/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Johannes Hölzl, Patrick Massot -/ import data.set.basic /-! # Sets in product and pi types This file defines the product of sets in `α × β` and in `Π i, α i` along with the diagonal of a type. ## Main declarations * `set.prod`: Binary product of sets. For `s : set α`, `t : set β`, we have `s.prod t : set (α × β)`. * `set.diagonal`: Diagonal of a type. `set.diagonal α = {(x, x) | x : α}`. * `set.pi`: Arbitrary product of sets. -/ open function namespace set /-! ### Cartesian binary product of sets -/ section prod variables {α β γ δ : Type*} {s s₁ s₂ : set α} {t t₁ t₂ : set β} {a : α} {b : β} /-- The cartesian product `prod s t` is the set of `(a, b)` such that `a ∈ s` and `b ∈ t`. -/ def prod (s : set α) (t : set β) : set (α × β) := {p | p.1 ∈ s ∧ p.2 ∈ t} /- This notation binds more strongly than (pre)images, unions and intersections. -/ infixr ` ×ˢ `:82 := set.prod lemma prod_eq (s : set α) (t : set β) : s ×ˢ t = prod.fst ⁻¹' s ∩ prod.snd ⁻¹' t := rfl lemma mem_prod_eq {p : α × β} : p ∈ s ×ˢ t = (p.1 ∈ s ∧ p.2 ∈ t) := rfl @[simp] lemma mem_prod {p : α × β} : p ∈ s ×ˢ t ↔ p.1 ∈ s ∧ p.2 ∈ t := iff.rfl @[simp] lemma prod_mk_mem_set_prod_eq : (a, b) ∈ s ×ˢ t = (a ∈ s ∧ b ∈ t) := rfl lemma mk_mem_prod (ha : a ∈ s) (hb : b ∈ t) : (a, b) ∈ s ×ˢ t := ⟨ha, hb⟩ lemma prod_mono (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) : s₁ ×ˢ t₁ ⊆ s₂ ×ˢ t₂ := λ x ⟨h₁, h₂⟩, ⟨hs h₁, ht h₂⟩ @[simp] lemma prod_self_subset_prod_self : s₁ ×ˢ s₁ ⊆ s₂ ×ˢ s₂ ↔ s₁ ⊆ s₂ := ⟨λ h x hx, (h (mk_mem_prod hx hx)).1, λ h x hx, ⟨h hx.1, h hx.2⟩⟩ @[simp] lemma prod_self_ssubset_prod_self : s₁ ×ˢ s₁ ⊂ s₂ ×ˢ s₂ ↔ s₁ ⊂ s₂ := and_congr prod_self_subset_prod_self $ not_congr prod_self_subset_prod_self lemma prod_subset_iff {P : set (α × β)} : s ×ˢ t ⊆ P ↔ ∀ (x ∈ s) (y ∈ t), (x, y) ∈ P := ⟨λ h _ hx _ hy, h (mk_mem_prod hx hy), λ h ⟨_, _⟩ hp, h _ hp.1 _ hp.2⟩ lemma forall_prod_set {p : α × β → Prop} : (∀ x ∈ s ×ˢ t, p x) ↔ ∀ (x ∈ s) (y ∈ t), p (x, y) := prod_subset_iff lemma exists_prod_set {p : α × β → Prop} : (∃ x ∈ s ×ˢ t, p x) ↔ ∃ (x ∈ s) (y ∈ t), p (x, y) := by simp [and_assoc] @[simp] lemma prod_empty : s ×ˢ (∅ : set β) = ∅ := by { ext, exact and_false _ } @[simp] lemma empty_prod : (∅ : set α) ×ˢ t = ∅ := by { ext, exact false_and _ } @[simp] lemma univ_prod_univ : @univ α ×ˢ @univ β = univ := by { ext, exact true_and _ } lemma univ_prod {t : set β} : (univ : set α) ×ˢ t = prod.snd ⁻¹' t := by simp [prod_eq] lemma prod_univ {s : set α} : s ×ˢ (univ : set β) = prod.fst ⁻¹' s := by simp [prod_eq] @[simp] lemma singleton_prod : ({a} : set α) ×ˢ t = prod.mk a '' t := by { ext ⟨x, y⟩, simp [and.left_comm, eq_comm] } @[simp] lemma prod_singleton : s ×ˢ ({b} : set β) = (λ a, (a, b)) '' s := by { ext ⟨x, y⟩, simp [and.left_comm, eq_comm] } lemma singleton_prod_singleton : ({a} : set α) ×ˢ ({b} : set β) = {(a, b)} :=by simp @[simp] lemma union_prod : (s₁ ∪ s₂) ×ˢ t = s₁ ×ˢ t ∪ s₂ ×ˢ t := by { ext ⟨x, y⟩, simp [or_and_distrib_right] } @[simp] lemma prod_union : s ×ˢ (t₁ ∪ t₂) = s ×ˢ t₁ ∪ s ×ˢ t₂ := by { ext ⟨x, y⟩, simp [and_or_distrib_left] } lemma prod_inter_prod : s₁ ×ˢ t₁ ∩ s₂ ×ˢ t₂ = (s₁ ∩ s₂) ×ˢ (t₁ ∩ t₂) := by { ext ⟨x, y⟩, simp [and_assoc, and.left_comm] } lemma insert_prod : insert a s ×ˢ t = (prod.mk a '' t) ∪ s ×ˢ t := by { ext ⟨x, y⟩, simp [image, iff_def, or_imp_distrib, imp.swap] {contextual := tt} } lemma prod_insert : s ×ˢ (insert b t) = ((λa, (a, b)) '' s) ∪ s ×ˢ t := by { ext ⟨x, y⟩, simp [image, iff_def, or_imp_distrib, imp.swap] {contextual := tt} } lemma prod_preimage_eq {f : γ → α} {g : δ → β} : (f ⁻¹' s) ×ˢ (g ⁻¹' t) = (λ p : γ × δ, (f p.1, g p.2)) ⁻¹' s ×ˢ t := rfl lemma prod_preimage_left {f : γ → α} : (f ⁻¹' s) ×ˢ t = (λ p : γ × β, (f p.1, p.2)) ⁻¹' s ×ˢ t := rfl lemma prod_preimage_right {g : δ → β} : s ×ˢ (g ⁻¹' t) = (λ p : α × δ, (p.1, g p.2)) ⁻¹' s ×ˢ t := rfl lemma preimage_prod_map_prod (f : α → β) (g : γ → δ) (s : set β) (t : set δ) : prod.map f g ⁻¹' s ×ˢ t = (f ⁻¹' s) ×ˢ (g ⁻¹' t) := rfl lemma mk_preimage_prod (f : γ → α) (g : γ → β) : (λ x, (f x, g x)) ⁻¹' s ×ˢ t = f ⁻¹' s ∩ g ⁻¹' t := rfl @[simp] lemma mk_preimage_prod_left (hb : b ∈ t) : (λ a, (a, b)) ⁻¹' s ×ˢ t = s := by { ext a, simp [hb] } @[simp] lemma mk_preimage_prod_right (ha : a ∈ s) : prod.mk a ⁻¹' s ×ˢ t = t := by { ext b, simp [ha] } @[simp] lemma mk_preimage_prod_left_eq_empty (hb : b ∉ t) : (λ a, (a, b)) ⁻¹' s ×ˢ t = ∅ := by { ext a, simp [hb] } @[simp] lemma mk_preimage_prod_right_eq_empty (ha : a ∉ s) : prod.mk a ⁻¹' s ×ˢ t = ∅ := by { ext b, simp [ha] } lemma mk_preimage_prod_left_eq_if [decidable_pred (∈ t)] : (λ a, (a, b)) ⁻¹' s ×ˢ t = if b ∈ t then s else ∅ := by split_ifs; simp [h] lemma mk_preimage_prod_right_eq_if [decidable_pred (∈ s)] : prod.mk a ⁻¹' s ×ˢ t = if a ∈ s then t else ∅ := by split_ifs; simp [h] lemma mk_preimage_prod_left_fn_eq_if [decidable_pred (∈ t)] (f : γ → α) : (λ a, (f a, b)) ⁻¹' s ×ˢ t = if b ∈ t then f ⁻¹' s else ∅ := by rw [← mk_preimage_prod_left_eq_if, prod_preimage_left, preimage_preimage] lemma mk_preimage_prod_right_fn_eq_if [decidable_pred (∈ s)] (g : δ → β) : (λ b, (a, g b)) ⁻¹' s ×ˢ t = if a ∈ s then g ⁻¹' t else ∅ := by rw [← mk_preimage_prod_right_eq_if, prod_preimage_right, preimage_preimage] lemma preimage_swap_prod {s : set α} {t : set β} : prod.swap ⁻¹' t ×ˢ s = s ×ˢ t := by { ext ⟨x, y⟩, simp [and_comm] } lemma image_swap_prod : prod.swap '' t ×ˢ s = s ×ˢ t := by rw [image_swap_eq_preimage_swap, preimage_swap_prod] lemma prod_image_image_eq {m₁ : α → γ} {m₂ : β → δ} : (m₁ '' s) ×ˢ (m₂ '' t) = (λ p : α × β, (m₁ p.1, m₂ p.2)) '' s ×ˢ t := ext $ by simp [-exists_and_distrib_right, exists_and_distrib_right.symm, and.left_comm, and.assoc, and.comm] lemma prod_range_range_eq {m₁ : α → γ} {m₂ : β → δ} : (range m₁) ×ˢ (range m₂) = range (λ p : α × β, (m₁ p.1, m₂ p.2)) := ext $ by simp [range] @[simp] lemma range_prod_map {m₁ : α → γ} {m₂ : β → δ} : range (prod.map m₁ m₂) = (range m₁) ×ˢ (range m₂) := prod_range_range_eq.symm lemma prod_range_univ_eq {m₁ : α → γ} : (range m₁) ×ˢ (univ : set β) = range (λ p : α × β, (m₁ p.1, p.2)) := ext $ by simp [range] lemma prod_univ_range_eq {m₂ : β → δ} : (univ : set α) ×ˢ (range m₂) = range (λ p : α × β, (p.1, m₂ p.2)) := ext $ by simp [range] lemma range_pair_subset (f : α → β) (g : α → γ) : range (λ x, (f x, g x)) ⊆ (range f) ×ˢ (range g) := have (λ x, (f x, g x)) = prod.map f g ∘ (λ x, (x, x)), from funext (λ x, rfl), by { rw [this, ← range_prod_map], apply range_comp_subset_range } lemma nonempty.prod : s.nonempty → t.nonempty → (s ×ˢ t).nonempty := λ ⟨x, hx⟩ ⟨y, hy⟩, ⟨(x, y), ⟨hx, hy⟩⟩ lemma nonempty.fst : (s ×ˢ t).nonempty → s.nonempty := λ ⟨x, hx⟩, ⟨x.1, hx.1⟩ lemma nonempty.snd : (s ×ˢ t).nonempty → t.nonempty := λ ⟨x, hx⟩, ⟨x.2, hx.2⟩ lemma prod_nonempty_iff : (s ×ˢ t).nonempty ↔ s.nonempty ∧ t.nonempty := ⟨λ h, ⟨h.fst, h.snd⟩, λ h, h.1.prod h.2⟩ lemma prod_eq_empty_iff : s ×ˢ t = ∅ ↔ s = ∅ ∨ t = ∅ := by simp only [not_nonempty_iff_eq_empty.symm, prod_nonempty_iff, not_and_distrib] lemma prod_sub_preimage_iff {W : set γ} {f : α × β → γ} : s ×ˢ t ⊆ f ⁻¹' W ↔ ∀ a b, a ∈ s → b ∈ t → f (a, b) ∈ W := by simp [subset_def] lemma image_prod_mk_subset_prod_left (hb : b ∈ t) : (λ a, (a, b)) '' s ⊆ s ×ˢ t := by { rintro _ ⟨a, ha, rfl⟩, exact ⟨ha, hb⟩ } lemma image_prod_mk_subset_prod_right (ha : a ∈ s) : prod.mk a '' t ⊆ s ×ˢ t := by { rintro _ ⟨b, hb, rfl⟩, exact ⟨ha, hb⟩ } lemma prod_subset_preimage_fst (s : set α) (t : set β) : s ×ˢ t ⊆ prod.fst ⁻¹' s := inter_subset_left _ _ lemma fst_image_prod_subset (s : set α) (t : set β) : prod.fst '' s ×ˢ t ⊆ s := image_subset_iff.2 $ prod_subset_preimage_fst s t lemma fst_image_prod (s : set β) {t : set α} (ht : t.nonempty) : prod.fst '' s ×ˢ t = s := (fst_image_prod_subset _ _).antisymm $ λ y hy, let ⟨x, hx⟩ := ht in ⟨(y, x), ⟨hy, hx⟩, rfl⟩ lemma prod_subset_preimage_snd (s : set α) (t : set β) : s ×ˢ t ⊆ prod.snd ⁻¹' t := inter_subset_right _ _ lemma snd_image_prod_subset (s : set α) (t : set β) : prod.snd '' s ×ˢ t ⊆ t := image_subset_iff.2 $ prod_subset_preimage_snd s t lemma snd_image_prod {s : set α} (hs : s.nonempty) (t : set β) : prod.snd '' s ×ˢ t = t := (snd_image_prod_subset _ _).antisymm $ λ y y_in, let ⟨x, x_in⟩ := hs in ⟨(x, y), ⟨x_in, y_in⟩, rfl⟩ lemma prod_diff_prod : s ×ˢ t \ s₁ ×ˢ t₁ = s ×ˢ (t \ t₁) ∪ (s \ s₁) ×ˢ t := by { ext x, by_cases h₁ : x.1 ∈ s₁; by_cases h₂ : x.2 ∈ t₁; simp * } /-- A product set is included in a product set if and only factors are included, or a factor of the first set is empty. -/ lemma prod_subset_prod_iff : s ×ˢ t ⊆ s₁ ×ˢ t₁ ↔ s ⊆ s₁ ∧ t ⊆ t₁ ∨ s = ∅ ∨ t = ∅ := begin cases (s ×ˢ t).eq_empty_or_nonempty with h h, { simp [h, prod_eq_empty_iff.1 h] }, have st : s.nonempty ∧ t.nonempty, by rwa [prod_nonempty_iff] at h, refine ⟨λ H, or.inl ⟨_, _⟩, _⟩, { have := image_subset (prod.fst : α × β → α) H, rwa [fst_image_prod _ st.2, fst_image_prod _ (h.mono H).snd] at this }, { have := image_subset (prod.snd : α × β → β) H, rwa [snd_image_prod st.1, snd_image_prod (h.mono H).fst] at this }, { intro H, simp only [st.1.ne_empty, st.2.ne_empty, or_false] at H, exact prod_mono H.1 H.2 } end lemma prod_eq_prod_iff_of_nonempty (h : (s ×ˢ t).nonempty) : s ×ˢ t = s₁ ×ˢ t₁ ↔ s = s₁ ∧ t = t₁ := begin split, { intro heq, have h₁ : (s₁ ×ˢ t₁ : set _).nonempty, { rwa [← heq] }, rw [prod_nonempty_iff] at h h₁, rw [← fst_image_prod s h.2, ← fst_image_prod s₁ h₁.2, heq, eq_self_iff_true, true_and, ← snd_image_prod h.1 t, ← snd_image_prod h₁.1 t₁, heq] }, { rintro ⟨rfl, rfl⟩, refl } end lemma prod_eq_prod_iff : s ×ˢ t = s₁ ×ˢ t₁ ↔ s = s₁ ∧ t = t₁ ∨ (s = ∅ ∨ t = ∅) ∧ (s₁ = ∅ ∨ t₁ = ∅) := begin symmetry, cases eq_empty_or_nonempty (s ×ˢ t) with h h, { simp_rw [h, @eq_comm _ ∅, prod_eq_empty_iff, prod_eq_empty_iff.mp h, true_and, or_iff_right_iff_imp], rintro ⟨rfl, rfl⟩, exact prod_eq_empty_iff.mp h }, rw [prod_eq_prod_iff_of_nonempty h], rw [← ne_empty_iff_nonempty, ne.def, prod_eq_empty_iff] at h, simp_rw [h, false_and, or_false], end @[simp] lemma prod_eq_iff_eq (ht : t.nonempty) : s ×ˢ t = s₁ ×ˢ t ↔ s = s₁ := begin simp_rw [prod_eq_prod_iff, ht.ne_empty, eq_self_iff_true, and_true, or_iff_left_iff_imp, or_false], rintro ⟨rfl, rfl⟩, refl, end @[simp] lemma image_prod (f : α → β → γ) : (λ x : α × β, f x.1 x.2) '' s ×ˢ t = image2 f s t := set.ext $ λ a, ⟨ by { rintro ⟨_, _, rfl⟩, exact ⟨_, _, (mem_prod.mp ‹_›).1, (mem_prod.mp ‹_›).2, rfl⟩ }, by { rintro ⟨_, _, _, _, rfl⟩, exact ⟨(_, _), mem_prod.mpr ⟨‹_›, ‹_›⟩, rfl⟩ }⟩ @[simp] lemma image2_mk_eq_prod : image2 prod.mk s t = s ×ˢ t := ext $ by simp section mono variables [preorder α] {f : α → set β} {g : α → set γ} theorem _root_.monotone.set_prod (hf : monotone f) (hg : monotone g) : monotone (λ x, f x ×ˢ g x) := λ a b h, prod_mono (hf h) (hg h) theorem _root_.antitone.set_prod (hf : antitone f) (hg : antitone g) : antitone (λ x, f x ×ˢ g x) := λ a b h, prod_mono (hf