/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Floris van Doorn -/ import algebra.module.basic import data.fin.tuple.basic import data.set.finite import group_theory.submonoid.basic /-! # Pointwise operations of sets This file defines pointwise algebraic operations on sets. ## Main declarations For sets `s` and `t` and scalar `a`: * `s * t`: Multiplication, set of all `x * y` where `x ∈ s` and `y ∈ t`. * `s + t`: Addition, set of all `x + y` where `x ∈ s` and `y ∈ t`. * `s⁻¹`: Inversion, set of all `x⁻¹` where `x ∈ s`. * `-s`: Negation, set of all `-x` where `x ∈ s`. * `s / t`: Division, set of all `x / y` where `x ∈ s` and `y ∈ t`. * `s - t`: Subtraction, set of all `x - y` where `x ∈ s` and `y ∈ t`. * `s • t`: Scalar multiplication, set of all `x • y` where `x ∈ s` and `y ∈ t`. * `s +ᵥ t`: Scalar addition, set of all `x +ᵥ y` where `x ∈ s` and `y ∈ t`. * `s -ᵥ t`: Scalar subtraction, set of all `x -ᵥ y` where `x ∈ s` and `y ∈ t`. * `a • s`: Scaling, set of all `a • x` where `x ∈ s`. * `a +ᵥ s`: Translation, set of all `a +ᵥ x` where `x ∈ s`. For `α` a semigroup/monoid, `set α` is a semigroup/monoid. As an unfortunate side effect, this means that `n • s`, where `n : ℕ`, is ambiguous between pointwise scaling and repeated pointwise addition; the former has `(2 : ℕ) • {1, 2} = {2, 4}`, while the latter has `(2 : ℕ) • {1, 2} = {2, 3, 4}`. See note [pointwise nat action]. Appropriate definitions and results are also transported to the additive theory via `to_additive`. ## Implementation notes * The following expressions are considered in simp-normal form in a group: `(λ h, h * g) ⁻¹' s`, `(λ h, g * h) ⁻¹' s`, `(λ h, h * g⁻¹) ⁻¹' s`, `(λ h, g⁻¹ * h) ⁻¹' s`, `s * t`, `s⁻¹`, `(1 : set _)` (and similarly for additive variants). Expressions equal to one of these will be simplified. * We put all instances in the locale `pointwise`, so that these instances are not available by default. Note that we do not mark them as reducible (as argued by note [reducible non-instances]) since we expect the locale to be open whenever the instances are actually used (and making the instances reducible changes the behavior of `simp`. ## Tags set multiplication, set addition, pointwise addition, pointwise multiplication, pointwise subtraction -/ /-- Pointwise monoids (`set`, `finset`, `filter`) have derived pointwise actions of the form `has_smul α β → has_smul α (set β)`. When `α` is `ℕ` or `ℤ`, this action conflicts with the nat or int action coming from `set β` being a `monoid` or `div_inv_monoid`. For example, `2 • {a, b}` can both be `{2 • a, 2 • b}` (pointwise action, pointwise repeated addition, `set.has_smul_set`) and `{a + a, a + b, b + a, b + b}` (nat or int action, repeated pointwise addition, `set.has_nsmul`). Because the pointwise action can easily be spelled out in such cases, we give higher priority to the nat and int actions. -/ library_note "pointwise nat action" open function variables {F α β γ : Type*} namespace set /-! ### `0`/`1` as sets -/ section one variables [has_one α] {s : set α} {a : α} /-- The set `1 : set α` is defined as `{1}` in locale `pointwise`. -/ @[to_additive "The set `0 : set α` is defined as `{0}` in locale `pointwise`."] protected def has_one : has_one (set α) := ⟨{1}⟩ localized "attribute [instance] set.has_one set.has_zero" in pointwise @[to_additive] lemma singleton_one : ({1} : set α) = 1 := rfl @[simp, to_additive] lemma mem_one : a ∈ (1 : set α) ↔ a = 1 := iff.rfl @[to_additive] lemma one_mem_one : (1 : α) ∈ (1 : set α) := eq.refl _ @[simp, to_additive] lemma one_subset : 1 ⊆ s ↔ (1 : α) ∈ s := singleton_subset_iff @[to_additive] lemma one_nonempty : (1 : set α).nonempty := ⟨1, rfl⟩ @[simp, to_additive] lemma image_one {f : α → β} : f '' 1 = {f 1} := image_singleton @[to_additive] lemma subset_one_iff_eq : s ⊆ 1 ↔ s = ∅ ∨ s = 1 := subset_singleton_iff_eq @[to_additive] lemma nonempty.subset_one_iff (h : s.nonempty) : s ⊆ 1 ↔ s = 1 := h.subset_singleton_iff /-- The singleton operation as a `one_hom`. -/ @[to_additive "The singleton operation as a `zero_hom`."] def singleton_one_hom : one_hom α (set α) := ⟨singleton, singleton_one⟩ @[simp, to_additive] lemma coe_singleton_one_hom : (singleton_one_hom : α → set α) = singleton := rfl end one /-! ### Set negation/inversion -/ section inv /-- The pointwise inversion of set `s⁻¹` is defined as `{x | x⁻¹ ∈ s}` in locale `pointwise`. It i equal to `{x⁻¹ | x ∈ s}`, see `set.image_inv`. -/ @[to_additive "The pointwise negation of set `-s` is defined as `{x | -x ∈ s}` in locale `pointwise`. It is equal to `{-x | x ∈ s}`, see `set.image_neg`."] protected def has_inv [has_inv α] : has_inv (set α) := ⟨preimage has_inv.inv⟩ localized "attribute [instance] set.has_inv set.has_neg" in pointwise section has_inv variables {ι : Sort*} [has_inv α] {s t : set α} {a : α} @[simp, to_additive] lemma mem_inv : a ∈ s⁻¹ ↔ a⁻¹ ∈ s := iff.rfl @[simp, to_additive] lemma inv_preimage : has_inv.inv ⁻¹' s = s⁻¹ := rfl @[simp, to_additive] lemma inv_empty : (∅ : set α)⁻¹ = ∅ := rfl @[simp, to_additive] lemma inv_univ : (univ : set α)⁻¹ = univ := rfl @[simp, to_additive] lemma inter_inv : (s ∩ t)⁻¹ = s⁻¹ ∩ t⁻¹ := preimage_inter @[simp, to_additive] lemma union_inv : (s ∪ t)⁻¹ = s⁻¹ ∪ t⁻¹ := preimage_union @[simp, to_additive] lemma Inter_inv (s : ι → set α) : (⋂ i, s i)⁻¹ = ⋂ i, (s i)⁻¹ := preimage_Inter @[simp, to_additive] lemma Union_inv (s : ι → set α) : (⋃ i, s i)⁻¹ = ⋃ i, (s i)⁻¹ := preimage_Union @[simp, to_additive] lemma compl_inv : (sᶜ)⁻¹ = (s⁻¹)ᶜ := preimage_compl end has_inv section has_involutive_inv variables [has_involutive_inv α] {s t : set α} {a : α} @[to_additive] lemma inv_mem_inv : a⁻¹ ∈ s⁻¹ ↔ a ∈ s := by simp only [mem_inv, inv_inv] @[simp, to_additive] lemma nonempty_inv : s⁻¹.nonempty ↔ s.nonempty := inv_involutive.surjective.nonempty_preimage @[to_additive] lemma nonempty.inv (h : s.nonempty) : s⁻¹.nonempty := nonempty_inv.2 h @[to_additive] lemma finite.inv (hs : s.finite) : s⁻¹.finite := hs.preimage $ inv_injective.inj_on _ @[simp, to_additive] lemma image_inv : has_inv.inv '' s = s⁻¹ := congr_fun (image_eq_preimage_of_inverse inv_involutive.left_inverse inv_involutive.right_inverse) _ @[simp, to_additive] instance : has_involutive_inv (set α) := { inv := has_inv.inv, inv_inv := λ s, by { simp only [← inv_preimage, preimage_preimage, inv_inv, preimage_id'] } } @[simp, to_additive] lemma inv_subset_inv : s⁻¹ ⊆ t⁻¹ ↔ s ⊆ t := (equiv.inv α).surjective.preimage_subset_preimage_iff @[to_additive] lemma inv_subset : s⁻¹ ⊆ t ↔ s ⊆ t⁻¹ := by { rw [← inv_subset_inv, inv_inv] } @[simp, to_additive] lemma inv_singleton (a : α) : ({a} : set α)⁻¹ = {a⁻¹} := by rw [←image_inv, image_singleton] @[to_additive] lemma inv_range {ι : Sort*} {f : ι → α} : (range f)⁻¹ = range (λ i, (f i)⁻¹) := by { rw ←image_inv, exact (range_comp _ _).symm } open mul_opposite @[to_additive] lemma image_op_inv : op '' s⁻¹ = (op '' s)⁻¹ := by simp_rw [←image_inv, function.semiconj.set_image op_inv s] end has_involutive_inv end inv open_locale pointwise /-! ### Set addition/multiplication -/ section has_mul variables {ι : Sort*} {κ : ι → Sort*} [has_mul α] {s s₁ s₂ t t₁ t₂ u : set α} {a b : α} /-- The pointwise multiplication of sets `s * t` and `t` is defined as `{x * y | x ∈ s, y ∈ t}` in locale `pointwise`. -/ @[to_additive "The pointwise addition of sets `s + t` is defined as `{x + y | x ∈ s, y ∈ t}` in locale `pointwise`."] protected def has_mul : has_mul (set α) := ⟨image2 (*)⟩ localized "attribute [instance] set.has_mul set.has_add" in pointwise @[simp, to_additive] lemma