/- Copyright (c) 2020 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import data.set.pointwise /-! # Sets as a semiring under union This file defines `set_semiring α`, an alias of `set α`, which we endow with `∪` as addition and pointwise `*` as multiplication. If `α` is a (commutative) monoid, `set_semiring α` is a (commutative) semiring. -/ open function set open_locale pointwise variables {α β : Type*} /-- An alias for `set α`, which has a semiring structure given by `∪` as "addition" and pointwise multiplication `*` as "multiplication". -/ @[derive [inhabited, partial_order, order_bot]] def set_semiring (α : Type*) : Type* := set α /-- The identity function `set α → set_semiring α`. -/ protected def set.up : set α ≃ set_semiring α := equiv.refl _ namespace set_semiring /-- The identity function `set_semiring α → set α`. -/ protected def down : set_semiring α ≃ set α := equiv.refl _ @[simp] protected lemma down_up (s : set α) : s.up.down = s := rfl @[simp] protected lemma up_down (s : set_semiring α) : s.down.up = s := rfl -- TODO: These lemmas are not tagged `simp` because `set.le_eq_subset` simplifies the LHS lemma up_le_up {s t : set α} : s.up ≤ t.up ↔ s ⊆ t := iff.rfl lemma up_lt_up {s t : set α} : s.up < t.up ↔ s ⊂ t := iff.rfl @[simp] lemma down_subset_down {s t : set_semiring α} : s.down ⊆ t.down ↔ s ≤ t := iff.rfl @[simp] lemma down_ssubset_down {s t : set_semiring α} : s.down ⊂ t.down ↔ s < t := iff.rfl instance : add_comm_monoid (set_semiring α) := { add := λ s t, (s.down ∪ t.down).up, zero := (∅ : set α).up, add_assoc := union_assoc, zero_add := empty_union, add_zero := union_empty, add_comm := union_comm } /- Since addition on `set_semiring` is commutative (it is set union), there is no need to also have the instance `covariant_class (set_semiring α) (set_semiring α) (swap (+)) (≤)`. -/ instance covariant_class_add : covariant_class (set_semiring α) (set_semiring α) (+) (≤) := ⟨λ a b c, union_subset_union_right _⟩ section has_mul variables [has_mul α] instance : non_unital_non_assoc_semiring (set_semiring α) := { mul := λ s t, (image2 (*) s.down t.down).up, zero_mul := λ s, empty_mul, mul_zero := λ s, mul_empty, left_distrib := λ _ _ _, mul_union, right_distrib := λ _ _ _, union_mul, ..set_semiring.add_comm_monoid } instance : no_zero_divisors (set_semiring α) := ⟨λ a b ab, a.eq_empty_or_nonempty.imp_right $ λ ha, b.eq_empty_or_nonempty.resolve_right $ λ hb, nonempty.ne_empty ⟨_, mul_mem_mul ha.some_mem hb.some_mem⟩ ab⟩ instance covariant_class_mul_left : covariant_class (set_semiring α) (set_semiring α) (*) (≤) := ⟨λ a b c, mul_subset_mul_left⟩ instance covariant_class_mul_right : covariant_class (set_semiring α) (set_semiring α) (swap (*)) (≤) := ⟨λ a b c, mul_subset_mul_right⟩ end has_mul instance [mul_one_class α] : non_assoc_semiring (set_semiring α) := { one := 1, mul := (*), ..set_semiring.non_unital_non_assoc_semiring, ..set.mul_one_class } instance [semigroup α] : non_unital_semiring (set_semiring α) := { ..set_semiring.non_unital_non_assoc_semiring, ..set.semigroup } instance [monoid α] : semiring (set_semiring α) := { ..set_semiring.non_assoc_semiring, ..set_semiring.non_unital_semiring } instance [comm_semigroup α] : non_unital_comm_semiring (set_semiring α) := { ..set_semiring.non_unital_semiring, ..set.comm_semigroup } instance [comm_monoid α] : canonically_ordered_comm_semiring (set_semiring α) := { add_le_add_left := λ a b, add_le_add_left, exists_add_of_le := λ a b ab, ⟨b, (union_eq_right_iff_subset.2 ab).symm⟩, le_self_add := subset_union_left, ..set_semiring.semiring, ..set.comm_monoid, ..set_semiring.partial_order _, ..set_semiring.order_bot _, ..set_semiring.no_zero_divisors } /-- The image of a set under a multiplicative homomorphism is a ring homomorphism with respect to the pointwise operations on sets. -/ def image_hom [mul_one_class α] [mul_one_class β] (f : α →* β) : set_semiring α →+* set_semiring β := { to_fun := image f, map_zero' := image_empty _, map_one' := by rw [image_one, map_one, singleton_one], map_add' := image_union _, map_mul' := λ _ _, image_mul f } end set_semiring