(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path. From mathcomp Require Import choice fintype tuple finfun bigop finset binomial. From mathcomp Require Import fingroup morphism. (******************************************************************************) (* This file contains the definition and properties associated to the group *) (* of permutations of an arbitrary finite type. *) (* {perm T} == the type of permutations of a finite type T, i.e., *) (* injective (finite) functions from T to T. Permutations *) (* coerce to CiC functions. *) (* 'S_n == the set of all permutations of 'I_n, i.e., of *) (* {0,.., n-1} *) (* perm_on A u == u is a permutation with support A, i.e., u only *) (* displaces elements of A (u x != x implies x \in A). *) (* tperm x y == the transposition of x, y. *) (* aperm x s == the image of x under the action of the permutation s. *) (* := s x *) (* cast_perm Emn s == the 'S_m permutation cast as a 'S_n permutation using *) (* Emn : m = n *) (* porbit s x == the set of all elements that are in the same cycle of *) (* the permutation s as x, i.e., {x, s x, (s ^+ 2) x, ...}.*) (* porbits s == the set of all the cycles of the permutation s. *) (* (s : bool) == s is an odd permutation (the coercion is called *) (* odd_perm). *) (* dpair u == u is a pair (x, y) of distinct objects (i.e., x != y). *) (* Sym S == the set of permutations with support S *) (* lift_perm i j s == the permutation obtained by lifting s : 'S_n.-1 over *) (* (i |-> j), that maps i to j and lift i k to *) (* lift j (s k). *) (* Canonical structures are defined allowing permutations to be an eqType, *) (* choiceType, countType, finType, subType, finGroupType; permutations with *) (* composition form a group, therefore inherit all generic group notations: *) (* 1 == identity permutation, * == composition, ^-1 == inverse permutation. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Import GroupScope. Section PermDefSection. Variable T : finType. Inductive perm_type : predArgType := Perm (pval : {ffun T -> T}) & injectiveb pval. Definition pval p := let: Perm f _ := p in f. Definition perm_of of phant T := perm_type. Identity Coercion type_of_perm : perm_of >-> perm_type. Notation pT := (perm_of (Phant T)). Canonical perm_subType := Eval hnf in [subType for pval]. Definition perm_eqMixin := Eval hnf in [eqMixin of perm_type by <:]. Canonical perm_eqType := Eval hnf in EqType perm_type perm_eqMixin. Definition perm_choiceMixin := [choiceMixin of perm_type by <:]. Canonical perm_choiceType := Eval hnf in ChoiceType perm_type perm_choiceMixin. Definition perm_countMixin := [countMixin of perm_type by <:]. Canonical perm_countType := Eval hnf in CountType perm_type perm_countMixin. Canonical perm_subCountType := Eval hnf in [subCountType of perm_type]. Definition perm_finMixin := [finMixin of perm_type by <:]. Canonical perm_finType := Eval hnf in FinType perm_type perm_finMixin. Canonical perm_subFinType := Eval hnf in [subFinType of perm_type]. Canonical perm_for_subType := Eval hnf in [subType of pT]. Canonical perm_for_eqType := Eval hnf in [eqType of pT]. Canonical perm_for_choiceType := Eval hnf in [choiceType of pT]. Canonical perm_for_countType := Eval hnf in [countType of pT]. Canonical perm_for_subCountType := Eval hnf in [subCountType of pT]. Canonical perm_for_finType := Eval hnf in [finType of pT]. Canonical perm_for_subFinType := Eval hnf in [subFinType