(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div. From mathcomp Require Import choice fintype prime finset fingroup morphism. From mathcomp Require Import automorphism. (******************************************************************************) (* This file contains the definitions of: *) (* coset_of H == the (sub)type of bilateral cosets of H (see below). *) (* coset H == the canonical projection into coset_of H. *) (* A / H == the quotient of A by H, that is, the morphic image *) (* of A by coset H. We do not require H <| A, so in a *) (* textbook A / H would be written 'N_A(H) * H / H. *) (* quotm f (nHG : H <| G) == the quotient morphism induced by f, *) (* mapping G / H onto f @* G / f @* H. *) (* qisom f (eqHG : H = G) == the identity isomorphism between *) (* [set: coset_of G] and [set: coset_of H]. *) (* We also prove the three isomorphism theorems, and counting lemmas for *) (* morphisms. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GroupScope. Section Cosets. Variables (gT : finGroupType) (Q A : {set gT}). (******************************************************************************) (* Cosets are right cosets of elements in the normaliser. *) (* We let cosets coerce to GroupSet.sort, so they inherit the group subset *) (* base group structure. Later we will define a proper group structure on *) (* cosets, which will then hide the inherited structure once coset_of unifies *) (* with FinGroup.sort; the coercion to GroupSet.sort will no longer be used. *) (* Note that for Hx Hy : coset_of H, Hx * Hy : {set gT} can mean either *) (* set_of_coset (mulg Hx Hy) OR mulg (set_of_coset Hx) (set_of_coset Hy). *) (* However, since the two terms are actually convertible, we can live with *) (* this ambiguity. *) (* We take great care that neither the type coset_of H, nor its Canonical *) (* finGroupType structure, nor the coset H morphism depend on the actual *) (* group structure of H. Otherwise, rewriting would be extremely awkward *) (* because all our equalities are stated at the set level. *) (* The trick we use is to interpret coset_of A, when A is any set, as the *) (* type of cosets of the group <> generated by A, in the group A <*> N(A) *) (* generated by A and its normaliser. This coincides with the type of *) (* bilateral cosets of A when A is a group. We restrict the domain of coset A *) (* to 'N(A), so that we get almost all the same conversion equalities as if *) (* we had forced A to be a group in the first place; the only exception, that *) (* 1 : coset_of A : {set gT} = <> rather than A, can be handled by genGid. *) (******************************************************************************) Notation H := <>. Definition coset_range := [pred B in rcosets H 'N(A)]. Record coset_of : Type := Coset { set_of_coset :> GroupSet.sort gT; _ : coset_range set_of_coset }. Canonical coset_subType := Eval hnf in [subType for set_of_coset]. Definition coset_eqMixin := Eval hnf in [eqMixin of coset_of by <:]. Canonical coset_eqType := Eval hnf in EqType coset_of coset_eqMixin. Definition coset_choiceMixin := [choiceMixin of coset_of by <:]. Canonical coset_choiceType := Eval hnf in ChoiceType coset_of coset_choiceMixin. Definition coset_countMixin := [countMixin of coset_of by <:]. Canonical coset_countType := Eval hnf in CountType coset_of coset_countMixin. Canonical coset_subCountType := Eval hnf in [subCountType of coset_of]. Definition coset_finMixin := [finMixin of coset_of by <:]. Canonical coset_finType := Eval hnf in FinType coset_of coset_finMixin. Canonical coset_subFinType := Eval hnf in [subFinType of coset_of]. (* We build a new (canonical) structure of groupType for cosets. *) (* When A is a group, this is the largest possible quotient 'N(A) / A. *) Lemma coset_one_proof : coset_range H. Proof. by apply/rcosetsP; exists (1 : gT); rewrite (group1, mulg1). Qed. Definition coset_one := Coset coset_one_proof. Let nNH := subsetP (norm_gen A). Lemma coset_range_mul (B C : coset_of) : coset_range (B * C). Proof. case: B C => _ /= /rcosetsP[x Nx ->] [_ /= /rcosetsP[y Ny ->]]. by apply/rcosetsP; exists (x * y); rewrite !(groupM, rcoset_mul, nNH). Qed. Definition coset_mul B C := Coset (coset_range_mul B C). Lemma coset_range_inv (B : coset_of) : coset_range B^-1. Proof. case: B => _ /= /rcosetsP[x Nx ->]; rewrite norm_rlcoset ?nNH // invg_lcoset. by apply/rcosetsP; exists x^-1; rewrite ?groupV. Qed. Definition coset_inv B := Coset (coset_range_inv B). Lemma coset_mulP : associative coset_mul. Proof. by move=> B C D; apply: val_inj; rewrite /= mulgA. Qed. Lemma coset_oneP : left_id coset_one coset_mul. Proof. case=> B coB; apply: val_inj => /=; case/rcosetsP: coB => x Hx ->{B}. by rewrite mulgA mulGid. Qed. Lemma coset_invP : left_inverse coset_one coset_inv coset_mul. Proof. case=> B coB; apply: val_inj => /=; case/rcosetsP: coB => x Hx ->{B}. rewrite invg_rcoset -mulgA (mulgA H) mulGid. by rewrite norm_rlcoset ?nNH // -lcosetM mulVg mul1g. Qed. Definition coset_of_groupMixin := FinGroup.Mixin coset_mulP coset_oneP coset_invP. Canonical coset_baseGroupType := Eval hnf in BaseFinGroupType coset_of coset_of_groupMixin. Canonical coset_groupType := FinGroupType coset_invP. (* Projection of the initial group type over the cosets groupType. *) Definition coset x : coset_of := insubd (1 : coset_of) (H :* x). (* This is a primitive lemma -- we'll need to restate it for *) (* the case where A is a group. *) Lemma val_coset_prim x : x \in 'N(A) -> coset x :=: H :* x. Proof. by move=> Nx; rewrite val_insubd /= mem_rcosets -{1}(mul1g x) mem_mulg. Qed. Lemma coset_morphM : {in 'N(A) &, {morph coset : x y / x * y}}. Proof. move=> x y Nx Ny; apply: val_inj. by rewrite /= !val_coset_prim ?groupM //= rcoset_mul ?nNH. Qed. Canonical coset_morphism := Morphism coset_morphM. Lemma ker_coset_prim : 'ker coset = 'N_H(A). Proof. apply/setP=> z; rewrite !in_setI andbC 2!inE -val_eqE /=. case Nz: (z \in 'N(A)); rewrite ?andbF ?val_coset_prim // !andbT. by apply/eqP/idP=> [<-| Az]; rewrite (rcoset_refl, rcoset_id). Qed. Implicit Type xbar : coset_of. Lemma coset_mem y xbar : y \in xbar -> coset y = xbar. Proof. case: xbar => /= Hx NHx Hxy; apply: val_inj=> /=. case/rcosetsP: NHx (NHx) Hxy => x Nx -> NHx Hxy. by rewrite val_insubd /= (rcoset_eqP Hxy) NHx. Qed. (* coset is an inverse to repr *) Lemma mem_repr_coset xbar : repr xbar \in xbar. Proof. by case: xbar => /= _ /rcosetsP[x _ ->]; apply: mem_repr_rcoset. Qed. Lemma repr_coset1 : repr (1 : coset_of) = 1. Proof. exact: repr_group. Qed. Lemma coset_reprK : cancel (fun xbar => repr xbar) coset. Proof. by move=> xbar; apply: coset_mem (mem_repr_coset xbar). Qed. (* cosetP is slightly stronger than using repr because we only *) (* guarantee repr xbar \in 'N(A) when A is a group. *) Lemma cosetP xbar : {x | x \in 'N(A) & xbar = coset x}. Proof. pose x := repr 'N_xbar(A). have [xbar_x Nx]: x \in xbar /\ x \in 'N(A). apply/setIP; rewrite {}/x; case: xbar => /= _ /rcosetsP[y Ny ->]. by apply: (mem_repr y); rewrite inE rcoset_refl. by exists x; last rewrite (coset_mem xbar_x). Qed. Lemma coset_id x : x \in A -> coset x = 1. Proof. by move=> Ax; apply: coset_mem; apply: mem_gen. Qed. Lemma im_coset : coset @* 'N(A) = setT. Proof. by apply/setP=> xbar; case: (cosetP xbar) => x Nx ->; rewrite inE mem_morphim. Qed. Lemma sub_im_coset (C : {set coset_of}) : C \subset coset @* 'N(A). Proof. by rewrite im_coset subsetT. Qed. Lemma cosetpre_proper C D : (coset @*^-1 C \proper coset @*^-1 D) = (C \proper D). Proof. by rewrite morphpre_proper ?sub_im_coset. Qed. Definition quotient : {set coset_of} := coset @* Q. Lemma quotientE : quotient = coset @* Q. Proof. by []. Qed. End Cosets. Arguments coset_of {gT} H%g : rename. Arguments coset {gT} H%g x%g : rename. Arguments quotient {gT} A%g H%g : rename. Arguments coset_reprK {gT H%g} xbar%g : rename. Bind Scope group_scope with coset_of. Notation "A / H" := (quotient A H) : group_scope. Section CosetOfGroupTheory. Variables (gT : finGroupType) (H : {group gT}). Implicit Types (A B : {set gT}) (G K : {group gT}) (xbar yb : coset_of H). Implicit Types (C D : {set coset_of H}) (L M : {group coset_of H}). Canonical quotient_group G A : {group coset_of A} := Eval hnf in [group of G / A]. Infix "/" := quotient_group : Group_scope. Lemma val_coset x : x \in 'N(H) -> coset H x :=: H :* x. Proof. by move=> Nx; rewrite