image2_mul : image2 has_mul.mul s t = s * t := rfl @[to_additive] lemma mem_mul : a ∈ s * t ↔ ∃ x y, x ∈ s ∧ y ∈ t ∧ x * y = a := iff.rfl @[to_additive] lemma mul_mem_mul : a ∈ s → b ∈ t → a * b ∈ s * t := mem_image2_of_mem @[to_additive add_image_prod] lemma image_mul_prod : (λ x : α × α, x.fst * x.snd) '' s ×ˢ t = s * t := image_prod _ @[simp, to_additive] lemma empty_mul : ∅ * s = ∅ := image2_empty_left @[simp, to_additive] lemma mul_empty : s * ∅ = ∅ := image2_empty_right @[simp, to_additive] lemma mul_eq_empty : s * t = ∅ ↔ s = ∅ ∨ t = ∅ := image2_eq_empty_iff @[simp, to_additive] lemma mul_nonempty : (s * t).nonempty ↔ s.nonempty ∧ t.nonempty := image2_nonempty_iff @[to_additive] lemma nonempty.mul : s.nonempty → t.nonempty → (s * t).nonempty := nonempty.image2 @[to_additive] lemma nonempty.of_mul_left : (s * t).nonempty → s.nonempty := nonempty.of_image2_left @[to_additive] lemma nonempty.of_mul_right : (s * t).nonempty → t.nonempty := nonempty.of_image2_right @[simp, to_additive] lemma mul_singleton : s * {b} = (* b) '' s := image2_singleton_right @[simp, to_additive] lemma singleton_mul : {a} * t = ((*) a) '' t := image2_singleton_left @[simp, to_additive] lemma singleton_mul_singleton : ({a} : set α) * {b} = {a * b} := image2_singleton @[to_additive, mono] lemma mul_subset_mul : s₁ ⊆ t₁ → s₂ ⊆ t₂ → s₁ * s₂ ⊆ t₁ * t₂ := image2_subset @[to_additive] lemma mul_subset_mul_left : t₁ ⊆ t₂ → s * t₁ ⊆ s * t₂ := image2_subset_left @[to_additive] lemma mul_subset_mul_right : s₁ ⊆ s₂ → s₁ * t ⊆ s₂ * t := image2_subset_right @[to_additive] lemma mul_subset_iff : s * t ⊆ u ↔ ∀ (x ∈ s) (y ∈ t), x * y ∈ u := image2_subset_iff attribute [mono] add_subset_add @[to_additive] lemma union_mul : (s₁ ∪ s₂) * t = s₁ * t ∪ s₂ * t := image2_union_left @[to_additive] lemma mul_union : s * (t₁ ∪ t₂) = s * t₁ ∪ s * t₂ := image2_union_right @[to_additive] lemma inter_mul_subset : (s₁ ∩ s₂) * t ⊆ s₁ * t ∩ (s₂ * t) := image2_inter_subset_left @[to_additive] lemma mul_inter_subset : s * (t₁ ∩ t₂) ⊆ s * t₁ ∩ (s * t₂) := image2_inter_subset_right @[to_additive] lemma Union_mul_left_image : (⋃ a ∈ s, ((*) a) '' t) = s * t := Union_image_left _ @[to_additive] lemma Union_mul_right_image : (⋃ a ∈ t, (* a) '' s) = s * t := Union_image_right _ @[to_additive] lemma Union_mul (s : ι → set α) (t : set α) : (⋃ i, s i) * t = ⋃ i, s i * t := image2_Union_left _ _ _ @[to_additive] lemma mul_Union (s : set α) (t : ι → set α) : s * (⋃ i, t i) = ⋃ i, s * t i := image2_Union_right _ _ _ @[to_additive] lemma Union₂_mul (s : Π i, κ i → set α) (t : set α) : (⋃ i j, s i j) * t = ⋃ i j, s i j * t := image2_Union₂_left _ _ _ @[to_additive] lemma mul_Union₂ (s : set α) (t : Π i, κ i → set α) : s * (⋃ i j, t i j) = ⋃ i j, s * t i j := image2_Union₂_right _ _ _ @[to_additive] lemma Inter_mul_subset (s : ι → set α) (t : set α) : (⋂ i, s i) * t ⊆ ⋂ i, s i * t := image2_Inter_subset_left _ _ _ @[to_additive] lemma mul_Inter_subset (s : set α) (t : ι → set α) : s * (⋂ i, t i) ⊆ ⋂ i, s * t i := image2_Inter_subset_right _ _ _ @[to_additive] lemma Inter₂_mul_subset (s : Π i, κ i → set α) (t : set α) : (⋂ i j, s i j) * t ⊆ ⋂ i j, s i j * t := image2_Inter₂_subset_left _ _ _ @[to_additive] lemma mul_Inter₂_subset (s : set α) (t : Π i, κ i → set α) : s * (⋂ i j, t i j) ⊆ ⋂ i j, s * t i j := image2_Inter₂_subset_right _ _ _ @[to_additive] lemma finite.mul : s.finite → t.finite → (s * t).finite := finite.image2 _ /-- Multiplication preserves finiteness. -/ @[to_additive "Addition preserves finiteness."] def fintype_mul [decidable_eq α] (s t : set α) [fintype s] [fintype t] : fintype (s * t : set α) := set.fintype_image2 _ _ _ /-- The singleton operation as a `mul_hom`. -/ @[to_additive "The singleton operation as an `add_hom`."] def singleton_mul_hom : α →ₙ* set α := ⟨singleton, λ a b, singleton_mul_singleton.symm⟩ @[simp, to_additive] lemma coe_singleton_mul_hom : (singleton_mul_hom : α → set α) = singleton := rfl @[simp, to_additive] lemma singleton_mul_hom_apply (a : α) : singleton_mul_hom a = {a} := rfl open mul_opposite @[simp, to_additive] lemma image_op_mul : op '' (s * t) = op '' t * op '' s := image_image2_antidistrib op_mul end has_mul /-! ### Set subtraction/division -/ section has_div variables {ι : Sort*} {κ : ι → Sort*} [has_div α] {s s₁ s₂ t t₁ t₂ u : set α} {a b : α} /-- The pointwise division of sets `s / t` is defined as `{x / y | x ∈ s, y ∈ t}` in locale `pointwise`. -/ @[to_additive "The pointwise subtraction of sets `s - t` is defined as `{x - y | x ∈ s, y ∈ t}` in locale `pointwise`."] protected def has_div : has_div (set α) := ⟨image2 (/)⟩ localized "attribute [instance] set.has_div set.has_sub" in pointwise @[simp, to_additive] lemma image2_div : image2 has_div.div s t = s / t := rfl @[to_additive] lemma mem_div : a ∈ s / t ↔ ∃ x y, x ∈ s ∧ y ∈ t ∧ x / y = a := iff.rfl @[to_additive] lemma div_mem_div : a ∈ s → b ∈ t → a / b ∈ s / t := mem_image2_of_mem @[to_additive add_image_prod] lemma image_div_prod : (λ x : α × α, x.fst / x.snd) '' s ×ˢ t = s / t := image_prod _ @[simp, to_additive] lemma empty_div : ∅ / s = ∅ := image2_empty_left @[simp, to_additive] lemma div_empty : s / ∅ = ∅ := image2_empty_right @[simp, to_additive] lemma div_eq_empty : s / t = ∅ ↔ s = ∅ ∨ t = ∅ := image2_eq_empty_iff @[simp, to_additive] lemma div_nonempty : (s / t).nonempty ↔ s.nonempty ∧ t.nonempty := image2_nonempty_iff @[to_additive] lemma nonempty.div : s.nonempty → t.nonempty → (s / t).nonempty := nonempty.image2 @[to_additive] lemma nonempty.of_div_left : (s / t).nonempty → s.nonempty := nonempty.of_image2_left @[to_additive] lemma nonempty.of_div_right : (s / t).nonempty → t.nonempty := nonempty.of_image2_right @[simp, to_additive] lemma div_singleton : s / {b} = (/ b) '' s := image2_singleton_right @[simp, to_additive] lemma singleton_div : {a} / t = ((/) a) '' t := image2_singleton_left @[simp, to_additive] lemma singleton_div_singleton : ({a} : set α) / {b} = {a / b} := image2_singleton @[to_additive, mono] lemma div_subset_div : s₁ ⊆ t₁ → s₂ ⊆ t₂ → s₁ / s₂ ⊆ t₁ / t₂ := image2_subset @[to_additive] lemma div_subset_div_left : t₁ ⊆ t₂ → s / t₁ ⊆ s / t₂ := image2_subset_left @[to_additive] lemma div_subset_div_right : s₁ ⊆ s₂ → s₁ / t ⊆ s₂ / t := image2_subset_right @[to_additive] lemma div_subset_iff : s / t ⊆ u ↔ ∀ (x ∈ s) (y ∈ t), x / y ∈ u := image2_subset_iff attribute [mono] sub_subset_sub @[to_additive] lemma union_div : (s₁ ∪ s₂) / t = s₁ / t ∪ s₂ / t := image2_union_left @[to_additive] lemma div_union : s / (t₁ ∪ t₂) = s / t₁ ∪ s / t₂ := image2_union_right @[to_additive] lemma inter_div_subset : (s₁ ∩ s₂) / t ⊆ s₁ / t ∩ (s₂ / t) := image2_inter_subset_left @[to_additive] lemma div_inter_subset : s / (t₁ ∩ t₂) ⊆ s / t₁ ∩ (s / t₂) := image2_inter_subset_right @[to_additive] lemma Union_div_left_image : (⋃ a ∈ s, ((/) a) '' t) = s / t := Union_image_left _ @[to_additive] lemma Union_div_right_image : (⋃ a ∈ t, (/ a) '' s) = s / t := Union_image_right _ @[to_additive] lemma Union_div (s : ι → set α) (t : set α) : (⋃ i, s i) / t = ⋃ i, s i / t := image2_Union_left _ _ _ @[to_additive] lemma div_Union (s : set α) (t : ι → set α) : s / (⋃ i, t i) = ⋃ i, s / t i := image2_Union_right _ _ _ @[to_additive] lemma Union₂_div (s : Π i, κ i → set α) (t : set α) : (⋃ i j, s i j) / t = ⋃ i j, s i j / t := image2_Union₂_left _ _ _ @[to_additive] lemma div_Union₂ (s : set α) (t : Π i, κ i → set α) : s / (⋃ i j, t i j) = ⋃ i j, s / t i j := image2_Union₂_right _ _ _ @[to_additive] lemma Inter_div_subset (s : ι → set α) (t : set α) : (⋂ i, s i) / t ⊆ ⋂ i, s i / t := image2_Inter_subset_left _ _ _ @[to_additive] lemma div_Inter_subset (s : set α) (t : ι → set α) : s / (⋂ i, t i) ⊆ ⋂ i, s / t i := image2_Inter_subset_right _ _ _ @[to_additive] lemma Inter₂_div_subset (s : Π i, κ i → set α) (t : set α) : (⋂ i j, s i j) / t ⊆ ⋂ i j, s i j / t := image2_Inter₂_subset_left _ _ _ @[to_additive] lemma div_Inter₂_subset (s : set α) (t : Π i, κ i → set α) : s / (⋂ i j, t i j) ⊆ ⋂ i j, s / t i j := image2_Inter₂_subset_right _ _ _ end has_div open_locale pointwise /-- Repeated pointwise addition (not the same as pointwise repeated addition!) of a `finset`. See note [pointwise nat action].