/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kyle Miller -/ import data.finset.sort import data.set.functor import data.finite.basic /-! # Finite sets This file defines predicates for finite and infinite sets and provides `fintype` instances for many set constructions. It also proves basic facts about finite sets and gives ways to manipulate `set.finite` expressions. ## Main definitions * `set.finite : set α → Prop` * `set.infinite : set α → Prop` * `set.to_finite` to prove `set.finite` for a `set` from a `finite` instance. * `set.finite.to_finset` to noncomputably produce a `finset` from a `set.finite` proof. (See `set.to_finset` for a computable version.) ## Implementation A finite set is defined to be a set whose coercion to a type has a `fintype` instance. Since `set.finite` is `Prop`-valued, this is the mere fact that the `fintype` instance exists. There are two components to finiteness constructions. The first is `fintype` instances for each construction. This gives a way to actually compute a `finset` that represents the set, and these may be accessed using `set.to_finset`. This gets the `finset` in the correct form, since otherwise `finset.univ : finset s` is a `finset` for the subtype for `s`. The second component is "constructors" for `set.finite` that give proofs that `fintype` instances exist classically given other `set.finite` proofs. Unlike the `fintype` instances, these *do not* use any decidability instances since they do not compute anything. ## Tags finite sets -/ open set function universes u v w x variables {α : Type u} {β : Type v} {ι : Sort w} {γ : Type x} namespace set /-- A set is finite if there is a `finset` with the same elements. This is represented as there being a `fintype` instance for the set coerced to a type. Note: this is a custom inductive type rather than `nonempty (fintype s)` so that it won't be frozen as a local instance. -/ @[protected] inductive finite (s : set α) : Prop | intro : fintype s → finite -- The `protected` attribute does not take effect within the same namespace block. end set namespace set lemma finite_def {s : set α} : s.finite ↔ nonempty (fintype s) := ⟨λ ⟨h⟩, ⟨h⟩, λ ⟨h⟩, ⟨h⟩⟩ alias finite_def ↔ finite.nonempty_fintype _ lemma finite_coe_iff {s : set α} : finite s ↔ s.finite := by rw [finite_iff_nonempty_fintype, finite_def] /-- Constructor for `set.finite` using a `finite` instance. -/ theorem to_finite (s : set α) [finite s] : s.finite := finite_coe_iff.mp ‹_› /-- Construct a `finite` instance for a `set` from a `finset` with the same elements. -/ protected lemma finite.of_finset {p : set α} (s : finset α) (H : ∀ x, x ∈ s ↔ x ∈ p) : p.finite := ⟨fintype.of_finset s H⟩ /-- Projection of `set.finite` to its `finite` instance. This is intended to be used with dot notation. See also `set.finite.fintype` and `set.finite.nonempty_fintype`. -/ protected lemma finite.to_subtype {s : set α} (h : s.finite) : finite s := finite_coe_iff.mpr h /-- A finite set coerced to a type is a `fintype`. This is the `fintype` projection for a `set.finite`. Note that because `finite` isn't a typeclass, this definition will not fire if it is made into an instance -/ noncomputable def finite.fintype {s : set α} (h : s.finite) : fintype s := h.nonempty_fintype.some /-- Using choice, get the `finset` that represents this `set.` -/ noncomputable def finite.to_finset {s : set α} (h : s.finite) : finset α := @set.to_finset _ _ h.fintype theorem finite.exists_finset {s : set α} (h : s.finite) : ∃ s' : finset α, ∀ a : α, a ∈ s' ↔ a ∈ s := by { casesI h, exact ⟨s.to_finset, λ _, mem_to_finset⟩ } theorem finite.exists_finset_coe {s : set α} (h : s.finite) : ∃ s' : finset α, ↑s' = s := by { casesI h, exact ⟨s.to_finset, s.coe_to_finset⟩ } /-- Finite sets can be lifted to finsets. -/ instance : can_lift (set α) (finset α) := { coe := coe, cond := set.finite, prf := λ s hs, hs.exists_finset_coe } /-- A set is infinite if it is not finite. This is protected so that it does not conflict with global `infinite`. -/ protected def infinite (s : set α) : Prop := ¬ s.finite @[simp] lemma not_infinite {s : set α} : ¬ s.infinite ↔ s.finite := not_not /-- See also `fintype_or_infinite`. -/ lemma finite_or_infinite {s : set α} : s.finite ∨ s.infinite := em _ /-! ### Basic properties of `set.finite.to_finset` -/ section finite_to_finset @[simp] lemma finite.coe_to_finset {s : set α} (h : s.finite) : (h.to_finset : set α) = s := @set.coe_to_finset _ s h.fintype @[simp] theorem finite.mem_to_finset {s : set α} (h : s.finite) {a : α} : a ∈ h.to_finset ↔ a ∈ s := @mem_to_finset _ _ h.fintype _ @[simp] theorem finite.nonempty_to_finset {s : set α} (h : s.finite) : h.to_finset.nonempty ↔ s.nonempty := by rw [← finset.coe_nonempty, finite.coe_to_finset] @[simp] lemma finite.coe_sort_to_finset {s : set α} (h : s.finite) : (h.to_finset : Type*) = s := by rw [← finset.coe_sort_coe _, h.coe_to_finset] @[simp] lemma finite_empty_to_finset (h : (∅ : set α).finite) : h.to_finset = ∅ := by