of pT]. Lemma perm_proof (f : T -> T) : injective f -> injectiveb (finfun f). Proof. by move=> f_inj; apply/injectiveP; apply: eq_inj f_inj _ => x; rewrite ffunE. Qed. End PermDefSection. Notation "{ 'perm' T }" := (perm_of (Phant T)) (at level 0, format "{ 'perm' T }") : type_scope. Arguments pval _ _%g. Bind Scope group_scope with perm_type. Bind Scope group_scope with perm_of. Notation "''S_' n" := {perm 'I_n} (at level 8, n at level 2, format "''S_' n"). Local Notation fun_of_perm_def := (fun T (u : perm_type T) => val u : T -> T). Local Notation perm_def := (fun T f injf => Perm (@perm_proof T f injf)). Module Type PermDefSig. Parameter fun_of_perm : forall T, perm_type T -> T -> T. Parameter perm : forall (T : finType) (f : T -> T), injective f -> {perm T}. Axiom fun_of_permE : fun_of_perm = fun_of_perm_def. Axiom permE : perm = perm_def. End PermDefSig. Module PermDef : PermDefSig. Definition fun_of_perm := fun_of_perm_def. Definition perm := perm_def. Lemma fun_of_permE : fun_of_perm = fun_of_perm_def. Proof. by []. Qed. Lemma permE : perm = perm_def. Proof. by []. Qed. End PermDef. Notation fun_of_perm := PermDef.fun_of_perm. Notation "@ 'perm'" := (@PermDef.perm) (at level 10, format "@ 'perm'"). Notation perm := (@PermDef.perm _ _). Canonical fun_of_perm_unlock := Unlockable PermDef.fun_of_permE. Canonical perm_unlock := Unlockable PermDef.permE. Coercion fun_of_perm : perm_type >-> Funclass. Section Theory. Variable T : finType. Implicit Types (x y : T) (s t : {perm T}) (S : {set T}). Lemma permP s t : s =1 t <-> s = t. Proof. by split=> [| -> //]; rewrite unlock => eq_sv; apply/val_inj/ffunP. Qed. Lemma pvalE s : pval s = s :> (T -> T). Proof. by rewrite [@fun_of_perm]unlock. Qed. Lemma permE f f_inj : @perm T f f_inj =1 f. Proof. by move=> x; rewrite -pvalE [@perm]unlock ffunE. Qed. Lemma perm_inj {s} : injective s. Proof. by rewrite -!pvalE; apply: (injectiveP _ (valP s)). Qed. Hint Resolve perm_inj : core. Lemma perm_onto s : codom s =i predT. Proof. by apply/subset_cardP; rewrite ?card_codom ?subset_predT. Qed. Definition perm_one := perm (@inj_id T). Lemma perm_invK s : cancel (fun x => iinv (perm_onto s x)) s. Proof. by move=> x /=; rewrite f_iinv. Qed. Definition perm_inv s := perm (can_inj (perm_invK s)). Definition perm_mul s t := perm (inj_comp (@perm_inj t) (@perm_inj s)). Lemma perm_oneP : left_id perm_one perm_mul. Proof. by move=> s; apply/permP => x; rewrite permE /= permE. Qed. Lemma perm_invP : left_inverse perm_one perm_inv perm_mul. Proof. by move=> s; apply/permP=> x; rewrite !permE /= permE f_iinv. Qed. Lemma perm_mulP : associative perm_mul. Proof. by move=> s t u; apply/permP=> x; do !rewrite permE /=. Qed. Definition perm_of_baseFinGroupMixin : FinGroup.mixin_of (perm_type T) := FinGroup.Mixin perm_mulP perm_oneP perm_invP. Canonical perm_baseFinGroupType := Eval hnf in BaseFinGroupType (perm_type T) perm_of_baseFinGroupMixin. Canonical perm_finGroupType := @FinGroupType perm_baseFinGroupType perm_invP. Canonical perm_of_baseFinGroupType := Eval hnf in [baseFinGroupType of {perm T}]. Canonical perm_of_finGroupType := Eval hnf in [finGroupType of {perm T} ]. Lemma perm1 x : (1 : {perm T}) x = x. Proof. by rewrite permE. Qed. Lemma permM s t x : (s * t) x = t (s x). Proof. by rewrite permE. Qed. Lemma permK s : cancel s s^-1. Proof. by move=> x; rewrite -permM mulgV perm1. Qed. Lemma permKV s : cancel s^-1 s. Proof. by have:= permK