-/ protected def has_nsmul [has_zero α] [has_add α] : has_smul ℕ (set α) := ⟨nsmul_rec⟩ /-- Repeated pointwise multiplication (not the same as pointwise repeated multiplication!) of a `set`. See note [pointwise nat action]. -/ @[to_additive] protected def has_npow [has_one α] [has_mul α] : has_pow (set α) ℕ := ⟨λ s n, npow_rec n s⟩ /-- Repeated pointwise addition/subtraction (not the same as pointwise repeated addition/subtraction!) of a `set`. See note [pointwise nat action]. -/ protected def has_zsmul [has_zero α] [has_add α] [has_neg α] : has_smul ℤ (set α) := ⟨zsmul_rec⟩ /-- Repeated pointwise multiplication/division (not the same as pointwise repeated multiplication/division!) of a `set`. See note [pointwise nat action]. -/ @[to_additive] protected def has_zpow [has_one α] [has_mul α] [has_inv α] : has_pow (set α) ℤ := ⟨λ s n, zpow_rec n s⟩ localized "attribute [instance] set.has_nsmul set.has_npow set.has_zsmul set.has_zpow" in pointwise /-- `set α` is a `semigroup` under pointwise operations if `α` is. -/ @[to_additive "`set α` is an `add_semigroup` under pointwise operations if `α` is."] protected def semigroup [semigroup α] : semigroup (set α) := { mul_assoc := λ _ _ _, image2_assoc mul_assoc, ..set.has_mul } /-- `set α` is a `comm_semigroup` under pointwise operations if `α` is. -/ @[to_additive "`set α` is an `add_comm_semigroup` under pointwise operations if `α` is."] protected def comm_semigroup [comm_semigroup α] : comm_semigroup (set α) := { mul_comm := λ s t, image2_comm mul_comm ..set.semigroup } section mul_one_class variables [mul_one_class α] /-- `set α` is a `mul_one_class` under pointwise operations if `α` is. -/ @[to_additive "`set α` is an `add_zero_class` under pointwise operations if `α` is."] protected def mul_one_class : mul_one_class (set α) := { mul_one := λ s, by { simp only [← singleton_one, mul_singleton, mul_one, image_id'] }, one_mul := λ s, by { simp only [← singleton_one, singleton_mul, one_mul, image_id'] }, ..set.has_one, ..set.has_mul } localized "attribute [instance] set.mul_one_class set.add_zero_class set.semigroup set.add_semigroup set.comm_semigroup set.add_comm_semigroup" in pointwise @[to_additive] lemma subset_mul_left (s : set α) {t : set α} (ht : (1 : α) ∈ t) : s ⊆ s * t := λ x hx, ⟨x, 1, hx, ht, mul_one _⟩ @[to_additive] lemma subset_mul_right {s : set α} (t : set α) (hs : (1 : α) ∈ s) : t ⊆ s * t := λ x hx, ⟨1, x, hs, hx, one_mul _⟩ /-- The singleton operation as a `monoid_hom`. -/ @[to_additive "The singleton operation as an `add_monoid_hom`."] def singleton_monoid_hom : α →* set α := { ..singleton_mul_hom, ..singleton_one_hom } @[simp, to_additive] lemma coe_singleton_monoid_hom : (singleton_monoid_hom : α → set α) = singleton := rfl @[simp, to_additive] lemma singleton_monoid_hom_apply (a : α) : singleton_monoid_hom a = {a} := rfl end mul_one_class section monoid variables [monoid α] {s t : set α} {a : α} {m n : ℕ} /-- `set α` is a `monoid` under pointwise operations if `α` is. -/ @[to_additive "`set α` is an `add_monoid` under pointwise operations if `α` is."] protected def monoid : monoid (set α) := { ..set.semigroup, ..set.mul_one_class, ..set.has_npow } localized "attribute [instance] set.monoid set.add_monoid" in pointwise @[to_additive] instance decidable_mem_mul [fintype α] [decidable_eq α] [decidable_pred (∈ s)] [decidable_pred (∈ t)] : decidable_pred (∈ s * t) := λ _, decidable_of_iff _ mem_mul.symm @[to_additive] instance decidable_mem_pow [fintype α] [decidable_eq α] [decidable_pred (∈ s)] (n : ℕ) : decidable_pred (∈ (s ^ n)) := begin induction n with n ih, { simp_rw [pow_zero, mem_one], apply_instance }, { letI := ih, rw pow_succ, apply_instance } end @[to_additive] lemma pow_mem_pow (ha : a ∈ s) : ∀ n : ℕ, a ^ n ∈ s ^ n | 0 := by { rw pow_zero, exact one_mem_one } | (n + 1) := by { rw pow_succ, exact mul_mem_mul ha (pow_mem_pow _) } @[to_additive] lemma pow_subset_pow (hst : s ⊆ t) : ∀ n : ℕ, s ^ n ⊆ t ^ n | 0 := by { rw pow_zero, exact subset.rfl } | (n + 1) := by { rw pow_succ, exact mul_subset_mul hst (pow_subset_pow _) } @[to_additive] lemma pow_subset_pow_of_one_mem (hs : (1 : α) ∈ s) : m ≤ n → s ^ m ⊆ s ^ n := begin refine nat.le_induction _ (λ n h ih, _) _, { exact subset.rfl }, { rw pow_succ, exact ih.trans (subset_mul_right _ hs) } end @[to_additive] lemma mem_prod_list_of_fn {a : α} {s : fin n → set α} : a ∈ (list.of_fn s).prod ↔ ∃ f : (Π i : fin n, s i), (list.of_fn (λ i, (f i : α))).prod = a := begin induction n with n ih generalizing a, { simp_rw [list.of_fn_zero, list.prod_nil, fin.exists_fin_zero_pi, eq_comm, set.mem_one] }, { simp_rw [list.of_fn_succ, list.prod_cons, fin.exists_fin_succ_pi, fin.cons_zero, fin.cons_succ, mem_mul, @ih, exists_and_distrib_left, exists_exists_eq_and, set_coe.exists, subtype.coe_mk, exists_prop] } end @[to_additive] lemma mem_list_prod {l : list (set α)} {a : α} : a ∈ l.prod ↔ ∃ l' : list (Σ s : set α, ↥s), list.prod (l'.map (λ x, (sigma.snd x : α))) = a ∧ l'.map sigma.fst = l := begin induction l using list.of_fn_rec with n f, simp_rw [list.exists_iff_exists_tuple, list.map_of_fn, list.of_fn_inj', and.left_comm, exists_and_distrib_left, exists_eq_left, heq_iff_eq, function.comp, mem_prod_list_of_fn], split, { rintros ⟨fi, rfl⟩, exact ⟨λ i, ⟨_, fi i⟩, rfl, rfl⟩, }, { rintros ⟨fi, rfl, rfl⟩, exact ⟨λ i, _, rfl⟩, }, end @[to_additive] lemma mem_pow {a : α} {n : ℕ} : a ∈ s ^ n ↔ ∃ f : fin n → s, (list.of_fn (λ i, (f i : α))).prod = a := by rw [←mem_prod_list_of_fn, list.of_fn_const, list.prod_repeat] @[simp, to_additive] lemma empty_pow {n : ℕ} (hn : n ≠ 0) : (∅ : set α) ^ n = ∅ := by rw [← tsub_add_cancel_of_le (nat.succ_le_of_lt $ nat.pos_of_ne_zero hn), pow_succ, empty_mul] @[to_additive] lemma mul_univ_of_one_mem (hs : (1 : α) ∈ s) : s * univ = univ := eq_univ_iff_forall.2 $ λ a, mem_mul.2 ⟨_, _, hs, mem_univ _, one_mul _⟩ @[to_additive] lemma univ_mul_of_one_mem (ht : (1 : α) ∈ t) : univ * t = univ := eq_univ_iff_forall.2 $ λ a, mem_mul.2 ⟨_, _, mem_univ _, ht, mul_one _⟩ @[simp, to_additive] lemma univ_mul_univ : (univ : set α) * univ = univ := mul_univ_of_one_mem $ mem_univ _ --TODO: `to_additive` trips up on the `1 : ℕ` used in the pattern-matching. @[simp] lemma nsmul_univ {α : Type*} [add_monoid α] : ∀ {n : ℕ}, n ≠ 0 → n • (univ : set α) = univ | 0 := λ h, (h rfl).elim | 1 := λ _, one_nsmul _ | (n + 2) := λ _, by { rw [succ_nsmul, nsmul_univ n.succ_ne_zero, univ_add_univ] } @[simp, to_additive nsmul_univ] lemma univ_pow : ∀ {n : ℕ}, n ≠ 0 → (univ : set α) ^ n = univ | 0 := λ h, (h rfl).elim | 1 := λ _, pow_one _ | (n + 2) := λ _, by { rw [pow_succ, univ_pow n.succ_ne_zero, univ_mul_univ] } @[to_additive] protected lemma _root_.is_unit.set : is_unit a → is_unit ({a} : set α) := is_unit.map (singleton_monoid_hom : α →* set α) end monoid /-- `set α` is a `comm_monoid` under pointwise operations if `α` is. -/ @[to_additive "`set α` is an `add_comm_monoid` under pointwise operations