rw [← finset.coe_inj, h.coe_to_finset, finset.coe_empty] @[simp] lemma finite.to_finset_inj {s t : set α} {hs : s.finite} {ht : t.finite} : hs.to_finset = ht.to_finset ↔ s = t := by simp only [←finset.coe_inj, finite.coe_to_finset] lemma subset_to_finset_iff {s : finset α} {t : set α} (ht : t.finite) : s ⊆ ht.to_finset ↔ ↑s ⊆ t := by rw [← finset.coe_subset, ht.coe_to_finset] @[simp] lemma finite_to_finset_eq_empty_iff {s : set α} {h : s.finite} : h.to_finset = ∅ ↔ s = ∅ := by simp only [←finset.coe_inj, finite.coe_to_finset, finset.coe_empty] @[simp, mono] lemma finite.to_finset_mono {s t : set α} {hs : s.finite} {ht : t.finite} : hs.to_finset ⊆ ht.to_finset ↔ s ⊆ t := by simp only [← finset.coe_subset, finite.coe_to_finset] @[simp, mono] lemma finite.to_finset_strict_mono {s t : set α} {hs : s.finite} {ht : t.finite} : hs.to_finset ⊂ ht.to_finset ↔ s ⊂ t := by simp only [← finset.coe_ssubset, finite.coe_to_finset] end finite_to_finset /-! ### Fintype instances Every instance here should have a corresponding `set.finite` constructor in the next section. -/ section fintype_instances instance fintype_univ [fintype α] : fintype (@univ α) := fintype.of_equiv α (equiv.set.univ α).symm /-- If `(set.univ : set α)` is finite then `α` is a finite type. -/ noncomputable def fintype_of_finite_univ (H : (univ : set α).finite) : fintype α := @fintype.of_equiv _ (univ : set α) H.fintype (equiv.set.univ _) instance fintype_union [decidable_eq α] (s t : set α) [fintype s] [fintype t] : fintype (s ∪ t : set α) := fintype.of_finset (s.to_finset ∪ t.to_finset) $ by simp instance fintype_sep (s : set α) (p : α → Prop) [fintype s] [decidable_pred p] : fintype ({a ∈ s | p a} : set α) := fintype.of_finset (s.to_finset.filter p) $ by simp instance fintype_inter (s t : set α) [decidable_eq α] [fintype s] [fintype t] : fintype (s ∩ t : set α) := fintype.of_finset (s.to_finset ∩ t.to_finset) $ by simp /-- A `fintype` instance for set intersection where the left set has a `fintype` instance. -/ instance fintype_inter_of_left (s t : set α) [fintype s] [decidable_pred (∈ t)] : fintype (s ∩ t : set α) := fintype.of_finset (s.to_finset.filter (∈ t)) $ by simp /-- A `fintype` instance for set intersection where the right set has a `fintype` instance. -/ instance fintype_inter_of_right (s t : set α) [fintype t] [decidable_pred (∈ s)] : fintype (s ∩ t : set α) := fintype.of_finset (t.to_finset.filter (∈ s)) $ by simp [and_comm] /-- A `fintype` structure on a set defines a `fintype` structure on its subset. -/ def fintype_subset (s : set α) {t : set α} [fintype s] [decidable_pred (∈ t)] (h : t ⊆ s) : fintype t := by { rw ← inter_eq_self_of_subset_right h, apply set.fintype_inter_of_left } instance fintype_diff [decidable_eq α] (s t : set α) [fintype s] [fintype t] : fintype (s \ t : set α) := fintype.of_finset (s.to_finset \ t.to_finset) $ by simp instance fintype_diff_left (s t : set α) [fintype s] [decidable_pred (∈ t)] : fintype (s \ t : set α) := set.fintype_sep s (∈ tᶜ) instance fintype_Union [decidable_eq α] [fintype (plift ι)] (f : ι → set α) [∀ i, fintype (f i)] : fintype (⋃ i, f i) := fintype.of_finset (finset.univ.bUnion (λ i : plift ι, (f i.down).to_finset)) $ by simp instance fintype_sUnion [decidable_eq α] {s : set (set α)} [fintype s] [H : ∀ (t : s), fintype (t : set α)] : fintype (⋃₀ s) := by { rw sUnion_eq_Union, exact @set.fintype_Union _ _ _ _ _ H } /-- A union of sets with `fintype` structure over a set with `fintype` structure has a `fintype` structure. -/ def fintype_bUnion [decidable_eq α] {ι : Type*} (s : set ι) [fintype s] (t : ι → set α) (H : ∀ i ∈ s, fintype (t i)) : fintype (⋃(x ∈ s), t x) := fintype.of_finset (s.to_finset.attach.bUnion (λ x, by { haveI := H x (by simpa using x.property), exact (t x).to_finset })) $ by simp instance fintype_bUnion' [decidable_eq α] {ι : Type*} (s : set ι) [fintype s] (t : ι → set α) [∀ i, fintype (t i)] : fintype (⋃(x ∈ s), t x) := fintype.of_finset (s.to_finset.bUnion (λ x, (t x).to_finset)) $ by simp /-- If `s : set α` is a set with `fintype` instance and `f : α → set β` is a function such that each `f a`, `a ∈ s`, has a `fintype` structure, then `s >>= f` has a `fintype` structure. -/ def fintype_bind {α β} [decidable_eq β] (s : set α) [fintype s] (f : α → set β) (H : ∀ a ∈ s, fintype (f a)) : fintype (s >>= f) := set.fintype_bUnion s f H instance fintype_bind' {α β} [decidable_eq β] (s : set α) [fintype s] (f : α → set β) [H : ∀ a, fintype (f a)] : fintype (s >>= f) := set.fintype_bUnion' s f instance fintype_empty : fintype (∅ : set α) := fintype.of_finset ∅ $ by simp instance fintype_singleton (a : α) : fintype ({a} : set α) := fintype.of_finset {a} $ by simp instance fintype_pure : ∀ a : α, fintype (pure a : set α) := set.fintype_singleton /-- A `fintype` instance for inserting an element into a `set` using the corresponding `insert` function on `finset`. This requires `decidable_eq α`. There is also `set.fintype_insert'` when `a ∈ s` is decidable. -/ instance fintype_insert (a : α) (s : set α) [decidable_eq α] [fintype s] : fintype (insert a s : set α) := fintype.of_finset (insert a s.to_finset) $ by simp /-- A `fintype` structure on `insert a s` when inserting a new element. -/ def fintype_insert_of_not_mem {a : α} (s : set α) [fintype s] (h : a ∉ s) : fintype (insert a s : set α) := fintype.of_finset ⟨a ::ₘ s.to_finset.1, s.to_finset.nodup.cons (by simp [h]) ⟩ $ by simp /-- A `fintype` structure on `insert a s` when inserting a pre-existing element. -/ def fintype_insert_of_mem {a : α} (s : set α) [fintype s] (h : a ∈ s) : fintype (insert a s : set α) := fintype.of_finset s.to_finset $ by simp [h] /-- The `set.fintype_insert` instance requires decidable equality, but when `a ∈ s` is decidable for this particular `a` we can still get a `fintype` instance by using `set.fintype_insert_of_not_mem` or `set.fintype_insert_of_mem`. This instance pre-dates `set.fintype_insert`, and it is less efficient. When `decidable_mem_of_fintype` is made a local instance, then this instance would override `set.fintype_insert` if not for the fact that its priority has been adjusted. See Note [lower instance priority]. -/ @[priority 100] instance fintype_insert' (a : α) (s : set α) [decidable $ a ∈ s] [fintype s] : fintype (insert a s : set α) := if h : a ∈ s then fintype_insert_of_mem s h else fintype_insert_of_not_mem s h instance fintype_image [decidable_eq β] (s : set α) (f : α → β) [fintype s] : fintype (f '' s) := fintype.of_finset (s.to_finset.image f) $ by simp /-- If a function `f` has a partial inverse and sends a set `s` to a set with `[fintype]` instance, then `s` has a `fintype` structure as well. -/ def fintype_of_fintype_image (s : set α) {f : α → β} {g} (I : is_partial_inv f g) [fintype (f '' s)] : fintype s := fintype.of_finset ⟨_, (f '' s).to_finset.2.filter_map g $ injective_of_partial_inv_right I⟩ $ λ a, begin suffices : (∃ b x, f x = b ∧ g b = some a ∧ x ∈ s) ↔ a ∈ s, by simpa [exists_and_distrib_left.symm, and.comm, and.left_comm, and.assoc], rw exists_swap, suffices : (∃ x, x ∈ s ∧ g (f x) = some a) ↔ a ∈ s, {simpa [and.comm, and.left_comm, and.assoc]}, simp [I _, (injective_of_partial_inv I).eq_iff] end instance fintype_range [decidable_eq α] (f : ι → α) [fintype (plift ι)] : fintype (range f) := fintype.of_finset (finset.univ.image $ f ∘ plift.down) $ by simp [equiv.plift.exists_congr_left] instance fintype_map {α β} [decidable_eq β] : ∀ (s : set α) (f : α → β) [fintype s], fintype (f <$> s) := set.fintype_image instance fintype_lt_nat (n : ℕ) : fintype {i | i < n} := fintype.of_finset (finset.range n) $ by simp instance fintype_le_nat (n : ℕ) : fintype {i | i ≤ n} := by simpa [nat.lt_succ_iff] using set.fintype_lt_nat (n+1) /-- This is not an instance so that it does not conflict with the one in src/order/locally_finite. -/ def nat.fintype_Iio (n : ℕ) : fintype (Iio n) := set.fintype_lt_nat n instance fintype_prod (s : set α) (t : set β) [fintype s] [fintype t] : fintype (s ×ˢ t : set (α × β)) := fintype.of_finset (s.to_finset ×ˢ t.to_finset) $ by simp /-- `image2 f s t` is `fintype` if `s` and `t` are. -/ instance fintype_image2 [decidable_eq γ] (f : α → β → γ) (s : set α) (t : set β) [hs : fintype s] [ht : fintype t] : fintype (image2 f s t : set γ) := by { rw ← image_prod, apply set.fintype_image } instance fintype_seq [decidable_eq β] (f : set (α → β)) (s : set α) [fintype f] [fintype s] : fintype (f.seq s) := by { rw seq_def, apply set.fintype_bUnion' } instance fintype_seq' {α β : Type u} [decidable_eq β] (f : set (α → β)) (s : set α) [fintype f] [fintype s] : fintype (f <*> s) := set.fintype_seq f s instance fintype_mem_finset (s : finset α) : fintype {a | a ∈ s} := finset.fintype_coe_sort s end fintype_instances end set /-! ### Finset -/ namespace finset /-- Gives a `set.finite` for the `finset` coerced to a `set`. This is a wrapper around `set.to_finite`. -/ lemma finite_to_set (s : finset α) : (s : set α).finite := set.to_finite _ @[simp] lemma finite_to_set_to_finset (s : finset α) : s.finite_to_set.to_finset = s := by { ext, rw [set.finite.mem_to_finset, mem_coe] } end finset namespace multiset lemma finite_to_set (s : multiset α) : {x | x ∈ s}.finite := by { classical, simpa only [← multiset.mem_to_finset] using s.to_finset.finite_to_set } @[simp] lemma finite_to_set_to_finset [decidable_eq α] (s : multiset α) : s.finite_to_set.to_finset = s.to_finset := by { ext x, simp } end multiset lemma list.finite_to_set (l : list α) : {x | x ∈ l}.finite := (show multiset α, from ⟦l⟧).finite_to_set /-! ### Finite instances There is seemingly some overlap between the following instances and the `fintype` instances in `data.set.finite`. While every `fintype` instance gives a `finite` instance, those instances that depend on `fintype` or `decidable` instances need an additional `finite` instance to be able to generally apply. Some set instances do not appear here since they are consequences of others, for example `subtype.finite` for