s^-1; rewrite invgK. Qed. Lemma permJ s t x : (s ^ t) (t x) = t (s x). Proof. by rewrite !permM permK. Qed. Lemma permX s x n : (s ^+ n) x = iter n s x. Proof. by elim: n => [|n /= <-]; rewrite ?perm1 // -permM expgSr. Qed. Lemma permX_fix s x n : s x = x -> (s ^+ n) x = x. Proof. move=> Hs; elim: n => [|n IHn]; first by rewrite expg0 perm1. by rewrite expgS permM Hs. Qed. Lemma im_permV s S : s^-1 @: S = s @^-1: S. Proof. exact: can2_imset_pre (permKV s) (permK s). Qed. Lemma preim_permV s S : s^-1 @^-1: S = s @: S. Proof. by rewrite -im_permV invgK. Qed. Definition perm_on S : pred {perm T} := fun s => [pred x | s x != x] \subset S. Lemma perm_closed S s x : perm_on S s -> (s x \in S) = (x \in S). Proof. move/subsetP=> s_on_S; have [-> // | nfix_s_x] := eqVneq (s x) x. by rewrite !s_on_S // inE /= ?(inj_eq perm_inj). Qed. Lemma perm_on1 H : perm_on H 1. Proof. by apply/subsetP=> x; rewrite inE /= perm1 eqxx. Qed. Lemma perm_onM H s t : perm_on H s -> perm_on H t -> perm_on H (s * t). Proof. move/subsetP=> sH /subsetP tH; apply/subsetP => x; rewrite inE /= permM. by have [-> /tH | /sH] := eqVneq (s x) x. Qed. Lemma perm_onV H s : perm_on H s -> perm_on H s^-1. Proof. move=> /subsetP sH; apply/subsetP => i /[!inE] sVi; apply: sH; rewrite inE. by apply: contra_neq sVi => si_id; rewrite -[in LHS]si_id permK. Qed. Lemma out_perm S u x : perm_on S u -> x \notin S -> u x = x. Proof. by move=> uS; apply: contraNeq (subsetP uS x). Qed. Lemma im_perm_on u S : perm_on S u -> u @: S = S. Proof. move=> Su; rewrite -preim_permV; apply/setP=> x. by rewrite !inE -(perm_closed _ Su) permKV. Qed. Lemma imset_perm1 (S : {set T}) : [set (1 : {perm T}) x | x in S] = S. Proof. apply: im_perm_on; exact: perm_on1. Qed. Lemma tperm_proof x y : involutive [fun z => z with x |-> y, y |-> x]. Proof. move=> z /=; case: (z =P x) => [-> | ne_zx]; first by rewrite eqxx; case: eqP. by case: (z =P y) => [->| ne_zy]; [rewrite eqxx | do 2?case: eqP]. Qed. Definition tperm x y := perm (can_inj (tperm_proof x y)). Variant tperm_spec x y z : T -> Type := | TpermFirst of z = x : tperm_spec x y z y | TpermSecond of z = y : tperm_spec x y z x | TpermNone of z <> x & z <> y : tperm_spec x y z z. Lemma tpermP x y z : tperm_spec x y z (tperm x y z). Proof. by rewrite permE /=; do 2?[case: eqP => /=]; constructor; auto. Qed. Lemma tpermL x y : tperm x y x = y. Proof. by case: tpermP. Qed. Lemma tpermR x y : tperm x y y = x. Proof. by case: tpermP. Qed. Lemma tpermD x y z : x != z -> y != z -> tperm x y z = z. Proof. by case: tpermP => // ->; rewrite eqxx. Qed. Lemma tpermC x y : tperm x y = tperm y x. Proof. by apply/permP => z; do 2![case: tpermP => //] => ->. Qed. Lemma tperm1 x : tperm x x = 1. Proof. by apply/permP => z; rewrite perm1; case: tpermP. Qed. Lemma tpermK x y : involutive (tperm x y). Proof. by move=> z; rewrite !permE tperm_proof. Qed. Lemma tpermKg x y : involutive (mulg (tperm x y)). Proof. by move=> s; apply/permP=> z; rewrite !permM tpermK. Qed. Lemma tpermV x y : (tperm x y)^-1 = tperm x y. Proof. by set t := tperm x y; rewrite -{2}(mulgK t t) -mulgA tpermKg. Qed. Lemma tperm2 x y : tperm x y * tperm x y = 1. Proof. by rewrite -{1}tpermV mulVg. Qed. Lemma card_perm A : #|perm_on A| = (#|A|)`!. Proof. pose ffA := {ffun {x | x \in A} -> T}. rewrite -ffactnn -{2}(card_sig (mem A)) /= -card_inj_ffuns_on. pose fT (f : ffA) := [ffun x => oapp f x (insub x)]. pose pfT f := insubd (1 : {perm T}) (fT