if `α` is."] protected def comm_monoid [comm_monoid α] : comm_monoid (set α) := { ..set.monoid, ..set.comm_semigroup } localized "attribute [instance] set.comm_monoid set.add_comm_monoid" in pointwise open_locale pointwise section division_monoid variables [division_monoid α] {s t : set α} @[to_additive] protected lemma mul_eq_one_iff : s * t = 1 ↔ ∃ a b, s = {a} ∧ t = {b} ∧ a * b = 1 := begin refine ⟨λ h, _, _⟩, { have hst : (s * t).nonempty := h.symm.subst one_nonempty, obtain ⟨a, ha⟩ := hst.of_image2_left, obtain ⟨b, hb⟩ := hst.of_image2_right, have H : ∀ {a b}, a ∈ s → b ∈ t → a * b = (1 : α) := λ a b ha hb, (h.subset $ mem_image2_of_mem ha hb), refine ⟨a, b, _, _, H ha hb⟩; refine eq_singleton_iff_unique_mem.2 ⟨‹_›, λ x hx, _⟩, { exact (eq_inv_of_mul_eq_one_left $ H hx hb).trans (inv_eq_of_mul_eq_one_left $ H ha hb) }, { exact (eq_inv_of_mul_eq_one_right $ H ha hx).trans (inv_eq_of_mul_eq_one_right $ H ha hb) } }, { rintro ⟨b, c, rfl, rfl, h⟩, rw [singleton_mul_singleton, h, singleton_one] } end /-- `set α` is a division monoid under pointwise operations if `α` is. -/ @[to_additive subtraction_monoid "`set α` is a subtraction monoid under pointwise operations if `α` is."] protected def division_monoid : division_monoid (set α) := { mul_inv_rev := λ s t, by { simp_rw ←image_inv, exact image_image2_antidistrib mul_inv_rev }, inv_eq_of_mul := λ s t h, begin obtain ⟨a, b, rfl, rfl, hab⟩ := set.mul_eq_one_iff.1 h, rw [inv_singleton, inv_eq_of_mul_eq_one_right hab], end, div_eq_mul_inv := λ s t, by { rw [←image_id (s / t), ←image_inv], exact image_image2_distrib_right div_eq_mul_inv }, ..set.monoid, ..set.has_involutive_inv, ..set.has_div, ..set.has_zpow } @[simp, to_additive] lemma is_unit_iff : is_unit s ↔ ∃ a, s = {a} ∧ is_unit a := begin split, { rintro ⟨u, rfl⟩, obtain ⟨a, b, ha, hb, h⟩ := set.mul_eq_one_iff.1 u.mul_inv, refine ⟨a, ha, ⟨a, b, h, singleton_injective _⟩, rfl⟩, rw [←singleton_mul_singleton, ←ha, ←hb], exact u.inv_mul }, { rintro ⟨a, rfl, ha⟩, exact ha.set } end end division_monoid /-- `set α` is a commutative division monoid under pointwise operations if `α` is. -/ @[to_additive subtraction_comm_monoid "`set α` is a commutative subtraction monoid under pointwise operations if `α` is."] protected def division_comm_monoid [division_comm_monoid α] : division_comm_monoid (set α) := { ..set.division_monoid, ..set.comm_semigroup } /-- `set α` has distributive negation if `α` has. -/ protected def has_distrib_neg [has_mul α] [has_distrib_neg α] : has_distrib_neg (set α) := { neg_mul := λ _ _, by { simp_rw ←image_neg, exact image2_image_left_comm neg_mul }, mul_neg := λ _ _, by { simp_rw ←image_neg, exact image_image2_right_comm mul_neg }, ..set.has_involutive_neg } localized "attribute [instance] set.division_monoid set.subtraction_monoid set.division_comm_monoid set.subtraction_comm_monoid set.has_distrib_neg" in pointwise section distrib variables [distrib α] (s t u : set α) /-! Note that `set α` is not a `distrib` because `s * t + s * u` has cross terms that `s * (t + u)` lacks. -/ lemma mul_add_subset : s * (t + u) ⊆ s * t + s * u := image2_distrib_subset_left mul_add lemma add_mul_subset : (s + t) * u ⊆ s * u + t * u := image2_distrib_subset_right add_mul end distrib section mul_zero_class variables [mul_zero_class α] {s t : set α} /-! Note that `set` is not a `mul_zero_class` because `0 * ∅ ≠ 0`. -/ lemma mul_zero_subset (s : set α) : s * 0 ⊆ 0 := by simp [subset_def, mem_mul] lemma zero_mul_subset (s : set α) : 0 * s ⊆ 0 := by simp [subset_def, mem_mul] lemma nonempty.mul_zero (hs : s.nonempty) : s * 0 = 0 := s.mul_zero_subset.antisymm $ by simpa [mem_mul] using hs lemma nonempty.zero_mul (hs : s.nonempty) : 0 * s = 0 := s.zero_mul_subset.antisymm $ by simpa [mem_mul] using hs end mul_zero_class section group variables [group α] {s t : set α} {a b : α} /-! Note that `set` is not a `group` because `s / s ≠ 1` in general. -/ @[simp, to_additive] lemma one_mem_div_iff : (1 : α) ∈ s / t ↔ ¬ disjoint s t := by simp [not_disjoint_iff_nonempty_inter, mem_div, div_eq_one, set.nonempty] @[to_additive] lemma not_one_mem_div_iff : (1 : α) ∉ s / t ↔ disjoint s t := one_mem_div_iff.not_left alias not_one_mem_div_iff ↔ _ _root_.disjoint.one_not_mem_div_set attribute [to_additive] disjoint.one_not_mem_div_set @[to_additive] lemma nonempty.one_mem_div (h : s.nonempty) : (1 : α) ∈ s / s := let ⟨a, ha⟩ := h in mem_div.2 ⟨a, a, ha, ha, div_self' _⟩ @[to_additive] lemma is_unit_singleton (a : α) : is_unit ({a} : set α) := (group.is_unit a).set @[simp, to_additive] lemma is_unit_iff_singleton : is_unit s ↔ ∃ a, s = {a} := by simp only [is_unit_iff, group.is_unit, and_true] @[simp, to_additive] lemma image_mul_left : ((*) a) '' t = ((*) a⁻¹) ⁻¹' t := by { rw image_eq_preimage_of_inverse; intro c; simp } @[simp, to_additive] lemma image_mul_right : (* b) '' t = (* b⁻¹) ⁻¹' t := by { rw image_eq_preimage_of_inverse; intro c; simp } @[to_additive] lemma image_mul_left' : (λ b, a⁻¹ * b) '' t = (λ b, a * b) ⁻¹' t := by simp @[to_additive] lemma image_mul_right' : (* b⁻¹) '' t = (* b) ⁻¹' t := by simp @[simp, to_additive] lemma preimage_mul_left_singleton : ((*) a) ⁻¹' {b} = {a⁻¹ * b} := by rw [← image_mul_left', image_singleton] @[simp, to_additive] lemma preimage_mul_right_singleton : (* a) ⁻¹' {b} = {b * a⁻¹} := by rw [← image_mul_right', image_singleton] @[simp, to_additive] lemma preimage_mul_left_one : ((*) a) ⁻¹' 1 = {a⁻¹} := by rw [← image_mul_left', image_one, mul_one] @[simp, to_additive] lemma preimage_mul_right_one : (* b) ⁻¹' 1 = {b⁻¹} := by rw [← image_mul_right', image_one, one_mul] @[to_additive] lemma preimage_mul_left_one' : (λ b, a⁻¹ * b) ⁻¹' 1 = {a} := by simp @[to_additive] lemma preimage_mul_right_one' : (* b⁻¹) ⁻¹' 1 = {b} := by simp @[simp, to_additive] lemma mul_univ (hs : s.nonempty) : s * (univ : set α) = univ := let ⟨a, ha⟩ := hs in eq_univ_of_forall $ λ b, ⟨a, a⁻¹ * b, ha, trivial, mul_inv_cancel_left _ _⟩ @[simp, to_additive] lemma univ_mul (ht : t.nonempty) : (univ : set α) * t = univ := let ⟨a, ha⟩ := ht in eq_univ_of_forall $ λ b, ⟨b * a⁻¹, a, trivial, ha, inv_mul_cancel_right _ _⟩ end group section group_with_zero variables [group_with_zero α] {s t : set α} lemma div_zero_subset (s : set α) : s / 0 ⊆ 0 := by simp [subset_def, mem_div] lemma zero_div_subset (s : set α) : 0 / s ⊆ 0 := by simp [subset_def, mem_div] lemma nonempty.div_zero (hs : s.nonempty) : s / 0 = 0 := s.div_zero_subset.antisymm $ by simpa [mem_div] using hs lemma nonempty.zero_div (hs : s.nonempty) : 0 / s = 0 := s.zero_div_subset.antisymm $ by simpa [mem_div] using hs end group_with_zero section has_mul variables [has_mul α] [has_mul β] [mul_hom_class F α β] (m : F) {s t : set α} include α β @[to_additive] lemma image_mul : m '' (s * t) = m '' s * m '' t := image_image2_distrib $ map_mul m @[to_additive] lemma preimage_mul_preimage_subset {s t : set β} : m ⁻¹' s * m ⁻¹' t ⊆ m ⁻¹' (s * t) := by { rintro _ ⟨_, _, _, _, rfl⟩, exact ⟨_, _, ‹_›, ‹_›, (map_mul m _ _).symm ⟩ } end has_mul section group variables [group α] [division_monoid β] [monoid_hom_class F α β] (m : F) {s t : set α} include α β @[to_additive] lemma image_div : m '' (s / t) = m '' s / m '' t := image_image2_distrib $ map_div m @[to_additive] lemma preimage_div_preimage_subset {s t : set β} : m ⁻¹' s / m ⁻¹' t ⊆ m ⁻¹' (s / t) := by { rintro _ ⟨_, _, _, _, rfl⟩, exact ⟨_, _, ‹_›, ‹_›, (map_div m _ _).symm ⟩ } end group @[to_additive] lemma bdd_above_mul [ordered_comm_monoid α] {A B : set α} : bdd_above A → bdd_above B → bdd_above (A * B) := begin