_EQ; ARITH; FACT_MONO; real_div; REAL_MUL_ASSOC] THEN SIMP_TAC[REAL_MUL_LINV; REAL_OF_NUM_EQ; REAL_POW_EQ_0; ARITH] THEN REWRITE_TAC[REAL_MUL_LID]; ALL_TAC] THEN MP_TAC(GEN `f:num->real` (SPECL [`f:num->real`; `0`; `m + k + 1`] PSUM_SUM_NUMSEG)) THEN REWRITE_TAC[ADD_EQ_0; ARITH; ADD_CLAUSES] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN SIMP_TAC[LIOUVILLE_PSUM_LT; REAL_LT_IMP_NE] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= y`) THEN REWRITE_TAC[REAL_SUB_LE; LIOUVILLE_PSUM_LE] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 / &10 pow (FACT n)` THEN REWRITE_TAC[REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN CONJ_TAC THENL [MATCH_MP_TAC LIOVILLE_PSUM_DIFF THEN EXPAND_TAC "n" THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[LIOVILLE_PSUM_DIFF] THEN REWRITE_TAC[REAL_OF_NUM_POW; GSYM EXP_MULT] THEN SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LT_NZ; EXP_EQ_0; ARITH] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&10 pow k` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LT_NZ; EXP_EQ_0; ARITH] THEN REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN REWRITE_TAC[GSYM EXP_ADD; LE_EXP; ARITH_EQ] THEN EXPAND_TAC "n" THEN REWRITE_TAC[ARITH_RULE `(m + k + 1) - 1 = m + k`] THEN REWRITE_TAC[num_CONV `1`; ADD_CLAUSES; FACT] THEN REWRITE_TAC[ARITH_RULE `k + f * m <= SUC(m + k) * f <=> k <= (k + 1) * f`] THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `k = k * 1`] THEN MATCH_MP_TAC LE_MULT2 THEN REWRITE_TAC[LE_ADD] THEN REWRITE_TAC[FACT_LT; ARITH_RULE `1 <= x <=> 0 < x`]);;