From mathcomp Require Import ssreflect ssrfun. From Coq Require Export ssrbool. (* 8.11 addition in Coq but renamed *) #[deprecated(since="mathcomp 1.15", note="Use rel_of_simpl instead.")] Notation rel_of_simpl_rel := rel_of_simpl. (******************) (* v8.14 addtions *) (******************) Section LocalGlobal. Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0). Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0). Variables T1 T2 T3 : predArgType. Variables (D1 : {pred T1}) (D2 : {pred T2}). Variables (f : T1 -> T2) (h : T3). Variable Q1 : (T1 -> T2) -> T1 -> Prop. Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop. Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop. Let allQ1 f'' := {all1 Q1 f''}. Let allQ1l f'' h' := {all1 Q1l f'' h'}. Let allQ2 f'' := {all2 Q2 f''}. Lemma in_on1P : {in D1, {on D2, allQ1 f}} <-> {in [pred x in D1 | f x \in D2], allQ1 f}. Proof. split => allf x; have /[!inE] Q1f := allf x; first by case/andP. by move=> ? ?; apply: Q1f; apply/andP. Qed. Lemma in_on1lP : {in D1, {on D2, allQ1l f & h}} <-> {in [pred x in D1 | f x \in D2], allQ1l f h}. Proof. split => allf x; have /[!inE] Q1f := allf x; first by case/andP. by move=> ? ?; apply: Q1f; apply/andP. Qed. Lemma in_on2P : {in D1 &, {on D2 &, allQ2 f}} <-> {in [pred x in D1 | f x \in D2] &, allQ2 f}. Proof. split => allf x y; have /[!inE] Q2f := allf x y. by move=> /andP[? ?] /andP[? ?]; apply: Q2f. by move=> ? ? ? ?; apply: Q2f; apply/andP. Qed. Lemma on1W_in : {in D1, allQ1 f} -> {in D1, {on D2, allQ1 f}}. Proof. by move=> D1f ? /D1f. Qed. Lemma on1lW_in : {in D1, allQ1l f h} -> {in D1, {on D2, allQ1l f & h}}. Proof. by move=> D1f ? /D1f. Qed. Lemma on2W_in : {in D1 &, allQ2 f} -> {in D1 &, {on D2 &, allQ2 f}}. Proof. by move=> D1f ? ? ? ? ? ?; apply: D1f. Qed. Lemma in_on1W : allQ1 f -> {in D1, {on D2, allQ1 f}}. Proof. by move=> allf ? ? ?; apply: allf. Qed. Lemma in_on1lW : allQ1l f h -> {in D1, {on D2, allQ1l f & h}}. Proof. by move=> allf ? ? ?; apply: allf. Qed. Lemma in_on2W : allQ2 f -> {in D1 &, {on D2 &, allQ2 f}}. Proof. by move=> allf ? ? ? ? ? ?; apply: allf. Qed. Lemma on1S : (forall x, f x \in D2) -> {on D2, allQ1 f} -> allQ1 f. Proof. by move=> ? fD1 ?; apply: fD1. Qed. Lemma on1lS : (forall x, f x \in D2) -> {on D2, allQ1l f & h} -> allQ1l f h. Proof. by move=> ? fD1 ?; apply: fD1. Qed. Lemma on2S : (forall x, f x \in D2) -> {on D2 &, allQ2 f} -> allQ2 f. Proof. by move=> ? fD1 ? ?; apply: fD1. Qed. Lemma on1S_in : {homo f : x / x \in D1 >-> x \in D2} -> {in D1, {on D2, allQ1 f}} -> {in D1, allQ1 f}. Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed. Lemma on1lS_in : {homo f : x / x \in D1 >-> x \in D2} -> {in D1, {on D2, allQ1l f & h}} -> {in D1, allQ1l f h}. Proof. by move=> fD fD1 ? ?; apply/fD1/fD. Qed. Lemma on2S_in : {homo f : x / x \in D1 >-> x \in D2} -> {in D1 &, {on D2 &, allQ2 f}} -> {in D1 &, allQ2 f}. Proof. by move=> fD fD1 ? ? ? ?; apply: fD1 => //; apply: fD. Qed. Lemma in_on1S : (forall x, f x \in D2) -> {in T1, {on D2, allQ1 f}} -> allQ1 f. Proof. by move=> fD2 fD1 ?; apply: fD1. Qed. Lemma in_on1lS : (forall x, f x \in D2) -> {in T1, {on D2, allQ1l f & h}} -> allQ1l f h. Proof. by move=> fD2 fD1 ?; apply: fD1. Qed. Lemma in_on2S : (forall x, f x \in D2) -> {in T1 &, {on D2 &, allQ2 f}} -> allQ2 f. Proof. by move=> fD2 fD1 ? ?; apply: fD1. Qed. End LocalGlobal. Arguments in_on1P {T1 T2 D1 D2 f Q1}. Arguments in_on1lP {T1 T2 T3 D1 D2 f h Q1l}. Arguments in_on2P {T1 T2 D1 D2 f Q2}. Arguments on1W_in {T1 T2 D1} D2 {f Q1}. Arguments on1lW_in {T1 T2 T3 D1} D2 {f h Q1l}. Arguments on2W_in {T1 T2 D1} D2 {f Q2}. Arguments in_on1W {T1 T2} D1 D2 {f Q1}. Arguments in_on1lW {T1 T2 T3} D1 D2 {f h Q1l}. Arguments in_on2W {T1 T2} D1 D2 {f Q2}. Arguments on1S {T1 T2} D2 {f Q1}. Arguments on1lS {T1 T2 T3} D2 {f h Q1l}. Arguments on2S {T1 T2} D2 {f Q2}. Arguments on1S_in {T1 T2 D1} D2 {f Q1}. Arguments on1lS_in {T1 T2 T3 D1} D2 {f h Q1l}. Arguments on2S_in {T1 T2 D1} D2 {f Q2}. Arguments in_on1S {T1 T2} D2 {f Q1}. Arguments in_on1lS {T1 T2 T3} D2 {f h Q1l}. Arguments in_on2S {T1 T2} D2 {f Q2}. Section in_sig. Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0). Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0). Local Notation "{ 'all3' P }" := (forall x y z, P x y z : Prop) (at level 0). Variables T1 T2 T3 : Type. Variables (D1 : {pred T1}) (D2 : {pred T2}) (D3 : {pred T3}). Variable P1 : T1 -> Prop. Variable P2 : T1 -> T2 -> Prop. Variable P3 : T1 -> T2 -> T3 -> Prop. Lemma in1_sig : {in D1, {all1 P1}} -> forall x : sig D1, P1 (sval x). Proof. by move=> DP [x Dx]; have := DP _ Dx. Qed. Lemma in2_sig : {in D1 & D2, {all2 P2}} -> forall (x : sig D1) (y : sig D2), P2 (sval x) (sval y). Proof. by move=> DP [x Dx] [y Dy]; have := DP _ _ Dx Dy. Qed. Lemma in3_sig : {in D1 & D2 & D3, {all3 P3}} -> forall (x : sig D1) (y : sig D2) (z : sig D3), P3 (sval x) (sval y) (sval z). Proof. by move=> DP [x Dx] [y Dy] [z Dz]; have := DP _ _ _ Dx Dy Dz. Qed. End in_sig. Arguments in1_sig {T1 D1 P1}. Arguments in2_sig {T1 T2 D1 D2 P2}. Arguments in3_sig {T1 T2 T3 D1 D2 D3 P3}. (******************) (* v8.15 addtions *) (******************) Section ReflectCombinators. Variables (P Q : Prop) (p q : bool). Hypothesis rP : reflect P p. Hypothesis rQ : reflect Q q. Lemma negPP : reflect (~ P) (~~ p). Proof. by apply:(iffP negP); apply: contra_not => /rP. Qed. Lemma andPP : reflect (P /\ Q) (p && q). Proof. by apply: (iffP andP) => -[/rP ? /rQ ?]. Qed. Lemma orPP : reflect (P \/ Q) (p || q). Proof. by apply: (iffP orP) => -[/rP ?|/rQ ?]; tauto. Qed. Lemma implyPP : reflect (P -> Q) (p ==> q). Proof. by apply: (iffP implyP) => pq /rP /pq /rQ. Qed. End ReflectCombinators. Arguments negPP {P p}. Arguments andPP {P Q p q}. Arguments orPP {P Q p q}. Arguments implyPP {P Q p q}. Prenex Implicits negPP andPP orPP implyPP. (*******************) (* v8.16 additions *) (*******************) (******************************************************************************) (* pred_oapp T D := [pred x | oapp (mem D) false x] *) (******************************************************************************) Lemma mono1W_in (aT rT : predArgType) (f : aT -> rT) (aD : {pred aT}) (aP : pred aT) (rP : pred rT) : {in aD, {mono f : x / aP x >-> rP x}} -> {in aD, {homo f : x / aP x >-> rP x}}. Proof. by move=> fP x xD xP; rewrite fP. Qed. Arguments mono1W_in [aT rT f aD aP rP]. #[deprecated(since="mathcomp 1.14.0", note="Use mono1W_in instead.")] Notation mono2W_in := mono1W_in. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. (*******************) (* v8.17 additions *) (*******************) Lemma all_sig2_cond {I T} (C : pred I) P Q : T -> (forall x, C x -> {y : T | P x y & Q x y}) -> {f : I -> T | forall x, C x -> P x (f x) & forall x, C x -> Q x (f x)}. Proof. by move=> /all_sig_cond/[apply]-[f Pf]; exists f => i Di; have [] := Pf i Di. Qed. Lemma can_in_pcan [rT aT : Type] (A : {pred aT}) [f : aT -> rT] [g : rT -> aT] : {in A, cancel f g} -> {in A, pcancel f (fun y : rT => Some (g y))}. Proof. by move=> fK x Ax; rewrite fK. Qed. Lemma pcan_in_inj [rT aT : Type] [A : {pred aT}] [f : aT -> rT] [g : rT -> option aT] : {in A, pcancel f g} -> {in A &, injective f}. Proof. by move=> fK x y Ax Ay /(congr1 g); rewrite !fK// => -[]. Qed. Lemma in_inj_comp A B C (f : B -> A) (h : C -> B) (P : pred B) (Q : pred C) : {in P &, injective f} -> {in Q &, injective h} -> {homo h : x / Q x >-> P x} -> {in Q &, injective (f \o h)}. Proof. by move=> Pf Qh QP x y xQ yQ xy; apply Qh => //; apply Pf => //; apply QP. Qed. Lemma can_in_comp [A B C : Type] (D : {pred B}) (D' : {pred C}) [f : B -> A] [h : C -> B] [f' : A -> B] [h' : B -> C] : {homo h : x / x \in D' >-> x \in D} -> {in D, cancel f f'} -> {in D', cancel h h'} -> {in D', cancel (f \o h) (h' \o f')}. Proof. by move=> hD fK hK c cD /=; rewrite fK ?hK ?hD. Qed. Lemma pcan_in_comp [A B C : Type] (D : {pred B}) (D' : {pred C}) [f : B -> A] [h : C -> B] [f' : A -> option B] [h' : B -> option C] : {homo h : x / x \in D' >-> x \in D} -> {in D, pcancel f f'} -> {in D', pcancel h h'} -> {in D', pcancel (f \o h) (obind h' \o f')}. Proof. by move=> hD fK hK c cD /=; rewrite fK/= ?hK ?hD. Qed. Definition pred_oapp T (D : {pred T}) : pred (option T) := [pred x | oapp (mem D) false x]. Lemma ocan_in_comp [A B C : Type] (D : {pred B}) (D' : {pred C}) [f : B -> option A] [h : C -> option B] [f' : A -> B] [h' : B -> C] : {homo h : x / x \in D' >-> x \in pred_oapp D} -> {in D, ocancel f f'} -> {in D', ocancel h h'} -> {in D', ocancel (obind f \o h) (h' \o f')}. Proof. move=> hD fK hK c cD /=; rewrite -[RHS]hK/=; case hcE : (h c) => [b|]//=. have bD : b \in D by have := hD _ cD; rewrite hcE inE. by rewrite -[b in RHS]fK; case: (f b) => //=; have /hK := cD; rewrite hcE. Qed. Lemma eqbLR (b1 b2 : bool) : b1 = b2 -> b1 -> b2. Proof. by move->. Qed. Lemma eqbRL (b1 b2 : bool) : b1 = b2 -> b2 -> b1. Proof. by move->. Qed. Lemma homo_mono1 [aT rT : Type] [f : aT -> rT] [g : rT -> aT] [aP : pred aT] [rP : pred rT] : cancel g f -> {homo f : x / aP x >-> rP x} -> {homo g : x / rP x >-> aP x} -> {mono g : x / rP x >-> aP x}. Proof. by move=> gK fP gP x; apply/idP/idP => [/fP|/gP//]; rewrite gK. Qed.