import for_mathlib.topological_field import for_mathlib.topology import for_mathlib.uniform_space.uniform_field import valuation.topology import valuation.with_zero_topology import topology.algebra.ordered /-! In this file we study the topology of a field `K` endowed with a valuation (in our application to adic spaces, `K` will be the valuation field associated to some valuation on a ring, defined in valuation.basic). We already know from valuation.topology that one can build a topology on `K` which makes it a topological ring. The first goal is to show `K` is a topological *field*, ie inversion is continuous at every non-zero element. The next goal is to prove `K` is a *completable* topological field. This gives us a completion `hat K` which is a topological field. We also prove that `K` is automatically separated, so the map from `K` to `hat K` is injective. Then we extend the valuation given on `K` to a valuation on `hat K`. -/ open filter set linear_ordered_structure local attribute [instance, priority 0] classical.DLO local notation `𝓝` x: 70 := nhds x section division_ring variables {K : Type*} [division_ring K] section valuation_topological_division_ring section inversion_estimate variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] (v : valuation K Γ₀) -- The following is the main technical lemma ensuring that inversion is continuous -- in the topology induced by a valuation on a division ring (ie the next instance) -- and the fact that a valued field is completable -- [BouAC, VI.5.1 Lemme 1] lemma valuation.inversion_estimate {x y : K} {γ : units Γ₀} (y_ne : y ≠ 0) (h : v (x - y) < min (γ * ((v y) * (v y))) (v y)) : v (x⁻¹ - y⁻¹) < γ := begin have hyp1 : v (x - y) < γ * ((v y) * (v y)), from lt_of_lt_of_le h (min_le_left _ _), have hyp1' : v (x - y) * ((v y) * (v y))⁻¹ < γ, from mul_inv_lt_of_lt_mul' hyp1, have hyp2 : v (x - y) < v y, from lt_of_lt_of_le h (min_le_right _ _), have key : v x = v y, from valuation.map_eq_of_sub_lt v hyp2, have x_ne : x ≠ 0, { intro h, apply y_ne, rw [h, v.map_zero] at key, exact v.zero_iff.1 key.symm }, have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹, by rw [mul_sub_left_distrib, sub_mul, mul_assoc, show y * y⁻¹ = 1, from mul_inv_cancel y_ne, show x⁻¹ * x = 1, from inv_mul_cancel x_ne, mul_one, one_mul], calc v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) : by rw decomp ... = (v x⁻¹) * (v $ y - x) * (v y⁻¹) : by repeat { rw valuation.map_mul } ... = (v x)⁻¹ * (v $ y - x) * (v y)⁻¹ : by rw [v.map_inv' x_ne, v.map_inv' y_ne] ... = (v $ y - x) * ((v y) * (v y))⁻¹ : by rw [mul_assoc, mul_comm, key, mul_assoc, ← group_with_zero.mul_inv_rev] ... = (v $ y - x) * ((v y) * (v y))⁻¹ : rfl ... = (v $ x - y) * ((v y) * (v y))⁻¹ : by rw valuation.map_sub_swap ... < γ : hyp1', end end inversion_estimate local attribute [instance] valued.subgroups_basis subgroups_basis.topology ring_filter_basis.topological_ring local notation `v` := valued.value /-- The topology coming from a valuation on a division rings make it a topological division ring [BouAC, VI.5.1 middle of Proposition 1] -/ instance valued.topological_division_ring [valued K] : topological_division_ring K := { continuous_inv := begin intros x x_ne s s_in, cases valued.mem_nhds.mp s_in with γ hs, clear s_in, rw [mem_map, valued.mem_nhds], change ∃ (γ : units (valued.