/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import data.set.basic /-! # Sets in sigma types This file defines `set.sigma`, the indexed sum of sets. -/ namespace set variables {ι ι' : Type*} {α β : ι → Type*} {s s₁ s₂ : set ι} {t t₁ t₂ : Π i, set (α i)} {u : set (Σ i, α i)} {x : Σ i, α i} {i j : ι} {a : α i} @[simp] theorem range_sigma_mk (i : ι) : range (sigma.mk i : α i → sigma α) = sigma.fst ⁻¹' {i} := begin apply subset.antisymm, { rintros _ ⟨b, rfl⟩, simp }, { rintros ⟨x, y⟩ (rfl|_), exact mem_range_self y } end theorem preimage_image_sigma_mk_of_ne (h : i ≠ j) (s : set (α j)) : sigma.mk i ⁻¹' (sigma.mk j '' s) = ∅ := by { ext x, simp [h.symm] } lemma image_sigma_mk_preimage_sigma_map_subset {β : ι' → Type*} (f : ι → ι') (g : Π i, α i → β (f i)) (i : ι) (s : set (β (f i))) : sigma.mk i '' (g i ⁻¹' s) ⊆ sigma.map f g ⁻¹' (sigma.mk (f i) '' s) := image_subset_iff.2 $ λ x hx, ⟨g i x, hx, rfl⟩ lemma image_sigma_mk_preimage_sigma_map {β : ι' → Type*} {f : ι → ι'} (hf : function.injective f) (g : Π i, α i → β (f i)) (i : ι) (s : set (β (f i))) : sigma.mk i '' (g i ⁻¹' s) = sigma.map f g ⁻¹' (sigma.mk (f i) '' s) := begin refine (image_sigma_mk_preimage_sigma_map_subset f g i s).antisymm _, rintro ⟨j, x⟩ ⟨y, hys, hxy⟩, simp only [hf.eq_iff, sigma.map] at hxy, rcases hxy with ⟨rfl, hxy⟩, rw [heq_iff_eq] at hxy, subst y, exact ⟨x, hys, rfl⟩ end /-- Indexed sum of sets. `s.sigma t` is the set of dependent pairs `⟨i, a⟩` such that `i ∈ s` and `a ∈ t i`.-/ protected def sigma (s : set ι) (t : Π i, set (α i)) : set (Σ i, α i) := {x | x.1 ∈ s ∧ x.2 ∈ t x.1} @[simp] lemma mem_sigma_iff : x ∈ s.sigma t ↔ x.1 ∈ s ∧ x.2 ∈ t x.1 := iff.rfl @[simp] lemma mk_sigma_iff : (⟨i, a⟩ : Σ i, α i) ∈ s.sigma t ↔ i ∈ s ∧ a ∈ t i := iff.rfl lemma mk_mem_sigma (hi : i ∈ s) (ha : a ∈ t i) : (⟨i, a⟩ : Σ i, α i) ∈ s.sigma t := ⟨hi, ha⟩ lemma sigma_mono (hs : s₁ ⊆ s₂) (ht : ∀ i, t₁ i ⊆ t₂ i) : s₁.sigma t₁ ⊆ s₂.sigma t₂ := λ x hx, ⟨hs hx.1, ht _ hx.2⟩ lemma sigma_subset_iff : s.sigma t ⊆ u ↔ ∀ ⦃i⦄, i ∈ s → ∀ ⦃a⦄, a ∈ t i → (⟨i, a⟩ : Σ i, α i) ∈ u := ⟨λ h i hi a ha, h $ mk_mem_sigma hi ha, λ h ⟨i, a⟩ ha, h ha.1 ha.2⟩ lemma forall_sigma_iff {p : (Σ i, α i) → Prop} : (∀ x ∈ s.sigma t, p x) ↔ ∀ ⦃i⦄, i ∈ s → ∀ ⦃a⦄, a ∈ t i → p ⟨i, a⟩ := sigma_subset_iff lemma exists_sigma_iff {p : (Σ i, α i) → Prop} : (∃ x ∈ s.sigma t, p