rintro ⟨bA, hbA⟩ ⟨bB, hbB⟩, use bA * bB, rintro x ⟨xa, xb, hxa, hxb, rfl⟩, exact mul_le_mul' (hbA hxa) (hbB hxb), end open_locale pointwise section big_operators open_locale big_operators variables {ι : Type*} [comm_monoid α] /-- The n-ary version of `set.mem_mul`. -/ @[to_additive /-" The n-ary version of `set.mem_add`. "-/] lemma mem_finset_prod (t : finset ι) (f : ι → set α) (a : α) : a ∈ ∏ i in t, f i ↔ ∃ (g : ι → α) (hg : ∀ {i}, i ∈ t → g i ∈ f i), ∏ i in t, g i = a := begin classical, induction t using finset.induction_on with i is hi ih generalizing a, { simp_rw [finset.prod_empty, set.mem_one], exact ⟨λ h, ⟨λ i, a, λ i, false.elim, h.symm⟩, λ ⟨f, _, hf⟩, hf.symm⟩ }, rw [finset.prod_insert hi, set.mem_mul], simp_rw [finset.prod_insert hi], simp_rw ih, split, { rintro ⟨x, y, hx, ⟨g, hg, rfl⟩, rfl⟩, refine ⟨function.update g i x, λ j hj, _, _⟩, obtain rfl | hj := finset.mem_insert.mp hj, { rw function.update_same, exact hx }, { rw update_noteq (ne_of_mem_of_not_mem hj hi), exact hg hj, }, rw [finset.prod_update_of_not_mem hi, function.update_same], }, { rintro ⟨g, hg, rfl⟩, exact ⟨g i, is.prod g, hg (is.mem_insert_self _), ⟨g, λ i hi, hg (finset.mem_insert_of_mem hi), rfl⟩, rfl⟩ }, end /-- A version of `set.mem_finset_prod` with a simpler RHS for products over a fintype. -/ @[to_additive /-" A version of `set.mem_finset_sum` with a simpler RHS for sums over a fintype. "-/] lemma mem_fintype_prod [fintype ι] (f : ι → set α) (a : α) : a ∈ ∏ i, f i ↔ ∃ (g : ι → α) (hg : ∀ i, g i ∈ f i), ∏ i, g i = a := by { rw mem_finset_prod, simp } /-- An n-ary version of `set.mul_mem_mul`. -/ @[to_additive /-" An n-ary version of `set.add_mem_add`. "-/] lemma list_prod_mem_list_prod (t : list ι) (f : ι → set α) (g : ι → α) (hg : ∀ i ∈ t, g i ∈ f i) : (t.map g).prod ∈ (t.map f).prod := begin induction t with h tl ih, { simp_rw [list.map_nil, list.prod_nil, set.mem_one] }, { simp_rw [list.map_cons, list.prod_cons], exact mul_mem_mul (hg h $ list.mem_cons_self _ _) (ih $ λ i hi, hg i $ list.mem_cons_of_mem _ hi) } end /-- An n-ary version of `set.mul_subset_mul`. -/ @[to_additive /-" An n-ary version of `set.add_subset_add`. "-/] lemma list_prod_subset_list_prod (t : list ι) (f₁ f₂ : ι → set α) (hf : ∀ i ∈ t, f₁ i ⊆ f₂ i) : (t.map f₁).prod ⊆ (t.map f₂).prod := begin induction t with h tl ih, { refl, }, { simp_rw [list.map_cons, list.prod_cons], exact mul_subset_mul (hf h $ list.mem_cons_self _ _) (ih $ λ i hi, hf i $ list.mem_cons_of_mem _ hi) } end @[to_additive] lemma list_prod_singleton {M : Type*} [comm_monoid M] (s : list M) : (s.map $ λ i, ({i} : set M)).prod = {s.prod} := (map_list_prod (singleton_monoid_hom : M →* set M) _).symm /-- An n-ary version of `set.mul_mem_mul`. -/ @[to_additive /-" An n-ary version of `set.add_mem_add`. "-/] lemma multiset_prod_mem_multiset_prod (t : multiset ι) (f : ι → set α) (g : ι → α) (hg : ∀ i ∈ t, g i ∈ f i) : (t.map g).prod ∈ (t.map f).prod := begin induction t using quotient.induction_on, simp_rw [multiset.quot_mk_to_coe, multiset.coe_map, multiset.coe_prod], exact list_prod_mem_list_prod _ _ _ hg, end /-- An n-ary version of `set.mul_subset_mul`. -/ @[to_additive /-" An n-ary version of `set.add_subset_add`. "-/] lemma multiset_prod_subset_multiset_prod (t : multiset ι) (f₁ f₂ : ι → set α) (hf : ∀ i ∈ t, f₁ i ⊆ f₂ i) : (t.map f₁).prod ⊆ (t.map f₂).prod := begin induction t using quotient.induction_on, simp_rw [multiset.quot_mk_to_coe, multiset.coe_map, multiset.coe_prod], exact list_prod_subset_list_prod _ _ _ hf, end @[to_additive] lemma multiset_prod_singleton {M : Type*} [comm_monoid M] (s : multiset M) : (s.map $ λ i, ({i} : set M)).prod = {s.prod} := (map_multiset_prod (singleton_monoid_hom : M →* set M) _).symm /-- An n-ary version of `set.mul_mem_mul`. -/ @[to_additive /-" An n-ary version of `set.add_mem_add`. "-/] lemma finset_prod_mem_finset_prod (t : finset ι) (f : ι → set α) (g : ι → α) (hg : ∀ i ∈ t, g i ∈ f i) : ∏ i in t, g i ∈ ∏ i in t, f i := multiset_prod_mem_multiset_prod _ _ _ hg /-- An n-ary version of `set.mul_subset_mul`. -/ @[to_additive /-" An n-ary version of `set.add_subset_add`. "-/] lemma finset_prod_subset_finset_prod (t : finset ι) (f₁ f₂ : ι → set α) (hf : ∀ i ∈ t, f₁ i ⊆ f₂ i) : ∏ i in t, f₁ i ⊆ ∏ i in t, f₂ i := multiset_prod_subset_multiset_prod _ _ _ hf @[to_additive] lemma finset_prod_singleton {M ι : Type*} [comm_monoid M] (s : finset ι) (I : ι → M) : ∏ (i : ι) in s, ({I i} : set M) = {∏ (i : ι) in s, I i} := (map_prod (singleton_monoid_hom : M →* set M) _ _).symm /-! TODO: define `decidable_mem_finset_prod` and `decidable_mem_finset_sum`. -/ end big_operators /-! ### Translation/scaling of sets -/ section smul /-- The dilation of set `x • s` is defined as `{x • y | y ∈ s}` in locale `pointwise`. -/ @[to_additive "The translation of set `x +ᵥ s` is defined as `{x +ᵥ y | y ∈ s}` in locale `pointwise`."] protected def has_smul_set [has_smul α β] : has_smul α (set β) := ⟨λ a, image (has_smul.smul a)⟩ /-- The pointwise scalar multiplication of sets `s • t` is defined as `{x • y | x ∈ s, y ∈ t}` in locale `pointwise`. -/ @[to_additive "The pointwise scalar addition of sets `s +ᵥ t` is defined as `{x +ᵥ y | x ∈ s, y ∈ t}` in locale `pointwise`."] protected def has_smul [has_smul α β] : has_smul (set α) (set β) := ⟨image2 has_smul.smul⟩ localized "attribute [instance] set.has_smul_set set.has_smul" in pointwise localized "attribute [instance] set.has_vadd_set set.has_vadd" in pointwise section has_smul variables {ι : Sort*} {κ : ι → Sort*} [has_smul α β] {s s₁ s₂ : set α} {t t₁ t₂ u : set β} {a : α} {b : β} @[simp, to_additive] lemma image2_smul : image2 has_smul.smul s t = s • t := rfl @[to_additive add_image_prod] lemma image_smul_prod : (λ x : α × β, x.fst • x.snd) '' s ×ˢ t = s • t := image_prod _ @[to_additive] lemma mem_smul : b ∈ s • t ↔ ∃ x y, x ∈ s ∧ y ∈ t ∧ x • y = b := iff.rfl @[to_additive] lemma smul_mem_smul : a ∈ s → b ∈ t → a • b ∈ s • t := mem_image2_of_mem @[simp, to_additive] lemma empty_smul : (∅ : set α) • t = ∅ := image2_empty_left @[simp, to_additive] lemma smul_empty : s • (∅ : set β) = ∅ := image2_empty_right @[simp, to_additive] lemma smul_eq_empty : s • t = ∅ ↔ s = ∅ ∨ t = ∅ := image2_eq_empty_iff @[simp, to_additive] lemma smul_nonempty : (s • t).nonempty ↔ s.nonempty ∧ t.nonempty := image2_nonempty_iff @[to_additive] lemma nonempty.smul : s.nonempty → t.nonempty → (s • t).nonempty := nonempty.image2 @[to_additive] lemma nonempty.of_smul_left : (s • t).nonempty → s.nonempty := nonempty.of_image2_left @[to_additive] lemma nonempty.of_smul_right : (s • t).nonempty → t.nonempty := nonempty.of_image2_right @[simp, to_additive] lemma smul_singleton : s • {b} = (• b) '' s := image2_singleton_right @[simp, to_additive] lemma singleton_smul : ({a} : set α) • t = a • t := image2_singleton_left @[simp, to_additive] lemma singleton_smul_singleton : ({a} : set α) • ({b} : set β) = {a • b} := image2_singleton @[to_additive, mono] lemma smul_subset_smul : s₁ ⊆ s₂ → t₁ ⊆ t₂ → s₁ • t₁ ⊆ s₂ • t₂ := image2_subset @[to_additive] lemma smul_subset_smul_left : t₁ ⊆ t₂ → s • t₁ ⊆ s • t₂ := image2_subset_left @[to_additive] lemma smul_subset_smul_right : s₁ ⊆ s₂ → s₁ • t ⊆ s₂ • t := image2_subset_right @[to_additive] lemma smul_subset_iff : s • t ⊆ u ↔ ∀ (a ∈ s) (b ∈ t), a • b ∈ u := image2_subset_iff attribute [mono] vadd_subset_vadd @[to_additive] lemma union_smul : (s₁ ∪ s₂) • t = s₁ • t ∪ s₂ • t := image2_union_left @[to_additive] lemma smul_union : s • (t₁ ∪ t₂) = s • t₁ ∪ s • t₂ := image2_union_right @[to_additive] lemma inter_smul_subset : (s₁ ∩ s₂) • t ⊆ s₁ • t ∩ s₂ • t := image2_inter_subset_left @[to_additive] lemma smul_inter_subset : s • (t₁ ∩ t₂) ⊆ s • t₁ ∩ s • t₂ := image2_inter_subset_right @[to_additive] lemma Union_smul_left_image : (⋃ a ∈ s, a • t) = s • t := Union_image_left _ @[to_additive] lemma Union_smul_right_image : (⋃ a ∈ t, (• a) '' s) = s • t := Union_image_right _ @[to_additive] lemma Union_smul (s : ι → set α) (t : set β) : (⋃ i, s i) • t = ⋃ i, s i • t := image2_Union_left _ _ _ @[to_additive] lemma smul_Union (s : set α) (t : ι → set β) : s • (⋃ i, t i) = ⋃ i, s • t i := image2_Union_right _ _ _ @[to_additive] lemma Union₂_smul (s : Π i, κ i → set α) (t : set β) : (⋃ i j, s i j) • t = ⋃ i j, s i j • t := image2_Union₂_left _ _ _ @[to_additive] lemma smul_Union₂ (s : set α) (t : Π i, κ i → set β) : s • (⋃ i j, t i j) = ⋃ i j, s • t i j := image2_Union₂_right _ _ _ @[to_additive] lemma Inter_smul_subset (s : ι → set α) (t : set β) : (⋂ i, s i) • t ⊆ ⋂ i, s i • t := image2_Inter_subset_left _ _ _ @[to_additive] lemma smul_Inter_subset (s : set α) (t : ι → set β) : s • (⋂ i, t i) ⊆ ⋂ i, s • t i := image2_Inter_subset_right _ _ _ @[to_additive] lemma Inter₂_smul_subset (s : Π i, κ i → set α) (t : set β) : (⋂ i j, s i j) • t ⊆ ⋂ i j, s i j • t := image2_Inter₂_subset_left _ _ _ @[to_additive] lemma smul_Inter₂_subset (s : set α) (t : Π i, κ i → set β) : s • (⋂ i j, t i j) ⊆ ⋂ i j, s • t i j := image2_Inter₂_subset_right _ _ _ @[to_additive] lemma finite.smul : s.finite → t.finite → (s • t).finite := finite.image2 _ @[simp, to_additive] lemma bUnion_smul_set (s : set α) (t : set β) : (⋃ a ∈ s, a • t) = s • t := Union_image_left _ end has_smul section has_smul_set variables {ι : Sort*} {κ : ι → Sort*} [has_smul α β] {s t t₁ t₂ : set β} {a : α} {b : β} {x y : β} @[simp, to_additive] lemma image_smul : (λ x, a • x) '' t = a • t := rfl @[to_additive] lemma mem_smul_set : x ∈ a • t ↔ ∃ y, y ∈ t ∧ a • y = x := iff.rfl @[to_additive] lemma smul_mem_smul_set : b ∈ s → a • b ∈ a • s := mem_image_of_mem _ @[simp, to_additive] lemma smul_set_empty : a • (∅ : set β) = ∅ := image_empty _ @[simp, to_additive] lemma smul_set_eq_empty : a • s = ∅ ↔ s = ∅ := image_eq_empty @[simp, to_additive] lemma smul_set_nonempty : (a • s).nonempty ↔ s.nonempty := nonempty_image_iff @[simp, to_additive] lemma smul_set_singleton : a • ({b} : set β) = {a • b} := image_singleton @[to_additive] lemma smul_set_mono : s ⊆ t → a • s ⊆ a • t := image_subset _ @[to_additive] lemma smul_set_subset_iff : a • s ⊆ t ↔ ∀ ⦃b⦄, b ∈ s → a • b ∈ t := image_subset_iff @[to_additive] lemma smul_set_union : a • (t₁ ∪ t₂) = a • t₁ ∪ a • t₂ := image_union _ _ _ @[to_additive] lemma smul_set_inter_subset : a • (t₁ ∩ t₂) ⊆ a • t₁ ∩ (a • t₂) := image_inter_subset _ _ _ @[to_additive] lemma smul_set_Union (a : α) (s : ι → set β) : a • (⋃ i, s i) = ⋃ i, a • s i := image_Union @[to_additive] lemma smul_set_Union₂ (a : α) (s : Π i, κ i → set β) : a • (⋃ i j, s i j) = ⋃ i j, a • s i j := image_Union₂ _ _ @[to_additive] lemma smul_set_Inter_subset (a : α) (t : ι → set β) : a • (⋂ i, t i) ⊆ ⋂ i, a • t i := image_Inter_subset _ _ @[to_additive] lemma smul_set_Inter₂_subset (a : α) (t : Π i, κ i → set β) : a • (⋂ i j, t i j) ⊆ ⋂ i j, a • t i j := image_Inter₂_subset _ _ @[to_additive] lemma nonempty.smul_set : s.nonempty → (a • s).nonempty := nonempty.image _ @[to_additive] lemma finite.smul_set : s.finite → (a • s).finite := finite.image _ end has_smul_set variables {s s₁ s₂ : set α} {t t₁ t₂ : set β} {a : α} {b : β} @[to_additive] lemma smul_set_inter [group α] [mul_action α β] {s t : set β} : a • (s ∩ t) = a • s ∩ a • t := (image_inter $ mul_action.injective a).symm lemma smul_set_inter₀ [group_with_zero α] [mul_action α β] {s t : set β} (ha : a ≠ 0) : a • (s ∩ t) = a • s ∩ a • t := show units.mk0 a ha • _ = _, from smul_set_inter @[simp, to_additive] lemma smul_set_univ [group α] [mul_action α β] {a : α} : a • (univ : set β) = univ := eq_univ_of_forall $ λ b, ⟨a⁻¹ • b, trivial, smul_inv_smul _ _⟩ @[simp, to_additive] lemma smul_univ [group α] [mul_action α β] {s : set α} (hs : s.nonempty) : s • (univ : set β) = univ := let ⟨a, ha⟩ := hs in eq_univ_of_forall $ λ b, ⟨a, a⁻¹ • b, ha, trivial, smul_inv_smul _ _⟩ @[to_additive] theorem range_smul_range {ι κ : Type*} [has_smul α β] (b : ι → α) (c : κ → β) : range b • range c = range (λ p : ι × κ, b p.1 • c p.2) := ext $ λ x, ⟨λ hx, let ⟨p, q, ⟨i, hi⟩, ⟨j, hj⟩, hpq⟩ := set.mem_smul.1 hx in ⟨(i, j), hpq ▸ hi ▸ hj ▸ rfl⟩, λ ⟨⟨i, j⟩, h⟩, set.mem_smul.2 ⟨b i, c j, ⟨i, rfl⟩, ⟨j, rfl⟩, h⟩⟩ @[to_additive] lemma smul_set_range [has_smul α β] {ι : Sort*} {f : ι → β} : a • range f = range (λ i, a • f i) := (range_comp _ _).symm @[to_additive] instance smul_comm_class_set [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] : smul_comm_class α β (set γ) := ⟨λ _ _, commute.set_image $ smul_comm _ _⟩ @[to_additive] instance smul_comm_class_set' [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] : smul_comm_class α (set β) (set γ) := ⟨λ _ _ _, image_image2_distrib_right $ smul_comm _⟩ @[to_additive] instance smul_comm_class_set'' [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] : smul_comm_class (set α) β (set γ) := by haveI := smul_comm_class.symm α β γ; exact smul_comm_class.symm _ _ _ @[to_additive] instance smul_comm_class [has_smul α γ] [has_smul β γ] [smul_comm_class α β γ] : smul_comm_class (set α) (set β) (set γ) := ⟨λ _ _ _, image2_left_comm smul_comm⟩ @[to_additive] instance is_scalar_tower [has_smul α β] [has_smul α γ] [has_smul β γ] [is_scalar_tower α β γ] : is_scalar_tower α β (set γ) := { smul_assoc := λ a b T, by simp only [←image_smul, image_image, smul_assoc] } @[to_additive] instance is_scalar_tower' [has_smul α β] [has_smul α γ] [has_smul β γ] [is_scalar_tower α β γ] : is_scalar_tower α (set β) (set γ) := ⟨λ _ _ _, image2_image_left_comm $ smul_assoc _⟩ @[to_additive] instance is_scalar_tower'' [has_smul α β] [has_smul α γ] [has_smul β γ] [is_scalar_tower α β γ] : is_scalar_tower (set α) (set β) (set γ) := { smul_assoc := λ T T' T'', image2_assoc smul_assoc } instance is_central_scalar [has_smul α β] [has_smul αᵐᵒᵖ β] [is_central_scalar α β] : is_central_scalar α (set β) := ⟨λ a S, congr_arg (λ f, f '' S) $ by exact funext (λ _, op_smul_eq_smul _ _)⟩ /-- A multiplicative action of a monoid `α` on a type `β` gives a multiplicative action of `set α` on `set β`. -/ @[to_additive "An additive action of an additive monoid `α` on a type `β` gives an additive action of `set α` on `set β`"] protected def mul_action [monoid α] [mul_action α β] : mul_action (set α) (set β) := { mul_smul := λ _ _ _, image2_assoc mul_smul, one_smul := λ s, image2_singleton_left.trans $ by simp_rw [one_smul, image_id'] } /-- A multiplicative action of a monoid on a type `β` gives a multiplicative action on `set β`. -/ @[to_additive "An additive action of an additive monoid on a type `β` gives an additive action on `set β`."] protected def mul_action_set [monoid α] [mul_action α β] : mul_action α (set β) := { mul_smul := by { intros, simp only [← image_smul, image_image, ← mul_smul] }, one_smul := by { intros, simp only [← image_smul, one_smul, image_id'] } } localized "attribute [instance] set.mul_action_set set.add_action_set set.mul_action set.add_action" in pointwise /-- A distributive multiplicative action of a monoid on an additive monoid `β` gives a distributive multiplicative action on `set β`. -/ protected def distrib_mul_action_set [monoid α] [add_monoid β] [distrib_mul_action α β] : distrib_mul_action α (set β) := { smul_add := λ _ _ _, image_image2_distrib $ smul_add _, smul_zero := λ _, image_singleton.trans $ by rw [smul_zero, singleton_zero] } /-- A multiplicative action of a monoid on a monoid `β` gives a multiplicative action on `set β`. -/ protected def mul_distrib_mul_action_set [monoid α] [monoid β] [mul_distrib_mul_action α β] : mul_distrib_mul_action α (set β) := { smul_mul := λ _ _ _, image_image2_distrib $ smul_mul' _, smul_one := λ _, image_singleton.trans $ by rw [smul_one, singleton_one] } localized "attribute [instance] set.distrib_mul_action_set set.mul_distrib_mul_action_set" in pointwise instance [has_zero α] [has_zero β] [has_smul α β] [no_zero_smul_divisors α β] : no_zero_smul_divisors (set α) (set β) := ⟨λ s t h, begin by_contra' H, have hst : (s • t).nonempty := h.symm.subst zero_nonempty, simp_rw [←hst.of_smul_left.subset_zero_iff, ←hst.of_smul_right.subset_zero_iff, not_subset, mem_zero] at H, obtain ⟨⟨a, hs, ha⟩, b, ht, hb⟩ := H, exact (eq_zero_or_eq_zero_of_smul_eq_zero $ h.subset $ smul_mem_smul hs ht).elim ha hb, end⟩ instance no_zero_smul_divisors_set [has_zero α] [has_zero β] [has_smul α β] [no_zero_smul_divisors α β] : no_zero_smul_divisors α (set β) := ⟨λ a s h, begin by_contra' H, have hst : (a • s).nonempty := h.symm.subst zero_nonempty, simp_rw [←hst.of_image.subset_zero_iff, not_subset, mem_zero] at H, obtain ⟨ha, b, ht, hb⟩ := H, exact (eq_zero_or_eq_zero_of_smul_eq_zero $ h.subset $ smul_mem_smul_set ht).elim ha hb, end⟩ instance [has_zero α] [has_mul α] [no_zero_divisors α] : no_zero_divisors (set α) := ⟨λ s t h, eq_zero_or_eq_zero_of_smul_eq_zero h⟩ end smul section vsub variables {ι : Sort*} {κ : ι → Sort*} [has_vsub α β] {s s₁ s₂ t t₁ t₂ : set β} {u : set α} {a : α} {b c : β} include α instance has_vsub : has_vsub (set α) (set β) := ⟨image2 (-ᵥ)⟩ @[simp] lemma image2_vsub : (image2 has_vsub.vsub s t : set α) = s -ᵥ t := rfl lemma image_vsub_prod : (λ x : β × β, x.fst -ᵥ x.snd) '' s ×ˢ t = s -ᵥ t := image_prod _ lemma mem_vsub : a ∈ s -ᵥ t ↔ ∃ x y, x ∈ s ∧ y ∈ t ∧ x -ᵥ y = a := iff.rfl lemma vsub_mem_vsub (hb : b ∈ s) (hc : c ∈ t) : b -ᵥ c ∈ s -ᵥ t := mem_image2_of_mem hb hc @[simp] lemma empty_vsub (t : set β) : ∅ -ᵥ t = ∅ := image2_empty_left @[simp] lemma vsub_empty (s : set β) : s -ᵥ ∅ = ∅ := image2_empty_right @[simp] lemma vsub_eq_empty : s -ᵥ t = ∅ ↔ s = ∅ ∨ t = ∅ := image2_eq_empty_iff @[simp] lemma vsub_nonempty : (s -ᵥ t : set α).nonempty ↔ s.nonempty ∧ t.nonempty := image2_nonempty_iff lemma nonempty.vsub : s.nonempty → t.nonempty → (s -ᵥ t : set α).nonempty := nonempty.image2 lemma nonempty.of_vsub_left : (s -ᵥ t :set α).nonempty → s.nonempty := nonempty.of_image2_left lemma nonempty.of_vsub_right : (s -ᵥ t : set α).nonempty → t.nonempty := nonempty.of_image2_right @[simp] lemma vsub_singleton (s : set β) (b : β) : s -ᵥ {b} = (-ᵥ b) '' s := image2_singleton_right @[simp] lemma singleton_vsub (t : set β) (b : β) : {b} -ᵥ t = ((-ᵥ) b) '' t := image2_singleton_left @[simp] lemma singleton_vsub_singleton : ({b} : set β) -ᵥ {c} = {b -ᵥ c} := image2_singleton @[mono] lemma vsub_subset_vsub : s₁ ⊆ s₂ → t₁ ⊆ t₂ → s₁ -ᵥ t₁ ⊆ s₂ -ᵥ t₂ := image2_subset lemma vsub_subset_vsub_left : t₁ ⊆ t₂ → s -ᵥ t₁ ⊆ s -ᵥ t₂ := image2_subset_left lemma vsub_subset_vsub_right : s₁ ⊆ s₂ → s₁ -ᵥ t ⊆ s₂ -ᵥ t := image2_subset_right lemma vsub_subset_iff : s -ᵥ t ⊆ u ↔ ∀ (x ∈ s) (y ∈ t), x -ᵥ y ∈ u := image2_subset_iff lemma vsub_self_mono (h : s ⊆ t) : s -ᵥ s ⊆ t -ᵥ t := vsub_subset_vsub h h lemma union_vsub : (s₁ ∪ s₂) -ᵥ t = s₁ -ᵥ t ∪ (s₂ -ᵥ t) := image2_union_left lemma vsub_union : s -ᵥ (t₁ ∪ t₂) = s -ᵥ t₁ ∪ (s -ᵥ t₂) := image2_union_right lemma inter_vsub_subset : s₁ ∩ s₂ -ᵥ t ⊆ (s₁ -ᵥ t) ∩ (s₂ -ᵥ t) := image2_inter_subset_left lemma vsub_inter_subset : s -ᵥ t₁ ∩ t₂ ⊆ (s -ᵥ t₁) ∩ (s -ᵥ t₂) := image2_inter_subset_right lemma Union_vsub_left_image : (⋃ a ∈ s, ((-ᵥ) a) '' t) = s -ᵥ t := Union_image_left _ lemma Union_vsub_right_image : (⋃ a ∈ t, (-ᵥ a) '' s) = s -ᵥ t := Union_image_right _ lemma Union_vsub (s : ι → set β) (t : set β) : (⋃ i, s i) -ᵥ t = ⋃ i, s i -ᵥ t := image2_Union_left _ _ _ lemma vsub_Union (s : set β) (t : ι → set β) : s -ᵥ (⋃ i, t i) = ⋃ i, s -ᵥ t i := image2_Union_right _ _ _ lemma Union₂_vsub (s : Π i, κ i → set β) (t : set β) : (⋃ i j, s i j) -ᵥ t = ⋃ i j, s i j -ᵥ t := image2_Union₂_left _ _ _ lemma vsub_Union₂ (s : set β) (t : Π i, κ i → set β) : s -ᵥ (⋃ i j, t i j) = ⋃ i j, s -ᵥ t i j := image2_Union₂_right _ _ _ lemma Inter_vsub_subset (s : ι → set β) (t : set β) : (⋂ i, s i) -ᵥ t ⊆ ⋂ i, s i -ᵥ t := image2_Inter_subset_left _ _ _ lemma vsub_Inter_subset (s : set β) (t : ι → set β) : s -ᵥ (⋂ i, t i) ⊆ ⋂ i, s -ᵥ t i := image2_Inter_subset_right _ _ _ lemma Inter₂_vsub_subset (s : Π i, κ i → set β) (t : set β) : (⋂ i j, s i j) -ᵥ t ⊆ ⋂ i j, s i j -ᵥ t := image2_Inter₂_subset_left _ _ _ lemma vsub_Inter₂_subset (s : set β) (t : Π i, κ i → set β) : s -ᵥ (⋂ i j, t i j) ⊆ ⋂ i j, s -ᵥ t i j := image2_Inter₂_subset_right _ _ _ lemma finite.vsub (hs : s.finite) (ht : t.finite) : set.finite (s -ᵥ t) := hs.image2 _ ht end vsub open_locale pointwise section ring variables [ring α] [add_comm_group β] [module α β] {s : set α} {t : set β} {a : α} @[simp] lemma neg_smul_set : -a • t = -(a • t) := by simp_rw [←image_smul, ←image_neg, image_image, neg_smul] @[simp] lemma smul_set_neg : a • -t = -(a • t) := by simp_rw [←image_smul, ←image_neg, image_image, smul_neg] @[simp] protected lemma neg_smul : -s • t = -(s • t) := by { simp_rw ←image_neg, exact image2_image_left_comm neg_smul } @[simp] protected lemma smul_neg : s • -t = -(s • t) := by { simp_rw ←image_neg, exact image_image2_right_comm smul_neg } end ring section smul_with_zero variables [has_zero α] [has_zero β] [smul_with_zero α β] {s : set α} {t : set β} /-! Note that we have neither `smul_with_zero α (set β)` nor `smul_with_zero (set α) (set β)` because `0 * ∅ ≠ 0`. -/ lemma smul_zero_subset (s : set α) : s • (0 : set β) ⊆ 0 := by simp [subset_def, mem_smul] lemma zero_smul_subset (t : set β) : (0 : set α) • t ⊆ 0 := by simp [subset_def, mem_smul] lemma nonempty.smul_zero (hs : s.nonempty) : s • (0 : set β) = 0 := s.smul_zero_subset.antisymm $ by simpa [mem_smul] using hs lemma nonempty.zero_smul (ht : t.nonempty) : (0 : set α) • t = 0 := t.zero_smul_subset.antisymm $ by simpa [mem_smul] using ht /-- A nonempty set is scaled by zero to the singleton set containing 0. -/ lemma zero_smul_set {s : set β} (h : s.nonempty) : (0 : α) • s = (0 : set β) := by simp only [← image_smul, image_eta, zero_smul, h.image_const, singleton_zero] lemma zero_smul_set_subset (s : set β) : (0 : α) • s ⊆ 0 := image_subset_iff.2 $ λ x _, zero_smul α x lemma subsingleton_zero_smul_set (s : set β) : ((0 : α) • s).subsingleton := subsingleton_singleton.mono $ zero_smul_set_subset s lemma zero_mem_smul_set {t : set β} {a : α} (h : (0 : β) ∈ t) : (0 : β) ∈ a • t := ⟨0, h, smul_zero' _ _⟩ variables [no_zero_smul_divisors α β] {a : α} lemma zero_mem_smul_iff : (0 : β) ∈ s • t ↔ (0 : α) ∈ s ∧ t.nonempty ∨ (0 : β) ∈ t ∧ s.nonempty := begin split, { rintro ⟨a, b, ha, hb, h⟩, obtain rfl | rfl := eq_zero_or_eq_zero_of_smul_eq_zero h, { exact or.inl ⟨ha, b, hb⟩ }, { exact or.inr ⟨hb, a, ha⟩ } }, { rintro (⟨hs, b, hb⟩ | ⟨ht, a, ha⟩), { exact ⟨0, b, hs, hb, zero_smul _ _⟩ }, { exact ⟨a, 0, ha, ht, smul_zero' _ _⟩ } } end lemma zero_mem_smul_set_iff (ha : a ≠ 0) : (0 : β) ∈ a • t ↔ (0 : β) ∈ t := begin refine ⟨_, zero_mem_smul_set⟩, rintro ⟨b, hb, h⟩, rwa (eq_zero_or_eq_zero_of_smul_eq_zero h).resolve_left ha at hb, end end smul_with_zero section left_cancel_semigroup variables [left_cancel_semigroup α] {s t : set α} @[to_additive] lemma pairwise_disjoint_smul_iff : s.pairwise_disjoint (• t) ↔ (s ×ˢ t).inj_on (λ p, p.1 * p.2) := pairwise_disjoint_image_right_iff $ λ _ _, mul_right_injective _ end left_cancel_semigroup section group variables [group α] [mul_action α β] {s t A B : set β} {a : α} {x : β} @[simp, to_additive] lemma smul_mem_smul_set_iff : a • x ∈ a • s ↔ x ∈ s := (mul_action.injective _).mem_set_image @[to_additive] lemma mem_smul_set_iff_inv_smul_mem : x ∈ a • A ↔ a⁻¹ • x ∈ A := show x ∈ mul_action.to_perm a '' A ↔ _, from mem_image_equiv @[to_additive] lemma mem_inv_smul_set_iff : x ∈ a⁻¹ • A ↔ a • x ∈ A := by simp only [← image_smul, mem_image, inv_smul_eq_iff, exists_eq_right] @[to_additive] lemma preimage_smul (a : α) (t : set β) : (λ x, a • x) ⁻¹' t = a⁻¹ • t := ((mul_action.to_perm a).symm.image_eq_preimage _).symm @[to_additive] lemma preimage_smul_inv (a : α) (t : set β) : (λ x, a⁻¹ • x) ⁻¹' t = a • t := preimage_smul (to_units a)⁻¹ t @[simp, to_additive] lemma set_smul_subset_set_smul_iff : a • A ⊆ a • B ↔ A ⊆ B := image_subset_image_iff $ mul_action.injective _ @[to_additive] lemma set_smul_subset_iff : a • A ⊆ B ↔ A ⊆ a⁻¹ • B := (image_subset_iff).trans $ iff_of_eq $ congr_arg _ $ preimage_equiv_eq_image_symm _ $ mul_action.to_perm _ @[to_additive] lemma subset_set_smul_iff : A ⊆ a • B ↔ a⁻¹ • A ⊆ B := iff.symm $ (image_subset_iff).trans $ iff.symm $ iff_of_eq $ congr_arg _ $ image_equiv_eq_preimage_symm _ $ mul_action.to_perm _ end group section group_with_zero variables [group_with_zero α] [mul_action α β] {s : set α} {a : α} @[simp] lemma smul_mem_smul_set_iff₀ (ha : a ≠ 0) (A : set β) (x : β) : a • x ∈ a • A ↔ x ∈ A := show units.mk0 a ha • _ ∈ _ ↔ _, from smul_mem_smul_set_iff lemma mem_smul_set_iff_inv_smul_mem₀ (ha : a ≠ 0) (A : set β) (x : β) : x ∈ a • A ↔ a⁻¹ • x ∈ A := show _ ∈ units.mk0 a ha • _ ↔ _, from mem_smul_set_iff_inv_smul_mem lemma mem_inv_smul_set_iff₀ (ha : a ≠ 0) (A : set β) (x : β) : x ∈ a⁻¹ • A ↔ a • x ∈ A := show _ ∈ (units.mk0 a ha)⁻¹ • _ ↔ _, from mem_inv_smul_set_iff lemma preimage_smul₀ (ha : a ≠ 0) (t : set β) : (λ x, a • x) ⁻¹' t = a⁻¹ • t := preimage_smul (units.mk0 a ha) t lemma preimage_smul_inv₀ (ha : a ≠ 0) (t : set β) : (λ x, a⁻¹ • x) ⁻¹' t = a • t := preimage_smul ((units.mk0 a ha)⁻¹) t @[simp] lemma set_smul_subset_set_smul_iff₀ (ha : a ≠ 0) {A B : set β} : a • A ⊆ a • B ↔ A ⊆ B := show units.mk0 a ha • _ ⊆ _ ↔ _, from set_smul_subset_set_smul_iff lemma set_smul_subset_iff₀ (ha : a ≠ 0) {A B : set β} : a • A ⊆ B ↔ A ⊆ a⁻¹ • B := show units.mk0 a ha • _ ⊆ _ ↔ _, from set_smul_subset_iff lemma subset_set_smul_iff₀ (ha : a ≠ 0) {A B : set β} : A ⊆ a • B ↔ a⁻¹ • A ⊆ B := show _ ⊆ units.mk0 a ha • _ ↔ _, from subset_set_smul_iff lemma smul_univ₀ (hs : ¬ s ⊆ 0) : s • (univ : set β) = univ := let ⟨a, ha, ha₀⟩ := not_subset.1 hs in eq_univ_of_forall $ λ b, ⟨a, a⁻¹ • b, ha, trivial, smul_inv_smul₀ ha₀ _⟩ lemma smul_set_univ₀ (ha : a ≠ 0) : a • (univ : set β) = univ := eq_univ_of_forall $ λ b, ⟨a⁻¹ • b, trivial, smul_inv_smul₀ ha _⟩ end group_with_zero end set /-! ### Miscellaneous -/ open set open_locale pointwise /-! Some lemmas about pointwise multiplication and submonoids. Ideally we put these in `group_theory.submonoid.basic`, but currently we cannot because that file is imported by this. -/ namespace submonoid variables {M : Type*} [monoid M] {s t u : set M} @[to_additive] lemma mul_subset {S : submonoid M} (hs : s ⊆ S) (ht : t ⊆ S) : s * t ⊆ S := by { rintro _ ⟨p, q, hp, hq, rfl⟩, exact submonoid.mul_mem _ (hs hp) (ht hq) } @[to_additive] lemma mul_subset_closure (hs : s ⊆ u) (ht : t ⊆ u) : s * t ⊆ submonoid.closure u := mul_subset (subset.trans hs submonoid.subset_closure) (subset.trans ht submonoid.subset_closure) @[to_additive] lemma coe_mul_self_eq (s : submonoid M) : (s : set M) * s = s := begin ext x, refine ⟨_, λ h, ⟨x, 1, h, s.one_mem, mul_one x⟩⟩, rintro ⟨a, b, ha, hb, rfl⟩, exact s.mul_mem ha hb end @[to_additive] lemma closure_mul_le (S T : set M) : closure (S * T) ≤ closure S ⊔ closure T := Inf_le $ λ x ⟨s, t, hs, ht, hx⟩, hx ▸ (closure S ⊔ closure T).mul_mem (set_like.le_def.mp le_sup_left $ subset_closure hs) (set_like.le_def.mp le_sup_right $ subset_closure ht) @[to_additive] lemma sup_eq_closure (H K : submonoid M) : H ⊔ K = closure (H * K) := le_antisymm (sup_le (λ h hh, subset_closure ⟨h, 1, hh, K.one_mem, mul_one h⟩) (λ k hk, subset_closure ⟨1, k, H.one_mem, hk, one_mul k⟩)) (by conv_rhs { rw [← closure_eq H, ← closure_eq K] }; apply closure_mul_le) @[to_additive] lemma pow_smul_mem_closure_smul {N : Type*} [comm_monoid N] [mul_action M N] [is_scalar_tower M N N] (r : M) (s : set N) {x : N} (hx : x ∈ closure s) : ∃ n : ℕ, r ^ n • x ∈ closure (r • s) := begin apply @closure_induction N _ s (λ (x : N), ∃ n : ℕ, r ^ n • x ∈ closure (r • s)) _ hx, { intros x hx, exact ⟨1, subset_closure ⟨_, hx, by rw pow_one⟩⟩ }, { exact ⟨0, by simpa using one_mem _⟩ }, { rintro x y ⟨nx, hx⟩ ⟨ny, hy⟩, use nx + ny, convert mul_mem hx hy, rw [pow_add, smul_mul_assoc, mul_smul, mul_comm, ← smul_mul_assoc, mul_comm] } end end submonoid namespace group lemma card_pow_eq_card_pow_card_univ_aux {f : ℕ → ℕ} (h1 : monotone f) {B : ℕ} (h2 : ∀ n, f n ≤ B) (h3 : ∀ n, f n = f (n + 1) → f (n + 1) = f (n + 2)) : ∀ k, B ≤ k → f k = f B := begin have key : ∃ n : ℕ, n ≤ B ∧ f n = f (n + 1), { contrapose! h2, suffices : ∀ n : ℕ, n ≤ B + 1 → n ≤ f n, { exact ⟨B + 1, this (B + 1) (le_refl (B + 1))⟩ }, exact λ n, nat.rec (λ h, nat.zero_le (f 0)) (λ n ih h, lt_of_le_of_lt (ih (n.le_succ.trans h)) (lt_of_le_of_ne (h1 n.le_succ) (h2 n (nat.succ_le_succ_iff.mp h)))) n }, { obtain ⟨n, hn1, hn2⟩ := key, replace key : ∀ k : ℕ, f (n + k) = f (n + k + 1) ∧ f (n + k) = f n := λ k, nat.rec ⟨hn2, rfl⟩ (λ k ih, ⟨h3 _ ih.1, ih.1.symm.trans ih.2⟩) k, replace key : ∀ k : ℕ, n ≤ k → f k = f n := λ k hk, (congr_arg f (add_tsub_cancel_of_le hk)).symm.trans (key (k - n)).2, exact λ k hk, (key k (hn1.trans hk)).trans (key B hn1).symm }, end variables {G : Type*} [group G] [fintype G] (S : set G) @[to_additive] lemma card_pow_eq_card_pow_card_univ [∀ (k : ℕ), decidable_pred (∈ (S ^ k))] : ∀ k, fintype.card G ≤ k → fintype.card ↥(S ^ k) = fintype.card ↥(S ^ (fintype.card G)) := begin have hG : 0 < fintype.card G := fintype.card_pos_iff.mpr ⟨1⟩, by_cases hS : S = ∅, { refine λ k hk, fintype.card_congr _, rw [hS, empty_pow (ne_of_gt (lt_of_lt_of_le hG hk)), empty_pow (ne_of_gt hG)] }, obtain ⟨a, ha⟩ := set.ne_empty_iff_nonempty.mp hS, classical!, have key : ∀ a (s t : set G), (∀ b : G, b ∈ s → a * b ∈ t) → fintype.card s ≤ fintype.card t, { refine λ a s t h, fintype.card_le_of_injective (λ ⟨b, hb⟩, ⟨a * b, h b hb⟩) _, rintro ⟨b, hb⟩ ⟨c, hc⟩ hbc, exact subtype.ext (mul_left_cancel (subtype.ext_iff.mp hbc)) }, have mono : monotone (λ n, fintype.card ↥(S ^ n) : ℕ → ℕ) := monotone_nat_of_le_succ (λ n, key a _ _ (λ b hb, set.mul_mem_mul ha hb)), convert card_pow_eq_card_pow_card_univ_aux mono (λ n, set_fintype_card_le_univ (S ^ n)) (λ n h, le_antisymm (mono (n + 1).le_succ) (key a⁻¹ _ _ _)), { simp only [finset.filter_congr_decidable, fintype.card_of_finset] }, replace h : {a} * S ^ n = S ^ (n + 1), { refine set.eq_of_subset_of_card_le _ (le_trans (ge_of_eq h) _), { exact mul_subset_mul (set.singleton_subset_iff.mpr ha) set.subset.rfl }, { convert key a (S ^ n) ({a} * S ^ n) (λ b hb, set.mul_mem_mul (set.mem_singleton a) hb) } }, rw [pow_succ', ←h, mul_assoc, ←pow_succ', h], rintro _ ⟨b, c, hb, hc, rfl⟩, rwa [set.mem_singleton_iff.mp hb, inv_mul_cancel_left], end end group