Γ₀ K)), {y : K | v (y - x) < γ} ⊆ {x : K | x⁻¹ ∈ s}, have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne, let γ' := group_with_zero.mk₀ _ vx_ne, use min (γ * (γ'*γ')) γ', intros y y_in, apply hs, change v (y⁻¹ - x⁻¹) < γ, simp only [mem_set_of_eq] at y_in, rw [coe_min, units.coe_mul, units.coe_mul] at y_in, exact valuation.inversion_estimate _ x_ne y_in end, ..(by apply_instance : topological_ring K) } section local attribute [instance] linear_ordered_comm_group_with_zero.topological_space linear_ordered_comm_group_with_zero.regular_space linear_ordered_comm_group_with_zero.nhds_basis lemma valued.continuous_valuation [valued K] : continuous (v : K → valued.Γ₀ K) := begin rw continuous_iff_continuous_at, intro x, classical, by_cases h : x = 0, { rw h, change tendsto _ _ (𝓝 (valued.v K 0)), erw valuation.map_zero, rw linear_ordered_comm_group_with_zero.tendsto_zero, intro γ, rw valued.mem_nhds_zero, use [γ, set.subset.refl _] }, { change tendsto _ _ _, have v_ne : v x ≠ 0, from (valuation.ne_zero_iff _).mpr h, rw linear_ordered_comm_group_with_zero.tendsto_nonzero v_ne, apply valued.loc_const v_ne }, end end section -- until the end of this section, all linearly ordered commutative groups will be endowed with -- the discrete topology -- In the next lemma, K will be endowed with its left uniformity coming from the valuation topology local attribute [instance] valued.uniform_space /-- A valued division ring is separated. -/ instance valued_ring.separated [valued K] : separated K := begin apply topological_add_group.separated_of_zero_sep, intros x x_ne, refine ⟨{k | v k < v x}, _, λ h, lt_irrefl _ h⟩, rw valued.mem_nhds, have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne, let γ' := group_with_zero.mk₀ _ vx_ne, exact ⟨γ', λ y hy, by simpa using hy⟩, end end end valuation_topological_division_ring end division_ring section valuation_on_valued_field_completion open uniform_space -- In this section K is commutative (hence a field), and equipped with a valuation variables {K : Type*} [discrete_field K] [vK : valued K] include vK open valued local notation `v` := valued.value local attribute [instance, priority 0] valued.uniform_space valued.uniform_add_group local notation `hat` K := completion K set_option class.instance_max_depth 300 -- The following instances helps going over the uniform_add_group/topological_add_group loop lemma hatK_top_group : topological_add_group (hat K) := uniform_add_group.to_topological_add_group local attribute [instance] hatK_top_group lemma hatK_top_monoid : topological_add_monoid (hat K) := topological_add_group.to_topological_add_monoid _ local attribute [instance] hatK_top_monoid /-- A valued field is completable. -/ instance valued.completable : completable_top_field K := { separated := by apply_instance, nice := begin rintros F hF h0, have : ∃ (γ₀ : units (Γ₀ K)) (M ∈ F), ∀ x ∈ M, (γ₀ : Γ₀ K) ≤ v x, { rcases (filter.inf_eq_bot_iff _ _).1 h0 with ⟨U, U_in, M, M_in, H⟩, rcases valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩, existsi [γ₀, M, M_in], intros x xM, apply le_of_not_lt _, intro hyp, have : x ∈ U ∩ M := ⟨hU hyp, xM⟩, rwa H at this }, rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩, rw valued.cauchy_iff at hF ⊢, refine ⟨map_ne_bot hF.1, _⟩, replace hF := hF.2, intros γ, rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩, clear hF, use (λ x : K, x⁻¹) '' (M₀ ∩ M₁), split, { rw mem_map, apply mem_sets_of_superset (filter.inter_mem_sets M₀_in M₁_in), exact subset_preimage_image _ _ }, { rintros _ _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ ⟨y, ⟨y_in₀, y_in₁⟩, rfl⟩, simp only [mem_set_of_eq], specialize H₁ x y x_in₁ y_in₁, replace x_in₀ := H₀ x x_in₀, replace y_in₀ := H₀ y y_in₀, clear H₀, apply valuation.inversion_estimate, { have : v x ≠ 0, { intro h, rw h at x_in₀, simpa using x_in₀, }, exact (valuation.ne_zero_iff _).mp this }, { refine lt_of_lt_of_le H₁ _, rw coe_min, apply min_le_min _ x_in₀, rw mul_assoc, have : ((γ₀ * γ₀ : units (Γ₀ K)) : Γ₀ K) ≤ v x * v x, from calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x : actual_ordered_comm_monoid.mul_le_mul_left' x_in₀ ... ≤ _ : actual_ordered_comm_monoid.mul_le_mul_right' x_in₀, exact actual_ordered_comm_monoid.mul_le_mul_left' this } } end } local attribute [instance] linear_ordered_comm_group_with_zero.topological_space linear_ordered_comm_group_with_zero.regular_space linear_ordered_comm_group_with_zero.nhds_basis linear_ordered_comm_group_with_zero.t2_space linear_ordered_comm_group_with_zero.ordered_topology /-- The extension of the valuation of a valued field to the completion of the field. -/ noncomputable def valued.extension : (hat K) → Γ₀ K := completion.dense_inducing_coe.extend (v : K → Γ₀ K) lemma valued.continuous_extension : continuous (valued.extension : (hat K) → Γ₀ K) := begin refine completion.dense_inducing_coe.continuous_extend _, intro x₀, by_cases h : x₀ = coe 0, { refine ⟨0, _⟩, erw [h, ← completion.dense_inducing_coe.to_inducing.nhds_eq_comap]; try { apply_instance }, rw linear_ordered_comm_group_with_zero.tendsto_zero, intro γ₀, rw valued.mem_nhds, exact ⟨γ₀, by simp⟩ }, { have preimage_one : v ⁻¹' {(1 : Γ₀ K)} ∈ 𝓝 (1 : K), { have : v (1 : K) ≠ 0, { rw valued.map_one, exact zero_ne_one.symm }, convert valued.loc_const this, ext x, rw [valued.map_one, mem_preimage, mem_singleton_iff, mem_set_of_eq] }, obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → v x = 1, { rwa [completion.dense_inducing_coe.nhds_eq_comap, mem_comap_sets] at preimage_one, rcases preimage_one with ⟨V, V_in, hV⟩, use [V, V_in], intros x x_in, specialize hV x_in, rwa [mem_preimage, mem_singleton_iff] at hV }, have : ∃ V' ∈ (𝓝 (1 : hat K)), (0 : hat K) ∉ V' ∧ ∀ x y ∈ V', x*y⁻¹ ∈ V, { have : tendsto (λ p : (hat K) × hat K, p.1*p.2⁻¹) ((𝓝 1).prod 𝓝 1) 𝓝 1, { rw ← nhds_prod_eq, conv {congr, skip, skip, rw ← (one_mul (1 : hat K))}, refine tendsto.mul continuous_fst.continuous_at (tendsto.comp _ continuous_snd.continuous_at), convert topological_division_ring.continuous_inv (1 : hat K) zero_ne_one.symm, exact inv_one.symm }, rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩, let hatKstar := (-{0} : set $ hat K), have : hatKstar ∈ 𝓝 (1 : hat K), { haveI : t1_space (hat K) := @t2_space.t1_space (hat K) _ (@separated_t2 (hat K) _ _), exact compl_singleton_mem_nhds zero_ne_one.symm }, use [U ∩ hatKstar, filter.inter_mem_sets U_in this], split, { rintro ⟨h, h'⟩, rw mem_compl_singleton_iff