subsets of a finite type. -/ namespace finite.set open_locale classical example {s : set α} [finite α] : finite s := infer_instance example : finite (∅ : set α) := infer_instance example (a : α) : finite ({a} : set α) := infer_instance instance finite_union (s t : set α) [finite s] [finite t] : finite (s ∪ t : set α) := by { casesI nonempty_fintype s, casesI nonempty_fintype t, apply_instance } instance finite_sep (s : set α) (p : α → Prop) [finite s] : finite ({a ∈ s | p a} : set α) := by { casesI nonempty_fintype s, apply_instance } protected lemma subset (s : set α) {t : set α} [finite s] (h : t ⊆ s) : finite t := by { rw eq_sep_of_subset h, apply_instance } instance finite_inter_of_right (s t : set α) [finite t] : finite (s ∩ t : set α) := finite.set.subset t (inter_subset_right s t) instance finite_inter_of_left (s t : set α) [finite s] : finite (s ∩ t : set α) := finite.set.subset s (inter_subset_left s t) instance finite_diff (s t : set α) [finite s] : finite (s \ t : set α) := finite.set.subset s (diff_subset s t) instance finite_range (f : ι → α) [finite ι] : finite (range f) := by { haveI := fintype.of_finite (plift ι), apply_instance } instance finite_Union [finite ι] (f : ι → set α) [∀ i, finite (f i)] : finite (⋃ i, f i) := begin rw [Union_eq_range_psigma], apply set.finite_range end instance finite_sUnion {s : set (set α)} [finite s] [H : ∀ (t : s), finite (t : set α)] : finite (⋃₀ s) := by { rw sUnion_eq_Union, exact @finite.set.finite_Union _ _ _ _ H } lemma finite_bUnion {ι : Type*} (s : set ι) [finite s] (t : ι → set α) (H : ∀ i ∈ s, finite (t i)) : finite (⋃(x ∈ s), t x) := begin rw [bUnion_eq_Union], haveI : ∀ (i : s), finite (t i) := λ i, H i i.property, apply_instance, end instance finite_bUnion' {ι : Type*} (s : set ι) [finite s] (t : ι → set α) [∀ i, finite (t i)] : finite (⋃(x ∈ s), t x) := finite_bUnion s t (λ i h, infer_instance) /-- Example: `finite (⋃ (i < n), f i)` where `f : ℕ → set α` and `[∀ i, finite (f i)]` (when given instances from `data.nat.interval`). -/ instance finite_bUnion'' {ι : Type*} (p : ι → Prop) [h : finite {x | p x}] (t : ι → set α) [∀ i, finite (t i)] : finite (⋃ x (h : p x), t x) := @finite.set.finite_bUnion' _ _ (set_of p) h t _ instance finite_Inter {ι : Sort*} [nonempty ι] (t : ι → set α) [∀ i, finite (t i)] : finite (⋂ i, t i) := finite.set.subset (t $ classical.arbitrary ι) (Inter_subset _ _) instance finite_insert (a : α) (s : set α) [finite s] : finite (insert a s : set α) := finite.set.finite_union {a} s instance finite_image (s : set α) (f : α → β) [finite s] : finite (f '' s) := by { casesI nonempty_fintype s, apply_instance } instance finite_replacement [finite α] (f : α → β) : finite {(f x) | (x : α)} := finite.set.finite_range f instance finite_prod (s : set α) (t : set β) [finite s] [finite t] : finite (s ×ˢ t : set (α × β)) := finite.of_equiv _ (equiv.set.prod s t).symm instance finite_image2 (f : α → β → γ) (s : set α) (t : set β) [finite s] [finite t] : finite (image2 f s t : set γ) := by { rw ← image_prod, apply_instance } instance finite_seq (f : set (α → β)) (s : set α) [finite f] [finite s] : finite (f.seq s) := by { rw seq_def, apply_instance } end finite.set namespace set /-! ### Constructors for `set.finite` Every constructor here should have a corresponding `fintype` instance in the previous section (or in the `fintype` module). The implementation of these constructors ideally should be no more than `set.to_finite`, after possibly setting up some `fintype` and classical `decidable` instances. -/ section set_finite_constructors @[nontriviality] lemma finite.of_subsingleton [subsingleton α] (s : set α) : s.finite := s.to_finite theorem finite_univ [finite α] : (@univ α).finite := set.to_finite _ theorem finite_univ_iff : (@univ α).finite ↔ finite α := finite_coe_iff.symm.trans (equiv.set.univ α).finite_iff alias finite_univ_iff ↔ _root_.finite.of_finite_univ _ theorem finite.union {s t : set α} (hs : s.finite) (ht : t.finite) : (s ∪ t).finite := by { casesI hs, casesI ht, apply to_finite } lemma finite.sup {s t : set α} : s.finite → t.finite → (s ⊔ t).finite := finite.union theorem finite.sep {s : set α} (hs : s.finite) (p : α → Prop) : {a ∈ s | p a}.finite := by { casesI hs, apply to_finite } theorem finite.inter_of_left {s : set α} (hs : s.finite) (t : set α) : (s ∩ t).finite := by { casesI hs, apply to_finite } theorem finite.inter_of_right {s : set α} (hs : s.finite) (t : set α) : (t ∩ s).finite := by { casesI hs, apply to_finite } theorem finite.inf_of_left {s : set α} (h : s.finite) (t : set α) : (s ⊓ t).finite := h.inter_of_left t theorem finite.inf_of_right {s : set α} (h : s.finite) (t : set α) : (t ⊓ s).finite := h.inter_of_right t theorem finite.subset {s : set α} (hs : s.finite) {t : set α} (ht : t ⊆ s) : t.finite := by { casesI hs, haveI := finite.set.subset _ ht, apply to_finite } theorem finite.diff {s : set α} (hs : s.finite) (t : set α) : (s \ t).finite := by { casesI hs, apply to_finite } theorem