val_coset_prim // genGid. Qed. Lemma coset_default x : (x \in 'N(H)) = false -> coset H x = 1. Proof. move=> Nx; apply: val_inj. by rewrite val_insubd /= mem_rcosets /= genGid mulSGid ?normG ?Nx. Qed. Lemma coset_norm xbar : xbar \subset 'N(H). Proof. case: xbar => /= _ /rcosetsP[x Nx ->]. by rewrite genGid mul_subG ?sub1set ?normG. Qed. Lemma ker_coset : 'ker (coset H) = H. Proof. by rewrite ker_coset_prim genGid (setIidPl _) ?normG. Qed. Lemma coset_idr x : x \in 'N(H) -> coset H x = 1 -> x \in H. Proof. by move=> Nx Hx1; rewrite -ker_coset mem_morphpre //= Hx1 set11. Qed. Lemma repr_coset_norm xbar : repr xbar \in 'N(H). Proof. exact: subsetP (coset_norm _) _ (mem_repr_coset _). Qed. Lemma imset_coset G : coset H @: G = G / H. Proof. apply/eqP; rewrite eqEsubset andbC imsetS ?subsetIr //=. apply/subsetP=> _ /imsetP[x Gx ->]. by case Nx: (x \in 'N(H)); rewrite ?(coset_default Nx) ?mem_morphim ?group1. Qed. Lemma val_quotient A : val @: (A / H) = rcosets H 'N_A(H). Proof. apply/setP=> B; apply/imsetP/rcosetsP=> [[xbar Axbar]|[x /setIP[Ax Nx]]] ->{B}. case/morphimP: Axbar => x Nx Ax ->{xbar}. by exists x; [rewrite inE Ax | rewrite /= val_coset]. by exists (coset H x); [apply/morphimP; exists x | rewrite /= val_coset]. Qed. Lemma card_quotient_subnorm A : #|A / H| = #|'N_A(H) : H|. Proof. by rewrite -(card_imset _ val_inj) val_quotient. Qed. Lemma leq_quotient A : #|A / H| <= #|A|. Proof. exact: leq_morphim. Qed. Lemma ltn_quotient A : H :!=: 1 -> H \subset A -> #|A / H| < #|A|. Proof. by move=> ntH sHA; rewrite ltn_morphim // ker_coset (setIidPr sHA) proper1G. Qed. Lemma card_quotient A : A \subset 'N(H) -> #|A / H| = #|A : H|. Proof. by move=> nHA; rewrite card_quotient_subnorm (setIidPl nHA). Qed. Lemma divg_normal G : H <| G -> #|G| %/ #|H| = #|G / H|. Proof. by case/andP=> sHG nHG; rewrite divgS ?card_quotient. Qed. (* Specializing all the morphisms lemmas that have different assumptions *) (* (e.g., because 'ker (coset H) = H), or conclusions (e.g., because we use *) (* A / H rather than coset H @* A). We may want to reevaluate later, and *) (* eliminate variants that aren't used . *) (* Variant of morph1; no specialization for other morph lemmas. *) Lemma coset1 : coset H 1 :=: H. Proof. by rewrite morph1 /= genGid. Qed. (* Variant of kerE. *) Lemma cosetpre1 : coset H @*^-1 1 = H. Proof. by rewrite -kerE ker_coset. Qed. (* Variant of morphimEdom; mophimE[sub] covered by imset_coset. *) (* morph[im|pre]Iim are also covered by im_quotient. *) Lemma im_quotient : 'N(H) / H = setT. Proof. exact: im_coset. Qed. Lemma quotientT : setT / H = setT. Proof. by rewrite -im_quotient; apply: morphimT. Qed. (* Variant of morphimIdom. *) Lemma quotientInorm A : 'N_A(H) / H = A / H. Proof. by rewrite /quotient setIC morphimIdom. Qed. Lemma quotient_setIpre A D : (A :&: coset H @*^-1 D) / H = A / H :&: D. Proof. exact: morphim_setIpre. Qed. Lemma mem_quotient x G : x \in G -> coset H x \in G / H. Proof. by move=> Gx; rewrite -imset_coset imset_f. Qed. Lemma quotientS A B : A \subset B -> A / H \subset B / H. Proof. exact: morphimS. Qed. Lemma quotient0 : set0 / H = set0. Proof. exact: morphim0. Qed. Lemma quotient_set1 x : x \in 'N(H) -> [set x] / H = [set coset H x]. Proof. exact: morphim_set1. Qed. Lemma quotient1 : 1 / H = 1. Proof. exact: morphim1. Qed. Lemma quotientV A : A^-1 / H = (A / H)^-1. Proof. exact: morphimV. Qed. Lemma quotientMl A B : A \subset 'N(H) -> A * B / H = (A / H) * (B / H). Proof. exact: morphimMl. Qed. Lemma quotientMr A B : B \subset 'N(H) -> A * B / H = (A / H) * (B / H). Proof. exact: morphimMr. Qed. Lemma cosetpreM C D : coset H @*^-1 (C * D) = coset H @*^-1 C * coset H @*^-1 D. Proof. by rewrite morphpreMl ?sub_im_coset. Qed. Lemma quotientJ A x : x \in 'N(H) -> A :^ x / H = (A / H) :^ coset H x. Proof. exact: morphimJ. Qed. Lemma quotientU A B : (A :|: B) / H = A / H :|: B / H. Proof. exact: morphimU. Qed. Lemma quotientI A B : (A :&: B) / H \subset A / H :&: B / H. Proof. exact: morphimI. Qed. Lemma quotientY A B : A \subset 'N(H) -> B \subset 'N(H) -> (A <*> B) / H = (A / H) <*> (B / H). Proof. exact: morphimY. Qed. Lemma quotient_homg A : A \subset 'N(H) -> homg (A / H) A. Proof. exact: morphim_homg. Qed. Lemma coset_kerl x y : x \in H -> coset H (x * y) = coset H y. Proof. move=> Hx; case Ny: (y \in 'N(H)); first by rewrite mkerl ?ker_coset. by rewrite !coset_default ?groupMl // (subsetP (normG H)). Qed. Lemma coset_kerr x y : y \in H -> coset H (x * y) = coset H x. Proof. move=> Hy; case Nx: (x \in 'N(H)); first by rewrite mkerr ?ker_coset. by rewrite !coset_default ?groupMr // (subsetP (normG H)). Qed. Lemma rcoset_kercosetP x y : x \in 'N(H) -> y \in 'N(H) -> reflect (coset H x = coset H y) (x \in H :* y). Proof. by rewrite -{6}ker_coset; apply: rcoset_kerP. Qed. Lemma kercoset_rcoset x y : x \in 'N(H) -> y \in 'N(H) -> coset H x = coset H y -> exists2 z, z \in H & x = z * y. Proof. by move=> Nx Ny eqfxy; rewrite -ker_coset; apply: ker_rcoset. Qed. Lemma quotientGI G A : H \subset G -> (G :&: A) / H = G / H :&: A / H. Proof. by rewrite -{1}ker_coset; apply: morphimGI. Qed. Lemma quotientIG A G : H \subset G -> (A :&: G) / H = A / H :&: G / H. Proof. by rewrite -{1}ker_coset; apply: morphimIG. Qed. Lemma quotientD A B : A / H :\: B / H \subset (A :\: B) / H. Proof. exact: morphimD. Qed. Lemma quotientD1 A : (A / H)^# \subset A^# / H. Proof. exact: morphimD1. Qed. Lemma quotientDG A G : H \subset G -> (A :\: G) / H = A / H :\: G / H. Proof. by rewrite -{1}ker_coset; apply: morphimDG. Qed. Lemma quotientK A : A \subset 'N(H) -> coset H @*^-1 (A / H) = H * A. Proof. by rewrite -{8}ker_coset; apply: morphimK. Qed. Lemma quotientYK G : G \subset 'N(H) -> coset H @*^-1 (G / H) = H <*> G. Proof. by move=> nHG; rewrite quotientK ?norm_joinEr. Qed. Lemma quotientGK G : H <| G -> coset H @*^-1 (G / H) = G. Proof. by case/andP; rewrite -{1}ker_coset; apply: morphimGK. Qed. Lemma quotient_class x A : x \in 'N(H) -> A \subset 'N(H) -> x ^: A / H = coset H x ^: (A / H). Proof. exact: morphim_class. Qed. Lemma classes_quotient A : A \subset 'N(H) -> classes (A / H) = [set xA / H | xA in classes A]. Proof. exact: classes_morphim. Qed. Lemma cosetpre_set1 x : x \in 'N(H) -> coset H @*^-1 [set coset H x] = H :* x. Proof. by rewrite -{9}ker_coset; apply: morphpre_set1. Qed. Lemma cosetpre_set1_coset xbar : coset H @*^-1 [set xbar] = xbar. Proof. by case: (cosetP xbar) => x Nx ->; rewrite cosetpre_set1 ?val_coset. Qed. Lemma cosetpreK C : coset H @*^-1 C / H = C. Proof. by rewrite /quotient morphpreK ?sub_im_coset. Qed. (* Variant of morhphim_ker *) Lemma trivg_quotient : H / H = 1. Proof. by rewrite -{3}ker_coset /quotient morphim_ker. Qed. Lemma quotientS1 G : G \subset H -> G / H = 1. Proof. by move=> sGH; apply/trivgP; rewrite -trivg_quotient quotientS. Qed. Lemma sub_cosetpre M : H \subset coset H @*^-1 M. Proof. by rewrite -{1}ker_coset; apply: ker_sub_pre. Qed. Lemma quotient_proper G K : H <| G -> H <| K -> (G / H \proper K / H) = (G \proper K). Proof. by move=> nHG nHK; rewrite -cosetpre_proper ?quotientGK. Qed. Lemma normal_cosetpre M : H <| coset H @*^-1 M. Proof. by rewrite -{1}ker_coset; apply: ker_normal_pre. Qed. Lemma cosetpreSK C D : (coset H @*^-1 C \subset coset H @*^-1 D) = (C \subset D). Proof. by rewrite morphpreSK ?sub_im_coset. Qed. Lemma sub_quotient_pre A C : A \subset 'N(H) -> (A / H \subset C) = (A \subset coset H @*^-1 C). Proof. exact: sub_morphim_pre. Qed. Lemma sub_cosetpre_quo C G : H <| G -> (coset H @*^-1 C \subset G) = (C \subset G / H). Proof. by move=> nHG; rewrite -cosetpreSK quotientGK. Qed. (* Variant of ker_trivg_morphim. *) Lemma quotient_sub1 A : A \subset 'N(H) -> (A / H \subset [1]) = (A \subset H). Proof. by move=> nHA /=; rewrite -{10}ker_coset ker_trivg_morphim nHA. Qed. Lemma quotientSK A B : A \subset 'N(H) -> (A / H \subset B / H) = (A \subset H * B). Proof. by move=> nHA; rewrite morphimSK ?ker_coset. Qed. Lemma quotientSGK A G : A \subset 'N(H) -> H \subset G -> (A / H \subset G / H) = (A \subset G). Proof. by rewrite -{2}ker_coset; apply: morphimSGK. Qed. Lemma quotient_injG : {in [pred G : {group gT} | H <| G] &, injective (fun G => G / H)}. Proof. by rewrite /normal -{1}ker_coset; apply: morphim_injG. Qed. Lemma quotient_inj G1 G2 : H <| G1 -> H <| G2 -> G1 / H = G2 / H -> G1 :=: G2. Proof. by rewrite /normal -[in mem H]ker_coset; apply: morphim_inj. Qed. Lemma quotient_neq1 A : H <| A -> (A / H != 1) = (H \proper A). Proof. case/andP=> sHA nHA; rewrite /proper sHA -trivg_quotient eqEsubset andbC. by rewrite quotientS //= quotientSGK. Qed. Lemma quotient_gen A : A \subset 'N(H) -> <> / H = <>. Proof. exact: morphim_gen. Qed. Lemma cosetpre_gen C : 1 \in C -> coset H @*^-1 <> = <>. Proof. by move=> C1; rewrite morphpre_gen ?sub_im_coset. Qed. Lemma quotientR A B : A \subset 'N(H) -> B \subset 'N(H) -> [~: A, B] / H = [~: A / H, B / H]. Proof. exact: morphimR. Qed. Lemma quotient_norm A : 'N(A) / H \subset 'N(A / H). Proof. exact: morphim_norm. Qed. Lemma quotient_norms A B : A \subset 'N(B) -> A / H \subset 'N(B / H). Proof. exact: morphim_norms. Qed. Lemma quotient_subnorm A B : 'N_A(B) / H \subset 'N_(A / H)(B / H). Proof. exact: morphim_subnorm. Qed. Lemma quotient_normal A B : A <| B -> A / H <| B / H. Proof. exact: morphim_normal. Qed. Lemma quotient_cent1 x : 'C[x] / H \subset 'C[coset H x]. Proof. case Nx: (x \in 'N(H)); first exact: morphim_cent1. by rewrite coset_default // cent11T subsetT. Qed. Lemma quotient_cent1s A x : A \subset 'C[x] -> A / H \subset 'C[coset H x]. Proof. by move=> sAC; apply: subset_trans (quotientS sAC) (quotient_cent1 x). Qed. Lemma quotient_subcent1 A x : 'C_A[x] / H \subset 'C_(A / H)[coset H x]. Proof. exact: subset_trans (quotientI _ _) (setIS _ (quotient_cent1 x)). Qed. Lemma quotient_cent A : 'C(A) / H \subset 'C(A / H). Proof. exact: morphim_cent. Qed. Lemma quotient_cents A B : A \subset 'C(B) -> A / H \subset 'C(B / H). Proof. exact: morphim_cents. Qed. Lemma quotient_abelian A : abelian A -> abelian (A / H). Proof. exact: morphim_abelian. Qed. Lemma quotient_subcent A B : 'C_A(B) / H \subset 'C_(A / H)(B / H). Proof. exact: morphim_subcent. Qed. Lemma norm_quotient_pre A C : A \subset 'N(H) -> A / H \subset 'N(C) -> A \subset 'N(coset H @*^-1 C). Proof. by move/sub_quotient_pre=> -> /subset_trans-> //; apply: morphpre_norm. Qed. Lemma cosetpre_normal C D : (coset H @*^-1 C <| coset H @*^-1 D) = (C <| D). Proof. by rewrite morphpre_normal ?sub_im_coset. Qed. Lemma quotient_normG G : H <| G -> 'N(G) / H = 'N(G / H). Proof. case/andP=> sHG nHG. by rewrite [_ / _]morphim_normG ?ker_coset // im_coset setTI. Qed. Lemma quotient_subnormG A G : H <| G -> 'N_A(G) / H = 'N_(A / H)(G / H). Proof. by case/andP=> sHG nHG; rewrite -morphim_subnormG ?ker_coset. Qed. Lemma cosetpre_cent1 x : 'C_('N(H))[x] \subset coset H @*^-1 'C[coset H x]. Proof. case Nx: (x \in 'N(H)); first by rewrite morphpre_cent1. by rewrite coset_default // cent11T morphpreT subsetIl. Qed. Lemma cosetpre_cent1s C x : coset H @*^-1 C \subset 'C[x] -> C \subset 'C[coset H x]. Proof. move=> sC; rewrite -cosetpreSK; apply: subset_trans (cosetpre_cent1 x). by rewrite subsetI subsetIl. Qed. Lemma cosetpre_subcent1 C x : 'C_(coset H @*^-1 C)[x] \subset coset H @*^-1 'C_C[coset H x]. Proof. by rewrite -morphpreIdom -setIA setICA morphpreI setIS // cosetpre_cent1. Qed. Lemma cosetpre_cent A : 'C_('N(H))(A) \subset coset H @*^-1 'C(A / H). Proof. exact: morphpre_cent. Qed. Lemma cosetpre_cents A C : coset H @*^-1 C \subset 'C(A) -> C \subset 'C(A / H). Proof. by apply: morphpre_cents; rewrite ?sub_im_coset. Qed. Lemma cosetpre_subcent C A : 'C_(coset H @*^-1 C)(A) \subset coset H @*^-1 'C_C(A / H). Proof. exact: morphpre_subcent. Qed. Lemma restrm_quotientE G A (nHG : G \subset 'N(H)) : A \subset G -> restrm nHG (coset H) @* A = A / H. Proof. exact: restrmEsub. Qed. Section InverseImage. Variables (G : {group gT}) (Kbar : {group coset_of H}). Hypothesis nHG : H <| G. Variant inv_quotient_spec (P : pred {group gT}) : Prop := InvQuotientSpec K of Kbar :=: K / H & H \subset K & P K. Lemma inv_quotientS : Kbar \subset G / H -> inv_quotient_spec (fun K => K \subset G). Proof. case/andP: nHG => sHG nHG' sKbarG. have sKdH: Kbar \subset 'N(H) / H by rewrite (subset_trans sKbarG) ?morphimS. exists (coset H @*^-1 Kbar)%G; first by rewrite cosetpreK. by rewrite -{1}ker_coset morphpreS ?sub1G. by rewrite sub_cosetpre_quo. Qed. Lemma inv_quotientN : Kbar <| G / H -> inv_quotient_spec (fun K => K <| G). Proof. move=> nKbar; case/inv_quotientS: (normal_sub