f). pose fA s : ffA := [ffun u => s (val u)]. rewrite -!sum1dep_card -sum1_card (reindex_onto fA pfT) => [|f]. apply: eq_bigl => p; rewrite andbC; apply/idP/and3P=> [onA | []]; first split. - apply/eqP; suffices fTAp: fT (fA p) = pval p. by apply/permP=> x; rewrite -!pvalE insubdK fTAp //; apply: (valP p). apply/ffunP=> x; rewrite ffunE pvalE. by case: insubP => [u _ <- | /out_perm->] //=; rewrite ffunE. - by apply/forallP=> [[x Ax]]; rewrite ffunE /= perm_closed. - by apply/injectiveP=> u v; rewrite !ffunE => /perm_inj; apply: val_inj. move/eqP=> <- _ _; apply/subsetP=> x; rewrite !inE -pvalE val_insubd fun_if. by rewrite if_arg ffunE; case: insubP; rewrite // pvalE perm1 if_same eqxx. case/andP=> /forallP-onA /injectiveP-f_inj. apply/ffunP=> u; rewrite ffunE -pvalE insubdK; first by rewrite ffunE valK. apply/injectiveP=> {u} x y; rewrite !ffunE. case: insubP => [u _ <-|]; case: insubP => [v _ <-|] //=; first by move/f_inj->. by move=> Ay' def_y; rewrite -def_y [_ \in A]onA in Ay'. by move=> Ax' def_x; rewrite def_x [_ \in A]onA in Ax'. Qed. End Theory. Prenex Implicits tperm permK permKV tpermK. Arguments perm_inj {T s} [x1 x2] eq_sx12. (* Shorthand for using a permutation to reindex a bigop. *) Notation reindex_perm s := (reindex_inj (@perm_inj _ s)). Lemma inj_tperm (T T' : finType) (f : T -> T') x y z : injective f -> f (tperm x y z) = tperm (f x) (f y) (f z). Proof. by move=> injf; rewrite !permE /= !(inj_eq injf) !(fun_if f). Qed. Lemma tpermJ (T : finType) x y (s : {perm T}) : (tperm x y) ^ s = tperm (s x) (s y). Proof. by apply/permP => z; rewrite -(permKV s z) permJ; apply/inj_tperm/perm_inj. Qed. Lemma tuple_permP {T : eqType} {n} {s : seq T} {t : n.-tuple T} : reflect (exists p : 'S_n, s = [tuple tnth t (p i) | i < n]) (perm_eq s t). Proof. apply: (iffP idP) => [|[p ->]]; last first. rewrite /= (map_comp (tnth t)) -{1}(map_tnth_enum t) perm_map //. apply: uniq_perm => [||i]; rewrite ?enum_uniq //. by apply/injectiveP; apply: perm_inj. by rewrite mem_enum -[i](permKV p) image_f. case: n => [|n] in t *; last have x0 := tnth t ord0. rewrite tuple0 => /perm_small_eq-> //. by exists 1; rewrite [mktuple _]tuple0. case/(perm_iotaP x0); rewrite size_tuple => Is eqIst ->{s}. have uniqIs: uniq Is by rewrite (perm_uniq eqIst) iota_uniq. have szIs: size Is == n.+1 by rewrite (perm_size eqIst) !size_tuple. have pP i : tnth (Tuple szIs) i < n.+1. by rewrite -[_ < _](mem_iota 0) -(perm_mem eqIst) mem_tnth. have inj_p: injective (fun i => Ordinal (pP i)). by apply/injectiveP/(@map_uniq _ _ val); rewrite -map_comp map_tnth_enum. exists (perm inj_p); rewrite -[Is]/(tval (Tuple szIs)); congr (tval _). by apply: eq_from_tnth => i; rewrite tnth_map tnth_mktuple permE (tnth_nth x0). Qed. Section PermutationParity. Variable T : finType. Implicit Types (s t u v : {perm T}) (x y z a b : T). (* Note that porbit s x is the orbit of x by <[s]> under the action aperm. *) (* Hence, the porbit lemmas below are special cases of more general lemmas *) (* on orbits that will be stated in action.v. *) (* Defining porbit directly here avoids a dependency of matrix.v on *) (* action.v and hence morphism.v. *) Definition aperm x s := s x. Definition porbit s x := aperm x @: <[s]>. Definition porbits s := porbit s @: T. Definition odd_perm (s : perm_type T) := odd #|T| (+) odd #|porbits s|. Lemma apermE x s : aperm x s = s x. Proof. by []. Qed. Lemma mem_porbit s i x : (s ^+ i) x \in porbit s