finite.of_diff {s t : set α} (hd : (s \ t).finite) (ht : t.finite) : s.finite := (hd.union ht).subset $ subset_diff_union _ _ theorem finite_Union [finite ι] {f : ι → set α} (H : ∀ i, (f i).finite) : (⋃ i, f i).finite := by { haveI := λ i, (H i).fintype, apply to_finite } theorem finite.sUnion {s : set (set α)} (hs : s.finite) (H : ∀ t ∈ s, set.finite t) : (⋃₀ s).finite := by { casesI hs, haveI := λ (i : s), (H i i.2).to_subtype, apply to_finite } theorem finite.bUnion {ι} {s : set ι} (hs : s.finite) {t : ι → set α} (ht : ∀ i ∈ s, (t i).finite) : (⋃(i ∈ s), t i).finite := by { classical, casesI hs, haveI := fintype_bUnion s t (λ i hi, (ht i hi).fintype), apply to_finite } /-- Dependent version of `finite.bUnion`. -/ theorem finite.bUnion' {ι} {s : set ι} (hs : s.finite) {t : Π (i ∈ s), set α} (ht : ∀ i ∈ s, (t i ‹_›).finite) : (⋃(i ∈ s), t i ‹_›).finite := by { casesI hs, rw [bUnion_eq_Union], apply finite_Union (λ (i : s), ht i.1 i.2), } theorem finite.sInter {α : Type*} {s : set (set α)} {t : set α} (ht : t ∈ s) (hf : t.finite) : (⋂₀ s).finite := hf.subset (sInter_subset_of_mem ht) theorem finite.bind {α β} {s : set α} {f : α → set β} (h : s.finite) (hf : ∀ a ∈ s, (f a).finite) : (s >>= f).finite := h.bUnion hf @[simp] theorem finite_empty : (∅ : set α).finite := to_finite _ @[simp] theorem finite_singleton (a : α) : ({a} : set α).finite := to_finite _ theorem finite_pure (a : α) : (pure a : set α).finite := to_finite _ @[simp] theorem finite.insert (a : α) {s : set α} (hs : s.finite) : (insert a s).finite := by { casesI hs, apply to_finite } theorem finite.image {s : set α} (f : α → β) (hs : s.finite) : (f '' s).finite := by { casesI hs, apply to_finite } theorem finite_range (f : ι → α) [finite ι] : (range f).finite := to_finite _ lemma finite.dependent_image {s : set α} (hs : s.finite) (F : Π i ∈ s, β) : {y : β | ∃ x (hx : x ∈ s), y = F x hx}.finite := by { casesI hs, simpa [range, eq_comm] using finite_range (λ x : s, F x x.2) } theorem finite.map {α β} {s : set α} : ∀ (f : α → β), s.finite → (f <$> s).finite := finite.image theorem finite.of_finite_image {s : set α} {f : α → β} (h : (f '' s).finite) (hi : set.inj_on f s) : s.finite := by { casesI h, exact ⟨fintype.of_injective (λ a, (⟨f a.1, mem_image_of_mem f a.2⟩ : f '' s)) (λ a b eq, subtype.eq $ hi a.2 b.2 $ subtype.ext_iff_val.1 eq)⟩ } theorem finite.of_preimage {f : α → β} {s : set β} (h : (f ⁻¹' s).finite) (hf : surjective f) : s.finite := hf.image_preimage s ▸ h.image _ theorem finite.preimage {s : set β} {f : α → β} (I : set.inj_on f (f⁻¹' s)) (h : s.finite) : (f ⁻¹' s).finite := (h.subset (image_preimage_subset f s)).of_finite_image I theorem finite.preimage_embedding {s : set β} (f : α ↪ β) (h : s.finite) : (f ⁻¹' s).finite := h.preimage (λ _ _ _ _ h', f.injective h') lemma finite_lt_nat (n : ℕ) : set.finite {i | i < n} := to_finite _ lemma finite_le_nat (n : ℕ) : set.finite {i | i ≤ n} := to_finite _ lemma finite.prod {s : set α} {t : set β} (hs : s.finite) (ht : t.finite) : (s ×ˢ t : set (α × β)).finite := by { casesI hs, casesI ht, apply to_finite } lemma finite.image2 (f : α → β → γ) {s : set α} {t : set β} (hs : s.finite) (ht : t.finite) : (image2 f s t).finite := by { casesI hs, casesI ht, apply to_finite } theorem finite.seq {f : set (α → β)} {s : set α} (hf : f.finite) (hs : s.finite) : (f.seq s).finite := by { classical, casesI hf, casesI hs, apply to_finite } theorem finite.seq' {α β : Type u} {f : set (α → β)} {s : set α} (hf : f.finite) (hs : s.finite) : (f <*> s).finite := hf.seq hs theorem finite_mem_finset (s : finset α) : {a | a ∈ s}.finite := to_finite _ lemma subsingleton.finite {s : set α} (h : s.subsingleton) : s.finite := h.induction_on finite_empty finite_singleton theorem exists_finite_iff_finset {p : set α → Prop} : (∃ s : set α, s.finite ∧ p s) ↔ ∃ s : finset α, p ↑s := ⟨λ ⟨s, hs, hps⟩, ⟨hs.to_finset, hs.coe_to_finset.symm ▸ hps⟩, λ ⟨s, hs⟩, ⟨s, s.finite_to_set, hs⟩⟩ /-- There are finitely many subsets of a given finite set -/ lemma finite.finite_subsets {α : Type u} {a : set α} (h : a.finite) : {b | b ⊆ a}.finite := ⟨fintype.of_finset ((finset.powerset h.to_finset).map finset.coe_emb.1) $ λ s, by simpa [← @exists_finite_iff_finset α (λ t, t ⊆ a ∧ t = s), subset_to_finset_iff, ← and.assoc] using h.subset⟩ /-- Finite product of finite sets is finite -/ lemma finite.pi {δ : Type*} [finite δ] {κ : δ → Type*} {t : Π d, set (κ d)} (ht : ∀ d, (t d).finite) : (pi univ t).finite := begin casesI nonempty_fintype δ, lift t to Π d, finset (κ d) using ht, classical, rw ← fintype.coe_pi_finset, apply finset.finite_to_set end /-- A finite union of finsets is finite. -/ lemma union_finset_finite_of_range_finite (f : α → finset β) (h : (range f).finite) : (⋃ a, (f a : set β)).finite := by { rw ← bUnion_range, exact h.bUnion (λ y hy, y.finite_to_set) } lemma finite_range_ite {p : α → Prop} [decidable_pred p] {f g : α → β} (hf : (range f).finite) (hg : (range g).finite) : (range (λ x, if p x then f x else g x)).finite := (hf.union hg).subset range_ite_subset lemma finite_range_const {c : β} : (range (λ x : α, c)).finite := (finite_singleton c).subset range_const_subset end set_finite_constructors /-! ### Properties -/ instance finite.inhabited : inhabited {s : set α // s.finite} := ⟨⟨∅, finite_empty⟩⟩ @[simp] lemma finite_union {s t : set α} : (s ∪ t).finite ↔ s.finite ∧ t.finite := ⟨λ h, ⟨h.subset (subset_union_left _ _), h.subset (subset_union_right _ _)⟩, λ ⟨hs, ht⟩, hs.union ht⟩ theorem finite_image_iff {s : set α} {f : α → β} (hi : inj_on f s) : (f '' s).finite ↔ s.finite := ⟨λ h, h.of_finite_image hi, finite.image _⟩ lemma univ_finite_iff_nonempty_fintype : (univ : set α).finite ↔ nonempty (fintype α) := ⟨λ h, ⟨fintype_of_finite_univ h⟩, λ ⟨_i⟩, by exactI finite_univ⟩ @[simp] lemma finite.to_finset_singleton {a : α} (ha : ({a} : set α).finite := finite_singleton _) : ha.to_finset = {a} := finset.ext $ by simp @[simp] lemma finite.to_finset_insert [decidable_eq α] {s : set α} {a : α} (hs : (insert a s).finite) : hs.to_finset = insert a (hs.subset $ subset_insert _ _).to_finset := finset.ext $ by simp lemma finite.to_finset_insert' [decidable_eq α] {a : α} {s : set α} (hs : s.finite) : (hs.insert a).to_finset = insert a hs.to_finset := finite.to_finset_insert _ lemma finite.fin_embedding {s : set α} (h : s.finite) : ∃ (n : ℕ) (f : fin n ↪ α), range f = s := ⟨_, (fintype.equiv_fin (h.to_finset : set α)).symm.as_embedding, by simp⟩ lemma finite.fin_param {s : set α} (h : s.finite) : ∃ (n : ℕ) (f : fin n → α), injective f ∧ range f = s := let ⟨n, f, hf⟩ := h.fin_embedding in ⟨n, f, f.injective, hf⟩ lemma finite_option {s : set (option α)} : s.finite ↔ {x : α | some x ∈ s}.finite := ⟨λ h, h.preimage_embedding embedding.some, λ h, ((h.image some).insert none).subset $ λ x, option.cases_on x (λ _, or.inl rfl) (λ x hx, or.inr $ mem_image_of_mem _ hx)⟩ lemma finite_image_fst_and_snd_iff {s : set (α × β)} : (prod.fst '' s).finite ∧ (prod.snd '' s).finite ↔ s.finite := ⟨λ h, (h.1.prod h.2).subset $ λ x h, ⟨mem_image_of_mem _ h, mem_image_of_mem _ h⟩, λ h, ⟨h.image _, h.image _⟩⟩ lemma forall_finite_image_eval_iff {δ : Type*} [finite δ] {κ : δ → Type*} {s : set (Π d, κ d)} : (∀ d, (eval d '' s).finite) ↔ s.finite := ⟨λ h, (finite.pi h).subset $ subset_pi_eval_image _ _, λ h d, h.image _⟩ lemma finite_subset_Union {s : set α} (hs : s.finite) {ι} {t : ι → set α} (h : s ⊆ ⋃ i, t i) : ∃ I : set ι, I.finite ∧ s ⊆ ⋃ i ∈ I, t i := begin casesI hs, choose f hf using show ∀ x : s, ∃ i, x.1 ∈ t i, {simpa [subset_def] using h}, refine ⟨range f, finite_range f, λ x hx, _⟩, rw [bUnion_range, mem_Union], exact ⟨⟨x, hx⟩, hf _⟩ end lemma eq_finite_Union_of_finite_subset_Union {ι} {s : ι → set α} {t : set α} (tfin : t.finite) (h : t ⊆ ⋃ i, s i) : ∃ I : set ι, I.finite ∧ ∃ σ : {i | i ∈ I} → set α, (∀ i, (σ i).finite) ∧ (∀ i, σ i ⊆ s i) ∧ t = ⋃ i, σ i := let ⟨I, Ifin, hI⟩ := finite_subset_Union tfin h in ⟨I, Ifin, λ x, s x ∩ t, λ i, tfin.subset (inter_subset_right _ _), λ i, inter_subset_left _ _, begin ext x, rw mem_Union, split, { intro x_in, rcases mem_Union.mp (hI x_in) with ⟨i, _, ⟨hi, rfl⟩, H⟩, use [i, hi, H, x_in] }, { rintros ⟨i, hi, H⟩, exact H } end⟩ @[elab_as_eliminator] theorem finite.induction_on {C : set α → Prop} {s : set α} (h : s.finite) (H0 : C ∅) (H1 : ∀ {a s}, a ∉ s → set.finite s → C s → C (insert a s)) : C s := begin lift s to finset α using h, induction s using finset.cons_induction_on with a s ha hs, { rwa [finset.coe_empty] }, { rw [finset.coe_cons], exact @H1 a s ha (set.to_finite _) hs } end /-- Analogous to `finset.induction_on'`. -/ @[elab_as_eliminator] theorem finite.induction_on' {C : set α → Prop} {S : set α} (h : S.finite) (H0 : C ∅) (H1 : ∀ {a s}, a ∈ S → s ⊆ S → a ∉ s → C s → C (insert a s)) : C S := begin refine @set.finite.induction_on α (λ s, s ⊆ S → C s) S h (λ _, H0) _ subset.rfl, intros a s has hsf hCs haS, rw insert_subset at haS, exact H1 haS.1 haS.2 has (hCs haS.2) end @[elab_as_eliminator] theorem finite.dinduction_on {C : ∀ (s : set α), s.finite → Prop} {s : set α} (h : s.finite) (H0 : C ∅ finite_empty) (H1 : ∀ {a s}, a ∉ s → ∀ h : set.finite s, C s h → C (insert a s) (h.insert a)) : C s h := have ∀ h : s.finite, C s h, from finite.induction_on h (λ h, H0) (λ a s has hs ih h, H1 has hs (ih _)), this h section local attribute [instance] nat.fintype_Iio /-- If `P` is some relation between terms of `γ` and sets in `γ`, such that every finite set `t : set γ` has some `c : γ` related to it, then there is a recursively defined sequence `u` in `γ` so `u n` is related to the image of `{0, 1, ..., n-1}` under `u`. (We use this later to show sequentially compact sets are totally bounded.) -/ lemma seq_of_forall_finite_exists {γ : Type*} {P : γ → set γ → Prop} (h : ∀ t : set γ, t.finite → ∃ c, P c t) : ∃ u : ℕ → γ, ∀ n, P (u n) (u '' Iio n) := ⟨λ n, @nat.strong_rec_on' (λ _, γ) n $ λ n ih, classical.some $ h (range $ λ m : Iio n, ih m.1 m.2) (finite_range _), λ n, begin classical, refine nat.strong_rec_on' n (λ n ih, _), rw nat.strong_rec_on_beta', convert classical.some_spec (h _ _), ext x, split, { rintros ⟨m, hmn, rfl⟩, exact ⟨⟨m, hmn⟩, rfl⟩ }, { rintros ⟨⟨m, hmn⟩, rfl⟩, exact ⟨m, hmn, rfl⟩ } end⟩ end /-! ### Cardinality -/ theorem empty_card : fintype.card (∅ : set α) = 0 := rfl @[simp] theorem empty_card' {h : fintype.