at h', exact h' rfl }, { rintros x y ⟨hx, _⟩ ⟨hy, _⟩, apply hU ; assumption } }, rcases this with ⟨V', V'_in, zeroV', hV'⟩, have nhds_right : (λ x, x*x₀) '' V' ∈ 𝓝 x₀, { have l : function.left_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀), { intro x, simp only [mul_assoc, mul_inv_cancel h, mul_one] }, have r: function.right_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀), { intro x, simp only [mul_assoc, inv_mul_cancel h, mul_one] }, have c : continuous (λ (x : hat K), x * x₀⁻¹), from continuous_id.mul continuous_const, rw image_eq_preimage_of_inverse l r, rw ← mul_inv_cancel h at V'_in, exact c.continuous_at V'_in }, have : ∃ (z₀ : K) (y₀ ∈ V'), coe z₀ = y₀*x₀ ∧ z₀ ≠ 0, { rcases dense_range.mem_nhds completion.dense nhds_right with ⟨z₀, y₀, y₀_in, h⟩, refine ⟨z₀, y₀, y₀_in, ⟨h.symm, _⟩⟩, intro hz, rw hz at h, cases discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero _ _ h ; finish }, rcases this with ⟨z₀, y₀, y₀_in, hz₀, z₀_ne⟩, have vz₀_ne: valued.v K z₀ ≠ 0 := by rwa valuation.ne_zero_iff, refine ⟨valued.v K z₀, _⟩, rw [linear_ordered_comm_group_with_zero.tendsto_nonzero vz₀_ne, mem_comap_sets], use [(λ x, x*x₀) '' V', nhds_right], intros x x_in, rcases mem_preimage.1 x_in with ⟨y, y_in, hy⟩, clear x_in, change y*x₀ = coe x at hy, have : valued.v K (x*z₀⁻¹) = 1, { apply hV, rw [completion.coe_mul, is_ring_hom.map_inv' (coe : K → hat K) z₀_ne, ← hy, hz₀, mul_inv'], assoc_rw mul_inv_cancel h, rw mul_one, solve_by_elim }, calc valued.v K x = valued.v K (x*z₀⁻¹*z₀) : by rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one] ... = valued.v K (x*z₀⁻¹)*valued.v K z₀ : valuation.map_mul _ _ _ ... = valued.v K z₀ : by rw [this, one_mul] }, end @[elim_cast] lemma valued.extension_extends (x : K) : valued.extension (x : hat K) = v x := begin haveI : t2_space (valued.Γ₀ K) := regular_space.t2_space _, exact completion.dense_inducing_coe.extend_eq_of_cont valued.continuous_valuation x end /-- the extension of a valuation on a division ring to its completion. -/ noncomputable def valued.extension_valuation : valuation (hat K) (Γ₀ K) := { to_fun := valued.extension, map_zero' := by exact_mod_cast valuation.map_zero _, map_one' := by { rw [← completion.coe_one, valued.extension_extends (1 : K)], exact valuation.map_one _ }, map_mul' := λ x y, begin apply completion.induction_on₂ x y, { have c1 : continuous (λ (x : (hat K) × hat K), valued.extension (x.1 * x.2)), from valued.continuous_extension.comp (continuous_fst.mul continuous_snd), have c2 : continuous (λ (x : (hat K) × hat K), valued.extension x.1 * valued.extension x.2), from (valued.continuous_extension.comp continuous_fst).mul (valued.continuous_extension.comp continuous_snd), exact is_closed_eq c1 c2 }, { intros x y, norm_cast, exact valuation.map_mul _ _ _ }, end, map_add' := λ x y, begin rw le_max_iff, apply completion.induction_on₂ x y, { exact is_closed_union (is_closed_le ((valued.continuous_extension).comp continuous_add) ((valued.continuous_extension).comp continuous_fst)) (is_closed_le ((valued.continuous_extension).comp continuous_add) ((valued.continuous_extension).comp continuous_snd)) }, { intros x y, norm_cast, rw ← le_max_iff, exact valuation.map_add _ _ _ }, end } end valuation_on_valued_field_completion