x. Proof. by rewrite (imset_f (aperm x)) ?mem_cycle. Qed. Lemma porbit_id s x : x \in porbit s x. Proof. by rewrite -{1}[x]perm1 (mem_porbit s 0). Qed. Lemma card_porbit_neq0 s x : #|porbit s x| != 0. Proof. by rewrite -lt0n card_gt0; apply/set0Pn; exists x; exact: porbit_id. Qed. Lemma uniq_traject_porbit s x : uniq (traject s x #|porbit s x|). Proof. case def_n: #|_| => // [n]; rewrite looping_uniq. apply: contraL (card_size (traject s x n)) => /loopingP t_sx. rewrite -ltnNge size_traject -def_n ?subset_leq_card //. by apply/subsetP=> _ /imsetP[_ /cycleP[i ->] ->]; rewrite /aperm permX t_sx. Qed. Lemma porbit_traject s x : porbit s x =i traject s x #|porbit s x|. Proof. apply: fsym; apply/subset_cardP. by rewrite (card_uniqP _) ?size_traject ?uniq_traject_porbit. by apply/subsetP=> _ /trajectP[i _ ->]; rewrite -permX mem_porbit. Qed. Lemma iter_porbit s x : iter #|porbit s x| s x = x. Proof. case def_n: #|_| (uniq_traject_porbit s x) => [//|n] Ut. have: looping s x n.+1. by rewrite -def_n -[looping _ _ _]porbit_traject -permX mem_porbit. rewrite /looping => /trajectP[[|i] //= lt_i_n /perm_inj eq_i_n_sx]. move: lt_i_n; rewrite ltnS ltn_neqAle andbC => /andP[le_i_n /negP[]]. by rewrite -(nth_uniq x _ _ Ut) ?size_traject ?nth_traject // eq_i_n_sx. Qed. Lemma eq_porbit_mem s x y : (porbit s x == porbit s y) = (x \in porbit s y). Proof. apply/eqP/idP=> [<- | /imsetP[si s_si ->]]; first exact: porbit_id. apply/setP => z; apply/imsetP/imsetP=> [] [sj s_sj ->]. by exists (si * sj); rewrite ?groupM /aperm ?permM. exists (si^-1 * sj); first by rewrite groupM ?groupV. by rewrite /aperm permM permK. Qed. Lemma porbit_sym s x y : (x \in porbit s y) = (y \in porbit s x). Proof. by rewrite -!eq_porbit_mem eq_sym. Qed. Lemma porbit_perm s i x : porbit s ((s ^+ i) x) = porbit s x. Proof. by apply/eqP; rewrite eq_porbit_mem mem_porbit. Qed. Lemma porbitPmin s x y : y \in porbit s x -> exists2 i, i < #[s] & y = (s ^+ i) x. Proof. by move=> /imsetP [z /cyclePmin[ i Hi ->{z}] ->{y}]; exists i. Qed. Lemma porbitP s x y : reflect (exists i, y = (s ^+ i) x) (y \in porbit s x). Proof. apply (iffP idP) => [/porbitPmin [i _ ->]| [i ->]]; last exact: mem_porbit. by exists i. Qed. Lemma porbitV s : porbit s^-1 =1 porbit s. Proof. move=> x; apply/setP => y; rewrite porbit_sym. by apply/porbitP/porbitP => -[i ->]; exists i; rewrite expgVn ?permK ?permKV. Qed. Lemma porbitsV s : porbits s^-1 = porbits s. Proof. rewrite /porbits; apply/setP => y. by apply/imsetP/imsetP => -[x _ ->{y}]; exists x; rewrite // porbitV. Qed. Lemma porbits_mul_tperm s x y : let t := tperm x y in #|porbits (t * s)| + (x \notin porbit s y).*2 = #|porbits s| + (x != y). Proof. pose xf a b u := find (pred2 a b) (traject u (u a) #|porbit u a|). have xf_size a b u: xf a b u <= #|porbit u a|. by rewrite (leq_trans (find_size _ _)) ?size_traject. have lt_xf a b u n : n < xf a b u -> ~~ pred2 a b ((u ^+ n.+1) a). move=> lt_n; apply: contraFN (before_find (u a) lt_n). by rewrite permX iterSr nth_traject // (leq_trans lt_n). pose t a b u := tperm a b * u. have tC a b u : t a b u = t b a u by rewrite /t tpermC. have tK a b: involutive (t a b) by move=> u; apply: tpermKg. have tXC a b u n: n <= xf a b u -> (t a b u ^+ n.+1) b = (u ^+ n.+1) a. elim: n => [|n IHn] lt_n_f; first by rewrite permM tpermR. rewrite !(expgSr _ n.+1) !permM {}IHn 1?ltnW //; congr (u _). by case/lt_xf/norP: lt_n_f => ne_a ne_b; rewrite tpermD // eq_sym. have eq_xf a b u: pred2 a b ((u ^+ (xf a b u).