{u} (∅ : set α)} : @fintype.card (∅ : set α) h = 0 := eq.trans (by congr) empty_card theorem card_fintype_insert_of_not_mem {a : α} (s : set α) [fintype s] (h : a ∉ s) : @fintype.card _ (fintype_insert_of_not_mem s h) = fintype.card s + 1 := by rw [fintype_insert_of_not_mem, fintype.card_of_finset]; simp [finset.card, to_finset]; refl @[simp] theorem card_insert {a : α} (s : set α) [fintype s] (h : a ∉ s) {d : fintype.{u} (insert a s : set α)} : @fintype.card _ d = fintype.card s + 1 := by rw ← card_fintype_insert_of_not_mem s h; congr lemma card_image_of_inj_on {s : set α} [fintype s] {f : α → β} [fintype (f '' s)] (H : ∀x∈s, ∀y∈s, f x = f y → x = y) : fintype.card (f '' s) = fintype.card s := by haveI := classical.prop_decidable; exact calc fintype.card (f '' s) = (s.to_finset.image f).card : fintype.card_of_finset' _ (by simp) ... = s.to_finset.card : finset.card_image_of_inj_on (λ x hx y hy hxy, H x (mem_to_finset.1 hx) y (mem_to_finset.1 hy) hxy) ... = fintype.card s : (fintype.card_of_finset' _ (λ a, mem_to_finset)).symm lemma card_image_of_injective (s : set α) [fintype s] {f : α → β} [fintype (f '' s)] (H : function.injective f) : fintype.card (f '' s) = fintype.card s := card_image_of_inj_on $ λ _ _ _ _ h, H h @[simp] theorem card_singleton (a : α) : fintype.card ({a} : set α) = 1 := fintype.card_of_subsingleton _ lemma card_lt_card {s t : set α} [fintype s] [fintype t] (h : s ⊂ t) : fintype.card s < fintype.card t := fintype.card_lt_of_injective_not_surjective (set.inclusion h.1) (set.inclusion_injective h.1) $ λ hst, (ssubset_iff_subset_ne.1 h).2 (eq_of_inclusion_surjective hst) lemma card_le_of_subset {s t : set α} [fintype s] [fintype t] (hsub : s ⊆ t) : fintype.card s ≤ fintype.card t := fintype.card_le_of_injective (set.inclusion hsub) (set.inclusion_injective hsub) lemma eq_of_subset_of_card_le {s t : set α} [fintype s] [fintype t] (hsub : s ⊆ t) (hcard : fintype.card t ≤ fintype.card s) : s = t := (eq_or_ssubset_of_subset hsub).elim id (λ h, absurd hcard $ not_le_of_lt $ card_lt_card h) lemma card_range_of_injective [fintype α] {f : α → β} (hf : injective f) [fintype (range f)] : fintype.card (range f) = fintype.card α := eq.symm $ fintype.card_congr $ equiv.of_injective f hf lemma finite.card_to_finset {s : set α} [fintype s] (h : s.finite) : h.to_finset.card = fintype.card s := begin rw [← finset.card_attach, finset.attach_eq_univ, ← fintype.card], refine fintype.card_congr (equiv.set_congr _), ext x, show x ∈ h.to_finset ↔ x ∈ s, simp, end lemma card_ne_eq [fintype α] (a : α) [fintype {x : α | x ≠ a}] : fintype.card {x : α | x ≠ a} = fintype.card α - 1 := begin haveI := classical.dec_eq α, rw [←to_finset_card, to_finset_ne_eq_erase, finset.card_erase_of_mem (finset.mem_univ _), finset.card_univ], end /-! ### Infinite sets -/ theorem infinite_univ_iff : (@univ α).infinite ↔ infinite α := by rw [set.infinite, finite_univ_iff, not_finite_iff_infinite] theorem infinite_univ [h : infinite α] : (@univ α).infinite := infinite_univ_iff.2 h theorem infinite_coe_iff {s : set α} : infinite s ↔ s.infinite := ⟨λ ⟨h₁⟩ h₂, h₁ h₂.fintype, λ h₁, ⟨λ h₂, h₁ ⟨h₂⟩⟩⟩ theorem infinite.to_subtype {s : set α} (h : s.infinite) : infinite s := infinite_coe_iff.2 h /-- Embedding of `ℕ` into an infinite set. -/ noncomputable def infinite.nat_embedding (s : set α) (h : s.infinite) : ℕ ↪ s := by { haveI := h.to_subtype, exact infinite.nat_embedding s } lemma infinite.exists_subset_card_eq {s : set α} (hs : s.infinite) (n : ℕ) : ∃ t : finset α, ↑t ⊆ s ∧ t.card = n := ⟨((finset.range n).map (hs.nat_embedding _)).map (embedding.subtype _), by simp⟩ lemma infinite.nonempty {s : set α} (h : s.infinite) : s.nonempty := let a := infinite.nat_embedding s h 37 in ⟨a.1, a.2⟩ lemma infinite_of_finite_compl [infinite α] {s : set α} (hs : sᶜ.finite) : s.infinite := λ h, set.infinite_univ (by simpa using hs.union h) lemma finite.infinite_compl [infinite α] {s : set α} (hs : s.finite) : sᶜ.infinite := λ h, set.infinite_univ (by simpa using hs.union h) protected theorem infinite.mono {s t : set α} (h : s ⊆ t) : s.infinite → t.infinite := mt (λ ht, ht.subset h) lemma infinite.diff {s t : set α} (hs : s.infinite) (ht : t.finite) : (s \ t).infinite := λ h, hs $ h.of_diff ht @[simp] lemma infinite_union {s t : set α} : (s ∪ t).infinite ↔ s.infinite ∨ t.infinite := by simp only [set.infinite, finite_union, not_and_distrib] theorem infinite_of_infinite_image (f : α → β) {s : set α} (hs : (f '' s).infinite) : s.infinite := mt (finite.image f) hs theorem infinite_image_iff {s : set α} {f : α → β} (hi : inj_on f s) : (f '' s).infinite ↔ s.infinite := not_congr $ finite_image_iff hi theorem