x) ↔ ∃ (i ∈ s) (a ∈ t i), p ⟨i, a⟩ := ⟨λ ⟨⟨i, a⟩, ha, h⟩, ⟨i, ha.1, a, ha.2, h⟩, λ ⟨i, hi, a, ha, h⟩, ⟨⟨i, a⟩, ⟨hi, ha⟩, h⟩⟩ @[simp] lemma sigma_empty : s.sigma (λ _, (∅ : set (α i))) = ∅ := ext $ λ _, and_false _ @[simp] lemma empty_sigma : (∅ : set ι).sigma t = ∅ := ext $ λ _, false_and _ lemma univ_sigma_univ : (@univ ι).sigma (λ _, @univ (α i)) = univ := ext $ λ _, true_and _ @[simp] lemma sigma_univ : s.sigma (λ _, univ : Π i, set (α i)) = sigma.fst ⁻¹' s := ext $ λ _, and_true _ @[simp] lemma singleton_sigma : ({i} : set ι).sigma t = sigma.mk i '' t i := ext $ λ x, begin split, { obtain ⟨j, a⟩ := x, rintro ⟨(rfl : j = i), ha⟩, exact mem_image_of_mem _ ha }, { rintro ⟨b, hb, rfl⟩, exact ⟨rfl, hb⟩ } end @[simp] lemma sigma_singleton {a : Π i, α i} : s.sigma (λ i, ({a i} : set (α i))) = (λ i, sigma.mk i $ a i) '' s := by { ext ⟨x, y⟩, simp [and.left_comm, eq_comm] } lemma singleton_sigma_singleton {a : Π i, α i} : ({i} : set ι).sigma (λ i, ({a i} : set (α i))) = {⟨i, a i⟩} := by rw [sigma_singleton, image_singleton] @[simp] lemma union_sigma : (s₁ ∪ s₂).sigma t = s₁.sigma t ∪ s₂.sigma t := ext $ λ _, or_and_distrib_right @[simp] lemma sigma_union : s.sigma (λ i, t₁ i ∪ t₂ i) = s.sigma t₁ ∪ s.sigma t₂ := ext $ λ _, and_or_distrib_left lemma sigma_inter_sigma : s₁.sigma t₁ ∩ s₂.sigma t₂ = (s₁ ∩ s₂).sigma (λ i, t₁ i ∩ t₂ i) := by { ext ⟨x, y⟩, simp [and_assoc, and.left_comm] } lemma insert_sigma : (insert i s).sigma t = (sigma.mk i '' t i) ∪ s.sigma t := by rw [insert_eq, union_sigma, singleton_sigma] lemma sigma_insert {a : Π i, α i} : s.sigma (λ i, insert (a i) (t i)) = ((λ i, ⟨i, a i⟩) '' s) ∪ s.sigma t := by simp_rw [insert_eq, sigma_union, sigma_singleton] lemma sigma_preimage_eq {f : ι' → ι} {g : Π i, β i → α i} : (f ⁻¹' s).sigma (λ i, g (f i) ⁻¹' t (f i)) = (λ p : Σ i, β (f i), sigma.mk _ (g _ p.2)) ⁻¹' (s.sigma t) := rfl lemma sigma_preimage_left {f : ι' → ι} : (f ⁻¹' s).sigma (λ i, t (f i)) = (λ p : Σ i, α (f i), sigma.mk _ p.2) ⁻¹' (s.sigma t) := rfl lemma sigma_preimage_right {g : Π i, β i → α i} : s.sigma (λ i, g i ⁻¹' t i) = (λ p : Σ i, β i, sigma.mk p.1 (g _ p.2)) ⁻¹' (s.sigma t) := rfl lemma preimage_sigma_map_sigma {α' : ι' → Type*} (f : ι → ι') (g : Π i, α i → α' (f i)) (s : set ι') (t : Π i, set (α' i)) : sigma.map f g ⁻¹' (s.sigma t) = (f ⁻¹' s).sigma (λ i, g i ⁻¹' t (f