+1) a). have ua_a: a \in porbit u (u a) by rewrite porbit_sym (mem_porbit _ 1). have has_f: has (pred2 a b) (traject u (u a) #|porbit u (u a)|). by apply/hasP; exists a; rewrite /= ?eqxx -?porbit_traject. have:= nth_find (u a) has_f; rewrite has_find size_traject in has_f. rewrite -eq_porbit_mem in ua_a. by rewrite nth_traject // -iterSr -permX -(eqP ua_a). have xfC a b u: xf b a (t a b u) = xf a b u. without loss lt_a: a b u / xf b a (t a b u) < xf a b u. move=> IHab; set m := xf b a _; set n := xf a b u. by case: (ltngtP m n) => // ltx; [apply: IHab | rewrite -[m]IHab tC tK]. by move/lt_xf: (lt_a); rewrite -(tXC a b) 1?ltnW //= orbC [_ || _]eq_xf. pose ts := t x y s; rewrite /= -[_ * s]/ts. pose dp u := #|porbits u :\ porbit u y :\ porbit u x|. rewrite !(addnC #|_|) (cardsD1 (porbit ts y)) imset_f ?inE //. rewrite (cardsD1 (porbit ts x)) inE imset_f ?inE //= -/(dp ts) {}/ts. rewrite (cardsD1 (porbit s y)) (cardsD1 (porbit s x)) !(imset_f, inE) //. rewrite -/(dp s) !addnA !eq_porbit_mem andbT; congr (_ + _); last first. wlog suffices: s / dp s <= dp (t x y s). by move=> IHs; apply/eqP; rewrite eqn_leq -{2}(tK x y s) !IHs. apply/subset_leq_card/subsetP=> {dp} C. rewrite !inE andbA andbC !(eq_sym C) => /and3P[/imsetP[z _ ->{C}]]. rewrite 2!eq_porbit_mem => sxz syz. suffices ts_z: porbit (t x y s) z = porbit s z. by rewrite -ts_z !eq_porbit_mem {1 2}ts_z sxz syz imset_f ?inE. suffices exp_id n: ((t x y s) ^+ n) z = (s ^+ n) z. apply/setP=> u; apply/idP/idP=> /imsetP[_ /cycleP[i ->] ->]. by rewrite /aperm exp_id mem_porbit. by rewrite /aperm -exp_id mem_porbit. elim: n => // n IHn; rewrite !expgSr !permM {}IHn tpermD //. by apply: contraNneq sxz => ->; apply: mem_porbit. by apply: contraNneq syz => ->; apply: mem_porbit. case: eqP {dp} => [<- | ne_xy]; first by rewrite /t tperm1 mul1g porbit_id. suff ->: (x \in porbit (t x y s) y) = (x \notin porbit s y) by case: (x \in _). without loss xf_x: s x y ne_xy / (s ^+ (xf x y s).+1) x = x. move=> IHs; have ne_yx := nesym ne_xy; have:= eq_xf x y s; set n := xf x y s. case/pred2P=> [|snx]; first exact: IHs. by rewrite -[x \in _]negbK ![x \in _]porbit_sym -{}IHs ?xfC ?tXC // tC tK. rewrite -{1}xf_x -(tXC _ _ _ _ (leqnn _)) mem_porbit; symmetry. rewrite -eq_porbit_mem eq_sym eq_porbit_mem porbit_traject. apply/trajectP=> [[n _ snx]]. have: looping s x (xf x y s).+1 by rewrite /looping -permX xf_x inE eqxx. move/loopingP/(_ n); rewrite -{n}snx. case/trajectP=> [[_|i]]; first exact: nesym; rewrite ltnS -permX => lt_i def_y. by move/lt_xf: lt_i; rewrite def_y /= eqxx orbT. Qed. Lemma odd_perm1 : odd_perm 1 = false. Proof. rewrite /odd_perm card_imset ?addbb // => x y; move/eqP. by rewrite eq_porbit_mem /porbit cycle1 imset_set1 /aperm perm1; move/set1P. Qed. Lemma odd_mul_tperm x y s : odd_perm (tperm x y * s) = (x != y) (+) odd_perm s. Proof. rewrite addbC -addbA -[~~ _]oddb -oddD -porbits_mul_tperm. by rewrite oddD odd_double addbF. Qed. Lemma odd_tperm x y : odd_perm (tperm x y) = (x != y). Proof. by rewrite -[_ y]mulg1 odd_mul_tperm odd_perm1 addbF. Qed. Definition dpair (eT : eqType) := [pred t | t.1 != t.2 :> eT]. Arguments dpair {eT}. Lemma prod_tpermP s : {ts : seq (T * T) | s = \prod_(t <- ts) tperm t.1 t.2 & all dpair ts}. Proof. have [n] := ubnP #|[pred x | s x != x]|; elim: n s => // n IHn s /ltnSE-le_s_n. case: (pickP (fun x => s x != x)) => [x s_x | s_id]; last first. exists nil; rewrite // big_nil; apply/permP=> x. by apply/eqP/idPn; rewrite perm1 s_id. have [|ts def_s ne_ts] := IHn (tperm x (s^-1 x) * s); last first. exists ((x, s^-1 x) :: ts); last by rewrite /= -(canF_eq (permK _)) s_x. by rewrite big_cons -def_s mulgA tperm2 mul1g. rewrite (cardD1 x) !inE s_x in le_s_n; apply: leq_ltn_trans le_s_n. apply: subset_leq_card; apply/subsetP=> y. rewrite !inE permM permE /= -(canF_eq (permK _)). have [-> | ne_yx] := eqVneq y x; first by rewrite permKV eqxx. by case: (s y =P x) => // -> _; rewrite eq_sym. Qed. Lemma odd_perm_prod ts : all dpair ts -> odd_perm (\prod_(t <- ts) tperm t.1 t.2) = odd (size ts). Proof. elim: ts => [_|t ts IHts] /=; first by rewrite big_nil odd_perm1. by case/andP=> dt12 dts; rewrite big_cons odd_mul_tperm dt12 IHts. Qed. Lemma odd_permM : {morph odd_perm : s1 s2 / s1 * s2 >-> s1 (+) s2}. Proof. move=> s1 s2; case: (prod_tpermP s1) => ts1 ->{s1} dts1. case: (prod_tpermP s2) => ts2 ->{s2} dts2. by rewrite -big_cat !odd_perm_prod ?all_cat ?dts1 // size_cat oddD. Qed. Lemma odd_permV s : odd_perm s^-1 = odd_perm s. Proof. by rewrite -{2}(mulgK s s) !odd_permM -addbA addKb. Qed. Lemma odd_permJ s1 s2 : odd_perm (s1 ^ s2) = odd_perm s1. Proof. by rewrite !odd_permM odd_permV addbC addbK. Qed. End PermutationParity. Coercion odd_perm : perm_type >-> bool. Arguments dpair {eT}. Prenex Implicits porbit dpair porbits aperm. Section Symmetry. Variables (T : finType) (S : {set T}). Definition Sym : {set {perm T}} := [set s | perm_on S s]. Lemma Sym_group_set : group_set Sym. Proof. apply/group_setP; split => [|s t] /[!inE]; [exact: perm_on1 | exact: perm_onM]. Qed. Canonical Sym_group : {group {perm T}} := Group Sym_group_set. Lemma card_Sym : #|Sym| = #|S|`!. Proof. by rewrite cardsE /= card_perm. Qed. End Symmetry. Section LiftPerm. (* Somewhat more specialised constructs for permutations on ordinals. *) Variable n : nat. Implicit Types i j : 'I_n.+1. Implicit Types s t : 'S_n. Lemma card_Sn : #|'S_(n)| = n`!. Proof. rewrite (eq_card (B := perm_on [set : 'I_n])). by rewrite card_perm /= cardsE /= card_ord. move=> p; rewrite inE unfold_in /perm_on /=. by apply/esym/subsetP => i _; rewrite in_set. Qed. Definition lift_perm_fun i j s k := if unlift i k is Some k' then lift j (s k') else j. Lemma lift_permK i j s : cancel (lift_perm_fun i j s) (lift_perm_fun j i s^-1). Proof. rewrite /lift_perm_fun => k. by case: (unliftP i k) => [j'|] ->; rewrite (liftK, unlift_none) ?permK. Qed. Definition lift_perm i j s := perm (can_inj (lift_permK i j s)). Lemma lift_perm_id i j s : lift_perm i j s i = j. Proof. by rewrite permE /lift_perm_fun unlift_none. Qed. Lemma lift_perm_lift i j s k' : lift_perm i j s (lift i k') = lift j (s k') :> 'I_n.+1. Proof. by rewrite permE /lift_perm_fun liftK. Qed. Lemma lift_permM i j k s t : lift_perm i j s * lift_perm j k t = lift_perm i k (s * t). Proof. apply/permP=> i1; case: (unliftP i i1) => [i2|] ->{i1}. by rewrite !