h) (hg h) theorem _root_.monotone_on.set_prod (hf : monotone_on f s) (hg : monotone_on g s) : monotone_on (λ x, f x ×ˢ g x) s := λ a ha b hb h, prod_mono (hf ha hb h) (hg ha hb h) theorem _root_.antitone_on.set_prod (hf : antitone_on f s) (hg : antitone_on g s) : antitone_on (λ x, f x ×ˢ g x) s := λ a ha b hb h, prod_mono (hf ha hb h) (hg ha hb h) end mono end prod /-! ### Diagonal In this section we prove some lemmas about the diagonal set `{p | p.1 = p.2}` and the diagonal map `λ x, (x, x)`. -/ section diagonal variables {α : Type*} {s t : set α} /-- `diagonal α` is the set of `α × α` consisting of all pairs of the form `(a, a)`. -/ def diagonal (α : Type*) : set (α × α) := {p | p.1 = p.2} lemma mem_diagonal (x : α) : (x, x) ∈ diagonal α := by simp [diagonal] @[simp] lemma mem_diagonal_iff {x : α × α} : x ∈ diagonal α ↔ x.1 = x.2 := iff.rfl lemma preimage_coe_coe_diagonal (s : set α) : (prod.map coe coe) ⁻¹' (diagonal α) = diagonal s := by { ext ⟨⟨x, hx⟩, ⟨y, hy⟩⟩, simp [set.diagonal] } @[simp] lemma range_diag : range (λ x, (x, x)) = diagonal α := by { ext ⟨x, y⟩, simp [diagonal, eq_comm] } @[simp] lemma prod_subset_compl_diagonal_iff_disjoint : s ×ˢ t ⊆ (diagonal α)ᶜ ↔ disjoint s t := subset_compl_comm.trans $ by simp_rw [← range_diag, range_subset_iff, disjoint_left, mem_compl_iff, prod_mk_mem_set_prod_eq, not_and] @[simp] lemma diag_preimage_prod (s t : set α) : (λ x, (x, x)) ⁻¹' (s ×ˢ t) = s ∩ t := rfl lemma diag_preimage_prod_self (s : set α) : (λ x, (x, x)) ⁻¹' (s ×ˢ s) = s := inter_self s end diagonal /-! ### Cartesian set-indexed product of sets -/ section pi variables {ι : Type*} {α β : ι → Type*} {s s₁ s₂ : set ι} {t t₁ t₂ : Π i, set (α i)} {i : ι} /-- Given an index set `ι` and a family of sets `t : Π i, set (α i)`, `pi s t` is the set of dependent functions `f : Πa, π a` such that `f a` belongs to `t a` whenever `a ∈ s`. -/ def pi (s : set ι) (t : Π i, set (α i)) : set (Π i, α i) := {f | ∀ i ∈ s, f i ∈ t i} @[simp] lemma mem_pi {f : Π i, α i} : f ∈ s.pi t ↔ ∀ i ∈ s, f i ∈ t i := iff.rfl @[simp] lemma mem_univ_pi {f : Π i, α i} : f ∈ pi univ t ↔ ∀ i, f i ∈ t i := by simp @[simp] lemma empty_pi (s : Π i, set (α i)) : pi ∅ s = univ := by { ext, simp [pi] } @[simp] lemma pi_univ (s : set ι) : pi s (λ i, (univ : set (α i))) = univ := eq_univ_of_forall $ λ f i hi, mem_univ _ lemma pi_mono (h : ∀ i ∈ s, t₁ i ⊆ t₂ i) : pi s t₁ ⊆ pi s t₂ := λ x hx i hi, (h i hi $ hx i hi) lemma pi_inter_distrib : s.pi (λ i, t i ∩ t₁ i) = s.pi t ∩ s.pi t₁ := ext $ λ x, by simp only [forall_and_distrib, mem_pi, mem_inter_eq] lemma pi_congr (h : s₁ = s₂) (h' : ∀ i ∈ s₁, t₁ i = t₂ i) : s₁.pi t₁ = s₂.pi t₂ := h ▸ (ext $ λ x, forall₂_congr $ λ i hi, h' i hi ▸ iff.rfl) lemma pi_eq_empty (hs : i ∈ s) (ht : t i = ∅) : s.pi t = ∅ := by { ext f, simp only [mem_empty_eq, not_forall, iff_false, mem_pi, not_imp], exact ⟨i, hs, by simp [ht]⟩ } lemma univ_pi_eq_empty (ht : t i = ∅) : pi univ t = ∅ := pi_eq_empty (mem_univ i) ht lemma pi_nonempty_iff : (s.pi t).nonempty ↔ ∀ i, ∃ x, i ∈ s → x ∈ t i := by simp [classical.skolem, set.nonempty] lemma univ_pi_nonempty_iff : (pi univ t).nonempty ↔ ∀ i, (t i).nonempty := by simp [classical.skolem, set.nonempty] lemma pi_eq_empty_iff : s.pi t = ∅ ↔ ∃ i, is_empty (α i) ∨ i ∈ s ∧ t i = ∅ := begin rw [← not_nonempty_iff_eq_empty, pi_nonempty_iff], push_neg, refine exists_congr (λ i, ⟨λ h, (is_empty_or_nonempty (α i)).imp_right _, _⟩), { rintro ⟨x⟩, exact ⟨(h x).1, by simp [eq_empty_iff_forall_not_mem, h]⟩ }, { rintro (h | h) x, { exact h.elim' x }, { simp [h] } } end lemma univ_pi_eq_empty_iff : pi univ t = ∅ ↔ ∃ i, t i = ∅ := by simp [← not_nonempty_iff_eq_empty, univ_pi_nonempty_iff] @[simp] lemma univ_pi_empty [h : nonempty ι] : pi univ (λ i, ∅ : Π i, set (α i)) = ∅ := univ_pi_eq_empty_iff.2 $ h.elim $ λ x, ⟨x, rfl⟩ @[simp] lemma range_dcomp (f : Π i, α i → β i) : range (λ (g : Π i, α i), (λ i, f i (g i))) = pi univ (λ i, range (f i)) := begin apply subset.antisymm _ (λ x hx, _), { rintro _ ⟨x, rfl⟩ i -, exact ⟨x i, rfl⟩ }, { choose y hy using hx, exact ⟨λ i, y i trivial, funext $ λ i, hy i trivial⟩ } end @[simp] lemma insert_pi (i : ι) (s : set ι) (t : Π i, set (α i)) : pi (insert i s) t = (eval i ⁻¹' t i) ∩ pi s t := by { ext, simp [pi, or_imp_distrib, forall_and_distrib] } @[simp] lemma singleton_pi (i : ι) (t : Π i, set (α i)) : pi {i} t = (eval i ⁻¹' t i) := by { ext, simp [pi] } lemma singleton_pi' (i : ι) (t : Π i, set (α i)) : pi {i} t = {x | x i ∈ t i} := singleton_pi i t lemma univ_pi_singleton (f : Π i, α i) : pi univ (λ i, {f i}) = ({f} : set (Π i, α i)) := ext $ λ g, by simp [funext_iff] lemma pi_if {p : ι → Prop} [h : decidable_pred p] (s : set ι) (t₁ t₂ : Π i, set (α i)) : pi s (λ i, if p i then t₁ i else t₂ i) = pi {i ∈ s | p i} t₁ ∩ pi {i ∈ s | ¬ p i} t₂ := begin ext f, refine ⟨λ h, _, _⟩, { split; { rintro i ⟨his, hpi⟩, simpa [*] using h i } }, { rintro ⟨ht₁, ht₂⟩ i his, by_cases p i; simp * at * } end lemma union_pi : (s₁ ∪ s₂).pi t = s₁.pi t ∩ s₂.pi t := by simp [pi, or_imp_distrib, forall_and_distrib, set_of_and] @[simp] lemma pi_inter_compl (s : set ι) : pi s t ∩ pi sᶜ t = pi univ t := by rw [← union_pi, union_compl_self] lemma pi_update_of_not_mem [decidable_eq ι] (hi : i ∉ s) (f : Π j, α j) (a : α i) (t : Π j, α j → set (β j)) : s.pi (λ j, t j (update f i a j)) = s.pi (λ j, t j (f j)) := pi_congr rfl $ λ j hj, by { rw update_noteq, exact λ h, hi (h ▸ hj) } lemma pi_update_of_mem [decidable_eq