nKbar) => K defKbar sHK sKG. exists K => //; rewrite defKbar -cosetpre_normal !quotientGK // in nKbar. exact: normalS nHG. Qed. End InverseImage. Lemma quotientMidr A : A * H / H = A / H. Proof. by rewrite [_ /_]morphimMr ?normG //= -!quotientE trivg_quotient mulg1. Qed. Lemma quotientMidl A : H * A / H = A / H. Proof. by rewrite [_ /_]morphimMl ?normG //= -!quotientE trivg_quotient mul1g. Qed. Lemma quotientYidr G : G \subset 'N(H) -> G <*> H / H = G / H. Proof. move=> nHG; rewrite -genM_join quotient_gen ?mul_subG ?normG //. by rewrite quotientMidr genGid. Qed. Lemma quotientYidl G : G \subset 'N(H) -> H <*> G / H = G / H. Proof. by move=> nHG; rewrite joingC quotientYidr. Qed. Section Injective. Variables (G : {group gT}). Hypotheses (nHG : G \subset 'N(H)) (tiHG : H :&: G = 1). Lemma quotient_isom : isom G (G / H) (restrm nHG (coset H)). Proof. by apply/isomP; rewrite ker_restrm setIC ker_coset tiHG im_restrm. Qed. Lemma quotient_isog : isog G (G / H). Proof. exact: isom_isog quotient_isom. Qed. End Injective. End CosetOfGroupTheory. Notation "A / H" := (quotient_group A H) : Group_scope. Section Quotient1. Variables (gT : finGroupType) (A : {set gT}). Lemma coset1_injm : 'injm (@coset gT 1). Proof. by rewrite ker_coset /=. Qed. Lemma quotient1_isom : isom A (A / 1) (coset 1). Proof. by apply: sub_isom coset1_injm; rewrite ?norms1. Qed. Lemma quotient1_isog : isog A (A / 1). Proof. by apply: isom_isog quotient1_isom; apply: norms1. Qed. End Quotient1. Section QuotientMorphism. Variable (gT rT : finGroupType) (G H : {group gT}) (f : {morphism G >-> rT}). Implicit Types A : {set gT}. Implicit Types B : {set (coset_of H)}. Hypotheses (nsHG : H <| G). Let sHG : H \subset G := normal_sub nsHG. Let nHG : G \subset 'N(H) := normal_norm nsHG. Let nfHfG : f @* G \subset 'N(f @* H) := morphim_norms f nHG. Notation fH := (coset (f @* H) \o f). Lemma quotm_dom_proof : G \subset 'dom fH. Proof. by rewrite -sub_morphim_pre. Qed. Notation fH_G := (restrm quotm_dom_proof fH). Lemma quotm_ker_proof : 'ker (coset H) \subset 'ker fH_G. Proof. by rewrite ker_restrm ker_comp !ker_coset morphpreIdom morphimK ?mulG_subr. Qed. Definition quotm := factm quotm_ker_proof nHG. Canonical quotm_morphism := [morphism G / H of quotm]. Lemma quotmE x : x \in G -> quotm (coset H x) = coset (f @* H) (f x). Proof. exact: factmE. Qed. Lemma morphim_quotm A : quotm @* (A / H) = f @* A / f @* H. Proof. by rewrite morphim_factm morphim_restrm morphim_comp morphimIdom. Qed. Lemma morphpre_quotm Abar : quotm @*^-1 (Abar / f @* H) = f @*^-1 Abar / H. Proof. rewrite morphpre_factm morphpre_restrm morphpre_comp /=. rewrite morphpreIdom -[Abar / _]quotientInorm quotientK ?subsetIr //=. rewrite morphpreMl ?morphimS // morphimK // [_ * H]normC ?subIset ?nHG //. rewrite -quotientE -mulgA quotientMidl /= setIC -morphpreIim setIA. by rewrite (setIidPl nfHfG) morphpreIim -morphpreMl ?sub1G ?mul1g. Qed. Lemma ker_quotm : 'ker quotm = 'ker f / H. Proof. by rewrite -morphpre_quotm /quotient morphim1. Qed. Lemma injm_quotm : 'injm f -> 'injm quotm. Proof. by move/trivgP=> /= kf1; rewrite ker_quotm kf1 quotientE morphim1. Qed. End QuotientMorphism. Section EqIso. Variables (gT : finGroupType) (G H : {group gT}). Hypothesis (eqGH : G :=: H). Lemma im_qisom_proof : 'N(H) \subset 'N(G). Proof. by rewrite eqGH. Qed. Lemma qisom_ker_proof : 'ker (coset G) \subset 'ker (coset H). Proof. by rewrite eqGH. Qed. Lemma qisom_restr_proof : setT \subset 'N(H) / G. Proof. by rewrite eqGH im_quotient. Qed. Definition qisom := restrm qisom_restr_proof (factm qisom_ker_proof im_qisom_proof). Canonical qisom_morphism := Eval hnf in [morphism of qisom]. Lemma qisomE x : qisom (coset G x) = coset H x. Proof. case Nx: (x \in 'N(H)); first exact: factmE. by rewrite !coset_default ?eqGH ?morph1. Qed. Lemma val_qisom Gx : val (qisom Gx) = val Gx. Proof. by case: (cosetP Gx) => x Nx ->{Gx}; rewrite qisomE /= !val_coset -?eqGH. Qed. Lemma morphim_qisom A : qisom @* (A / G) = A / H. Proof. by rewrite morphim_restrm setTI morphim_factm. Qed. Lemma morphpre_qisom A : qisom @*^-1 (A / H) = A / G. Proof. rewrite morphpre_restrm setTI morphpre_factm eqGH. by rewrite morphpreK // im_coset