(permM, lift_perm_lift). by rewrite permM !lift_perm_id. Qed. Lemma lift_perm1 i : lift_perm i i 1 = 1. Proof. by apply: (mulgI (lift_perm i i 1)); rewrite lift_permM !mulg1. Qed. Lemma lift_permV i j s : (lift_perm i j s)^-1 = lift_perm j i s^-1. Proof. by apply/eqP; rewrite eq_invg_mul lift_permM mulgV lift_perm1. Qed. Lemma odd_lift_perm i j s : lift_perm i j s = odd i (+) odd j (+) s :> bool. Proof. rewrite -{1}(mul1g s) -(lift_permM _ j) odd_permM. congr (_ (+) _); last first. case: (prod_tpermP s) => ts ->{s} _. elim: ts => [|t ts IHts] /=; first by rewrite big_nil lift_perm1 !odd_perm1. rewrite big_cons odd_mul_tperm -(lift_permM _ j) odd_permM {}IHts //. congr (_ (+) _); transitivity (tperm (lift j t.1) (lift j t.2)); last first. by rewrite odd_tperm (inj_eq (pcan_inj (liftK j))). congr odd_perm; apply/permP=> k; case: (unliftP j k) => [k'|] ->. by rewrite lift_perm_lift inj_tperm //; apply: lift_inj. by rewrite lift_perm_id tpermD // eq_sym neq_lift. suff{i j s} odd_lift0 (k : 'I_n.+1): lift_perm ord0 k 1 = odd k :> bool. rewrite -!odd_lift0 -{2}invg1 -lift_permV odd_permV -odd_permM. by rewrite lift_permM mulg1. elim: {k}(k : nat) {1 3}k (erefl (k : nat)) => [|m IHm] k def_k. by rewrite (_ : k = ord0) ?lift_perm1 ?odd_perm1 //; apply: val_inj. have le_mn: m < n.+1 by [rewrite -def_k ltnW]; pose j := Ordinal le_mn. rewrite -(mulg1 1)%g -(lift_permM _ j) odd_permM {}IHm // addbC. rewrite (_ : _ 1 = tperm j k); first by rewrite odd_tperm neq_ltn def_k leqnn. apply/permP=> i; case: (unliftP j i) => [i'|] ->; last first. by rewrite lift_perm_id tpermL. apply: ord_inj; rewrite lift_perm_lift !permE /= eq_sym -if_neg neq_lift. rewrite fun_if -val_eqE /= def_k /bump ltn_neqAle andbC. case: leqP => [_ | lt_i'm] /=; last by rewrite -if_neg neq_ltn leqW. by rewrite add1n eqSS; case: eqVneq. Qed. End LiftPerm. Prenex Implicits lift_perm lift_permK. Lemma permS0 : all_equal_to (1 : 'S_0). Proof. by move=> g; apply/permP; case. Qed. Lemma permS1 : all_equal_to (1 : 'S_1). Proof. by move=> g; apply/permP => i; rewrite !ord1. Qed. Lemma permS01 n : n <= 1 -> all_equal_to (1 : 'S_n). Proof. by case: n => [|[|]//=] _ g; rewrite (permS0, permS1). Qed. Section CastSn. Definition cast_perm m n (eq_mn : m = n) (s : 'S_m) := let: erefl in _ = n := eq_mn return 'S_n in s. Lemma cast_perm_id n eq_n s : cast_perm eq_n s = s :> 'S_n. Proof. by apply/permP => i; rewrite /cast_perm /= eq_axiomK. Qed. Lemma cast_ord_permE m n eq_m_n (s : 'S_m) i : @cast_ord m n eq_m_n (s i) = (cast_perm eq_m_n s) (cast_ord eq_m_n i). Proof. by subst m; rewrite cast_perm_id !cast_ord_id. Qed. Lemma cast_permE m n (eq_m_n : m = n) (s : 'S_m) (i : 'I_n) : cast_perm eq_m_n s i = cast_ord eq_m_n (s (cast_ord (esym eq_m_n) i)). Proof. by rewrite cast_ord_permE cast_ordKV. Qed. Lemma cast_perm_comp m n p (eq_m_n : m = n) (eq_n_p : n = p) s : cast_perm eq_n_p (cast_perm eq_m_n s) = cast_perm (etrans eq_m_n eq_n_p) s. Proof. by case: _ / eq_n_p. Qed. Lemma cast_permK m n eq_m_n : cancel (@cast_perm m n eq_m_n) (cast_perm (esym eq_m_n)). Proof. by subst m. Qed. Lemma cast_permKV m n eq_m_n : cancel (cast_perm (esym eq_m_n)) (@cast_perm m n eq_m_n). Proof. by subst m. Qed. Lemma cast_perm_sym m n (eq_m_n : m = n) s t : s = cast_perm eq_m_n t -> t = cast_perm (esym eq_m_n) s. Proof. by move/(canLR (cast_permK _)). Qed. Lemma cast_perm_inj m n eq_m_n : injective (@cast_perm m n eq_m_n). Proof. exact: can_inj (cast_permK eq_m_n). Qed. Lemma cast_perm_morphM m n eq_m_n : {morph @cast_perm m n eq_m_n : x y / x * y >-> x * y}. Proof. by subst m. Qed. Canonical morph_of_cast_perm m n eq_m_n := @Morphism _ _ setT (cast_perm eq_m_n) (in2W (@cast_perm_morphM m n eq_m_n)). Lemma isom_cast_perm m n eq_m_n : isom setT setT (@cast_perm m n eq_m_n). Proof. case: {n} _ / eq_m_n; apply/isomP; split. exact/injmP/(in2W (@cast_perm_inj _ _ _)). by apply/setP => /= s /[!inE]; apply/imsetP; exists s; rewrite ?inE. Qed. End CastSn.