i)) := rfl @[simp] lemma mk_preimage_sigma (hi : i ∈ s) : sigma.mk i ⁻¹' s.sigma t = t i := ext $ λ _, and_iff_right hi @[simp] lemma mk_preimage_sigma_eq_empty (hi : i ∉ s) : sigma.mk i ⁻¹' s.sigma t = ∅ := ext $ λ _, iff_of_false (hi ∘ and.left) id lemma mk_preimage_sigma_eq_if [decidable_pred (∈ s)] : sigma.mk i ⁻¹' s.sigma t = if i ∈ s then t i else ∅ := by split_ifs; simp [h] lemma mk_preimage_sigma_fn_eq_if {β : Type*} [decidable_pred (∈ s)] (g : β → α i) : (λ b, sigma.mk i (g b)) ⁻¹' s.sigma t = if i ∈ s then g ⁻¹' t i else ∅ := ext $ λ _, by split_ifs; simp [h] lemma sigma_univ_range_eq {f : Π i, α i → β i} : (univ : set ι).sigma (λ i, range (f i)) = range (λ x : Σ i, α i, ⟨x.1, f _ x.2⟩) := ext $ by simp [range] protected lemma nonempty.sigma : s.nonempty → (∀ i, (t i).nonempty) → (s.sigma t : set _).nonempty := λ ⟨i, hi⟩ h, let ⟨a, ha⟩ := h i in ⟨⟨i, a⟩, hi, ha⟩ lemma nonempty.sigma_fst : (s.sigma t : set _).nonempty → s.nonempty := λ ⟨x, hx⟩, ⟨x.1, hx.1⟩ lemma nonempty.sigma_snd : (s.sigma t : set _).nonempty → ∃ i ∈ s, (t i).nonempty := λ ⟨x, hx⟩, ⟨x.1, hx.1, x.2, hx.2⟩ lemma sigma_nonempty_iff : (s.sigma t : set _).nonempty ↔ ∃ i ∈ s, (t i).nonempty := ⟨nonempty.sigma_snd, λ ⟨i, hi, a, ha⟩, ⟨⟨i, a⟩, hi, ha⟩⟩ lemma sigma_eq_empty_iff : s.sigma t = ∅ ↔ ∀ i ∈ s, t i = ∅ := not_nonempty_iff_eq_empty.symm.trans $ sigma_nonempty_iff.not.trans $ by simp only [not_nonempty_iff_eq_empty, not_exists] lemma image_sigma_mk_subset_sigma_left {a : Π i, α i} (ha : ∀ i, a i ∈ t i) : (λ i, sigma.mk i (a i)) '' s ⊆ s.sigma t := image_subset_iff.2 $ λ i hi, ⟨hi, ha _⟩ lemma image_sigma_mk_subset_sigma_right (hi : i ∈ s) : sigma.mk i '' t i ⊆ s.sigma t := image_subset_iff.2 $ λ a, and.intro hi lemma sigma_subset_preimage_fst (s : set ι) (t : Π i, set (α i)) : s.sigma t ⊆ sigma.fst ⁻¹' s := λ a, and.left lemma fst_image_sigma_subset (s : set ι) (t : Π i, set (α i)) : sigma.fst '' s.sigma t ⊆ s := image_subset_iff.2 $ λ a, and.left lemma fst_image_sigma (s : set ι) (ht : ∀ i, (t i).nonempty) : sigma.fst '' s.sigma t = s := (fst_image_sigma_subset _ _).antisymm $ λ i hi, let ⟨a, ha⟩ := ht i in ⟨⟨i, a⟩, ⟨hi, ha⟩, rfl⟩ lemma sigma_diff_sigma : s₁.sigma t₁ \ s₂.sigma t₂ = s₁.sigma (t₁ \ t₂) ∪ (s₁ \ s₂).sigma t₁ := ext $ λ x, by by_cases h₁ : x.1 ∈ s₁; by_cases h₂ : x.2 ∈ t₁ x.1; simp [*, ←imp_iff_or_not] end set