ι] (hi : i ∈ s) (f : Π j, α j) (a : α i) (t : Π j, α j → set (β j)) : s.pi (λ j, t j (update f i a j)) = {x | x i ∈ t i a} ∩ (s \ {i}).pi (λ j, t j (f j)) := calc s.pi (λ j, t j (update f i a j)) = ({i} ∪ s \ {i}).pi (λ j, t j (update f i a j)) : by rw [union_diff_self, union_eq_self_of_subset_left (singleton_subset_iff.2 hi)] ... = {x | x i ∈ t i a} ∩ (s \ {i}).pi (λ j, t j (f j)) : by { rw [union_pi, singleton_pi', update_same, pi_update_of_not_mem], simp } lemma univ_pi_update [decidable_eq ι] {β : Π i, Type*} (i : ι) (f : Π j, α j) (a : α i) (t : Π j, α j → set (β j)) : pi univ (λ j, t j (update f i a j)) = {x | x i ∈ t i a} ∩ pi {i}ᶜ (λ j, t j (f j)) := by rw [compl_eq_univ_diff, ← pi_update_of_mem (mem_univ _)] lemma univ_pi_update_univ [decidable_eq ι] (i : ι) (s : set (α i)) : pi univ (update (λ j : ι, (univ : set (α j))) i s) = eval i ⁻¹' s := by rw [univ_pi_update i (λ j, (univ : set (α j))) s (λ j t, t), pi_univ, inter_univ, preimage] lemma eval_image_pi_subset (hs : i ∈ s) : eval i '' s.pi t ⊆ t i := image_subset_iff.2 $ λ f hf, hf i hs lemma eval_image_univ_pi_subset : eval i '' pi univ t ⊆ t i := eval_image_pi_subset (mem_univ i) lemma eval_image_pi (hs : i ∈ s) (ht : (s.pi t).nonempty) : eval i '' s.pi t = t i := begin refine (eval_image_pi_subset hs).antisymm _, classical, obtain ⟨f, hf⟩ := ht, refine λ y hy, ⟨update f i y, λ j hj, _, update_same _ _ _⟩, obtain rfl | hji := eq_or_ne j i; simp [*, hf _ hj] end @[simp] lemma eval_image_univ_pi (ht : (pi univ t).nonempty) : (λ f : Π i, α i, f i) '' pi univ t = t i := eval_image_pi (mem_univ i) ht lemma eval_preimage [decidable_eq ι] {s : set (α i)} : eval i ⁻¹' s = pi univ (update (λ i, univ) i s) := by { ext x, simp [@forall_update_iff _ (λ i, set (α i)) _ _ _ _ (λ i' y, x i' ∈ y)] } lemma eval_preimage' [decidable_eq ι] {s : set (α i)} : eval i ⁻¹' s = pi {i} (update (λ i, univ) i s) := by { ext, simp } lemma update_preimage_pi [decidable_eq ι] {f : Π i, α i} (hi : i ∈ s) (hf : ∀ j ∈ s, j ≠ i → f j ∈ t j) : (update f i) ⁻¹' s.pi t = t i := begin ext x, refine ⟨λ h, _, λ hx j hj, _⟩, { convert h i hi, simp }, { obtain rfl | h := eq_or_ne j i, { simpa }, { rw update_noteq h, exact hf j hj h } } end lemma update_preimage_univ_pi [decidable_eq ι] {f : Π i, α i} (hf : ∀ j ≠ i, f j ∈ t j) : (update f i) ⁻¹' pi univ t = t i := update_preimage_pi (mem_univ i) (λ j _, hf j) lemma subset_pi_eval_image (s : set ι) (u : set (Π i, α i)) : u ⊆ pi s (λ i, eval i '' u) := λ f hf i hi, ⟨f, hf, rfl⟩ lemma univ_pi_ite (s : set ι) [decidable_pred (∈ s)] (t : Π i, set (α i)) : pi univ (λ i, if i ∈ s then t i else univ) = s.pi t := by { ext, simp_rw [mem_univ_pi], refine forall_congr (λ i, _), split_ifs; simp [h] } end pi end set