subsetT. Qed. Lemma injm_qisom : 'injm qisom. Proof. by rewrite -quotient1 -morphpre_qisom morphpreS ?sub1G. Qed. Lemma im_qisom : qisom @* setT = setT. Proof. by rewrite -{2}im_quotient morphim_qisom eqGH im_quotient. Qed. Lemma qisom_isom : isom setT setT qisom. Proof. by apply/isomP; rewrite injm_qisom im_qisom. Qed. Lemma qisom_isog : [set: coset_of G] \isog [set: coset_of H]. Proof. exact: isom_isog qisom_isom. Qed. Lemma qisom_inj : injective qisom. Proof. by move=> x y; apply: (injmP injm_qisom); rewrite inE. Qed. Lemma morphim_qisom_inj : injective (fun Gx => qisom @* Gx). Proof. by move=> Gx Gy; apply: injm_morphim_inj; rewrite (injm_qisom, subsetT). Qed. End EqIso. Arguments qisom_inj {gT G H} eqGH [x1 x2]. Arguments morphim_qisom_inj {gT G H} eqGH [x1 x2]. Section FirstIsomorphism. Variables aT rT : finGroupType. Lemma first_isom (G : {group aT}) (f : {morphism G >-> rT}) : {g : {morphism G / 'ker f >-> rT} | 'injm g & forall A : {set aT}, g @* (A / 'ker f) = f @* A}. Proof. have nkG := ker_norm f. have skk: 'ker (coset ('ker f)) \subset 'ker f by rewrite ker_coset. exists (factm_morphism skk nkG) => /=; last exact: morphim_factm. by rewrite ker_factm -quotientE trivg_quotient. Qed. Variables (G H : {group aT}) (f : {morphism G >-> rT}). Hypothesis sHG : H \subset G. Lemma first_isog : (G / 'ker f) \isog (f @* G). Proof. by case: (first_isom f) => g injg im_g; apply/isogP; exists g; rewrite ?im_g. Qed. Lemma first_isom_loc : {g : {morphism H / 'ker_H f >-> rT} | 'injm g & forall A : {set aT}, A \subset H -> g @* (A / 'ker_H f) = f @* A}. Proof. case: (first_isom (restrm_morphism sHG f)). rewrite ker_restrm => g injg im_g; exists g => // A sAH. by rewrite im_g morphim_restrm (setIidPr sAH). Qed. Lemma first_isog_loc : (H / 'ker_H f) \isog (f @* H). Proof. by case: first_isom_loc => g injg im_g; apply/isogP; exists g; rewrite ?im_g. Qed. End FirstIsomorphism. Section SecondIsomorphism. Variables (gT : finGroupType) (H K : {group gT}). Hypothesis nKH : H \subset 'N(K). Lemma second_isom : {f : {morphism H / (K :&: H) >-> coset_of K} | 'injm f & forall A : {set gT}, A \subset H -> f @* (A / (K :&: H)) = A / K}. Proof. have ->: K :&: H = 'ker_H (coset K) by rewrite ker_coset setIC. exact: first_isom_loc. Qed. Lemma second_isog : H / (K :&: H) \isog H / K. Proof. by rewrite setIC -{1 3}(ker_coset K); apply: first_isog_loc. Qed. Lemma weak_second_isog : H / (K :&: H) \isog H * K / K. Proof. by rewrite quotientMidr; apply: second_isog. Qed. End SecondIsomorphism. Section ThirdIsomorphism. Variables (gT : finGroupType) (G H K : {group gT}). Lemma homg_quotientS (A : {set gT}) : A \subset 'N(H) -> A \subset 'N(K) -> H \subset K -> A / K \homg A / H. Proof. rewrite -!(gen_subG A) /=; set L := <> => nHL nKL sKH. have sub_ker: 'ker (restrm nHL (coset H)) \subset 'ker (restrm nKL (coset K)). by rewrite !ker_restrm !ker_coset setIS. have sAL: A \subset L := subset_gen A; rewrite -(setIidPr sAL). rewrite -[_ / H](morphim_restrm nHL) -[_ / K](morphim_restrm nKL) /=. by rewrite -(morphim_factm sub_ker (subxx L)) morphim_homg ?morphimS. Qed. Hypothesis sHK : H \subset K. Hypothesis snHG : H <| G. Hypothesis snKG : K <| G. Theorem third_isom : {f : {morphism (G / H) / (K / H) >-> coset_of K} | 'injm f & forall A : {set gT}, A \subset G -> f @* (A / H / (K / H)) = A / K}. Proof. have [[sKG nKG] [sHG nHG]] := (andP snKG, andP snHG). have sHker: 'ker (coset H) \subset 'ker (restrm nKG (coset K)). by rewrite ker_restrm !ker_coset subsetI sHG. have:= first_isom_loc (factm_morphism sHker nHG) (subxx _) => /=. rewrite ker_factm_loc ker_restrm ker_coset !(setIidPr sKG) /= -!quotientE. case=> f injf im_f; exists f => // A sAG; rewrite im_f ?morphimS //. by rewrite morphim_factm morphim_restrm (setIidPr sAG). Qed. Theorem third_isog : (G / H / (K / H)) \isog (G / K). Proof. by case: third_isom => f inj_f im_f; apply/isogP; exists f; rewrite ?im_f. Qed. End ThirdIsomorphism. Lemma char_from_quotient (gT : finGroupType) (G H K : {group gT}) : H <| K -> H \char G -> K / H \char G / H -> K \char G. Proof. case/andP=> sHK nHK chHG. have nsHG := char_normal chHG; have [sHG nHG] := andP nsHG. case/charP; rewrite quotientSGK // => sKG /= chKG. apply/charP; split=> // f injf Gf; apply/morphim_fixP => //. rewrite -(quotientSGK _ sHK); last by rewrite -morphimIim Gf subIset ?nHG. have{chHG} Hf: f @* H = H by case/charP: chHG => _; apply. set q := quotm_morphism f nsHG; have{injf}: 'injm q by apply: injm_quotm. have: q @* _ = _ := morphim_quotm _ _ _; move: q; rewrite Hf => q im_q injq. by rewrite -im_q chKG // im_q Gf. Qed. (* Counting lemmas for morphisms. *) Section CardMorphism. Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}). Implicit Types G H : {group aT}. Implicit Types L M : {group rT}. Lemma card_morphim G : #|f @* G| = #|D :&: G : 'ker f|. Proof. rewrite -morphimIdom -indexgI -card_quotient; last first. by rewrite normsI ?normG ?subIset ?ker_norm. by apply: esym (card_isog _); rewrite first_isog_loc ?subsetIl. Qed. Lemma dvdn_morphim G : #|f @* G| %| #|G|. Proof. rewrite card_morphim (dvdn_trans (dvdn_indexg _ _)) //. by rewrite cardSg ?subsetIr. Qed. Lemma logn_morphim p G : logn p #|f @* G| <= logn p #|G|. Proof. by rewrite dvdn_leq_log ?dvdn_morphim. Qed. Lemma coprime_morphl G p : coprime #|G| p -> coprime #|f @* G| p. Proof. exact: coprime_dvdl (dvdn_morphim G). Qed. Lemma coprime_morphr G p : coprime p #|G| -> coprime p #|f @* G|. Proof. exact: coprime_dvdr (dvdn_morphim G). Qed. Lemma coprime_morph G H : coprime #|G| #|H| -> coprime #|f @* G| #|f @* H|. Proof. by move=> coGH; rewrite coprime_morphl // coprime_morphr. Qed. Lemma index_morphim_ker G H : H \subset G -> G \subset D -> (#|f @* G : f @* H| * #|'ker_G f : H|)%N = #|G : H|. Proof. move=> sHG sGD; apply/eqP. rewrite -(eqn_pmul2l (cardG_gt0 (f @* H))) mulnA Lagrange ?morphimS //. rewrite !card_morphim (setIidPr sGD) (setIidPr (subset_trans sHG sGD)). rewrite -(eqn_pmul2l (cardG_gt0 ('ker_H f))) /=. by rewrite -{1}(setIidPr sHG) setIAC mulnCA mulnC mulnA !LagrangeI Lagrange. Qed. Lemma index_morphim G H : G :&: H \subset D -> #|f @* G : f @* H| %| #|G : H|. Proof. move=> dGH; rewrite -(indexgI G) -(setIidPr dGH) setIA. apply: dvdn_trans (indexSg (subsetIl _ H) (subsetIr D G)). rewrite -index_morphim_ker ?subsetIl ?subsetIr ?dvdn_mulr //= morphimIdom. by rewrite indexgS ?morphimS ?subsetIr. Qed. Lemma index_injm G H : 'injm f -> G \subset D -> #|f @* G : f @* H| = #|G : H|. Proof. move=> injf dG; rewrite -{2}(setIidPr dG) -(indexgI _ H) /=. rewrite -index_morphim_ker ?subsetIl ?subsetIr //= setIAC morphimIdom setIC. rewrite injmI ?subsetIr // indexgI /= morphimIdom setIC ker_injm //. by rewrite -(indexgI (1 :&: _)) /= -setIA !(setIidPl (sub1G _)) indexgg muln1. Qed. Lemma card_morphpre L : L \subset f @* D -> #|f @*^-1 L| = (#|'ker f| * #|L|)%N. Proof. move/morphpreK=> {2} <-; rewrite card_morphim morphpreIdom. by rewrite Lagrange // morphpreS ?sub1G. Qed. Lemma index_morphpre L M : L \subset f @* D -> #|f @*^-1 L : f @*^-1 M| = #|L : M|. Proof. move=> dL; rewrite -!divgI -morphpreI card_morphpre //. have: L :&: M \subset f @* D by rewrite subIset ?dL. by move/card_morphpre->; rewrite divnMl ?cardG_gt0. Qed. End CardMorphism. Lemma card_homg (aT rT : finGroupType) (G : {group aT}) (R : {group rT}) : G \homg R -> #|G| %| #|R|. Proof. by case/homgP=> f <-; rewrite card_morphim setIid dvdn_indexg. Qed. Section CardCosetpre. Variables (gT : finGroupType) (G H K : {group gT}) (L M : {group coset_of H}). Lemma dvdn_quotient : #|G / H| %| #|G|. Proof. exact: dvdn_morphim. Qed. Lemma index_quotient_ker : K \subset G -> G \subset 'N(H) -> (#|G / H : K / H| * #|G :&: H : K|)%N = #|G : K|. Proof. by rewrite -{5}(ker_coset H); apply: index_morphim_ker. Qed. Lemma index_quotient : G :&: K \subset 'N(H) -> #|G / H : K / H| %| #|G : K|. Proof. exact: index_morphim. Qed. Lemma index_quotient_eq : G :&: H \subset K -> K \subset G -> G \subset 'N(H) -> #|G / H : K / H| = #|G : K|. Proof. move=> sGH_K sKG sGN; rewrite -index_quotient_ker {sKG sGN}//. by rewrite -(indexgI _ K) (setIidPl sGH_K) indexgg muln1. Qed. Lemma card_cosetpre : #|coset H @*^-1 L| = (#|H| * #|L|)%N. Proof. by rewrite card_morphpre ?ker_coset ?sub_im_coset. Qed. Lemma index_cosetpre : #|coset H @*^-1 L : coset H @*^-1 M| = #|L : M|. Proof. by rewrite index_morphpre ?sub_im_coset. Qed. End CardCosetpre.