infinite_of_inj_on_maps_to {s : set α} {t : set β} {f : α → β} (hi : inj_on f s) (hm : maps_to f s t) (hs : s.infinite) : t.infinite := ((infinite_image_iff hi).2 hs).mono (maps_to'.mp hm) theorem infinite.exists_ne_map_eq_of_maps_to {s : set α} {t : set β} {f : α → β} (hs : s.infinite) (hf : maps_to f s t) (ht : t.finite) : ∃ (x ∈ s) (y ∈ s), x ≠ y ∧ f x = f y := begin contrapose! ht, exact infinite_of_inj_on_maps_to (λ x hx y hy, not_imp_not.1 (ht x hx y hy)) hf hs end theorem infinite_range_of_injective [infinite α] {f : α → β} (hi : injective f) : (range f).infinite := by { rw [←image_univ, infinite_image_iff (inj_on_of_injective hi _)], exact infinite_univ } theorem infinite_of_injective_forall_mem [infinite α] {s : set β} {f : α → β} (hi : injective f) (hf : ∀ x : α, f x ∈ s) : s.infinite := by { rw ←range_subset_iff at hf, exact (infinite_range_of_injective hi).mono hf } lemma infinite.exists_nat_lt {s : set ℕ} (hs : s.infinite) (n : ℕ) : ∃ m ∈ s, n < m := let ⟨m, hm⟩ := (hs.diff $ set.finite_le_nat n).nonempty in ⟨m, by simpa using hm⟩ lemma infinite.exists_not_mem_finset {s : set α} (hs : s.infinite) (f : finset α) : ∃ a ∈ s, a ∉ f := let ⟨a, has, haf⟩ := (hs.diff (to_finite f)).nonempty in ⟨a, has, λ h, haf $ finset.mem_coe.1 h⟩ /-! ### Order properties -/ lemma finite_is_top (α : Type*) [partial_order α] : {x : α | is_top x}.finite := (subsingleton_is_top α).finite lemma finite_is_bot (α : Type*) [partial_order α] : {x : α | is_bot x}.finite := (subsingleton_is_bot α).finite theorem infinite.exists_lt_map_eq_of_maps_to [linear_order α] {s : set α} {t : set β} {f : α → β} (hs : s.infinite) (hf : maps_to f s t) (ht : t.finite) : ∃ (x ∈ s) (y ∈ s), x < y ∧ f x = f y := let ⟨x, hx, y, hy, hxy, hf⟩ := hs.exists_ne_map_eq_of_maps_to hf ht in hxy.lt_or_lt.elim (λ hxy, ⟨x, hx, y, hy, hxy, hf⟩) (λ hyx, ⟨y, hy, x, hx, hyx, hf.symm⟩) lemma finite.exists_lt_map_eq_of_range_subset [linear_order α] [infinite α] {t : set β} {f : α → β} (hf : range f ⊆ t) (ht : t.finite) : ∃ a b, a < b ∧ f a = f b := begin rw [range_subset_iff, ←maps_univ_to] at hf, obtain ⟨a, -, b, -, h⟩ := (@infinite_univ α _).exists_lt_map_eq_of_maps_to hf ht, exact ⟨a, b, h⟩, end lemma exists_min_image [linear_order β] (s : set α) (f : α → β) (h1 : s.finite) : s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f a ≤ f b | ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset] using h1.to_finset.exists_min_image f ⟨x, h1.mem_to_finset.2 hx⟩ lemma exists_max_image [linear_order β] (s : set α) (f : α → β) (h1 : s.finite) : s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f b ≤ f a | ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset] using h1.to_finset.exists_max_image f ⟨x, h1.mem_to_finset.2 hx⟩ theorem exists_lower_bound_image [hα : nonempty α] [linear_order β] (s : set α) (f : α → β) (h : s.finite) : ∃ (a : α), ∀ b ∈ s, f a ≤ f b := begin by_cases hs : set.nonempty s, { exact let ⟨x₀, H, hx₀⟩ := set.exists_min_image s f h hs in ⟨x₀, λ x hx, hx₀ x hx⟩ }, { exact nonempty.elim hα (λ a, ⟨a, λ x hx, absurd (set.nonempty_of_mem hx) hs⟩) } end theorem exists_upper_bound_image [hα : nonempty α] [linear_order β] (s : set α) (f : α → β) (h : s.finite) : ∃ (a : α), ∀ b ∈ s, f b ≤ f a := begin by_cases hs : set.nonempty s, { exact let ⟨x₀, H, hx₀⟩ := set.exists_max_image s f h hs in ⟨x₀, λ x hx, hx₀ x hx⟩ }, { exact nonempty.elim hα (λ a, ⟨a, λ x hx, absurd (set.nonempty_of_mem hx) hs⟩) } end lemma finite.supr_binfi_of_monotone {ι ι' α : Type*} [preorder ι'] [nonempty ι'] [is_directed ι' (≤)] [order.frame α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ i ∈ s, monotone (f i)) : (⨆ j, ⨅ i ∈ s, f i j) = ⨅ i ∈ s, ⨆ j, f i j := begin revert hf, refine hs.induction_on _ _, { intro hf, simp [supr_const] }, { intros a s has hs ihs hf, rw [ball_insert_iff] at hf, simp only [infi_insert, ← ihs hf.2], exact supr_inf_of_monotone hf.1 (λ j₁ j₂ hj, infi₂_mono $ λ i hi, hf.2 i hi hj) } end lemma finite.supr_binfi_of_antitone {ι ι' α : Type*} [preorder ι'] [nonempty ι'] [is_directed ι' (swap (≤))] [order.frame α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ i ∈ s, antitone (f i)) : (⨆ j, ⨅ i ∈ s, f i j) = ⨅ i ∈ s, ⨆ j, f i j := @finite.supr_binfi_of_monotone ι ι'ᵒᵈ α _ _ _ _ _ hs _ (λ i hi, (hf i hi).dual_left) lemma finite.infi_bsupr_of_monotone {ι ι' α : Type*} [preorder ι'] [nonempty ι'] [is_directed ι' (swap (≤))] [order.coframe α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ i ∈ s, monotone (f i)) : (⨅ j, ⨆ i ∈ s, f i j) = ⨆ i ∈ s, ⨅ j, f i j := hs.supr_binfi_of_antitone (λ i hi, (hf i hi).dual_right) lemma finite.infi_bsupr_of_antitone {ι ι' α : Type*} [preorder ι'] [nonempty ι'] [is_directed ι' (≤)] [order.coframe α] {s : set ι} (hs : s.finite) {f : ι → ι' → α} (hf : ∀ i ∈ s, antitone (f i)) : (⨅ j, ⨆ i ∈ s, f i j) = ⨆ i ∈ s, ⨅ j, f i j := hs.supr_binfi_of_monotone (λ i hi, (hf i hi).dual_right) lemma _root_.supr_infi_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι'] [is_directed ι' (≤)] [order.frame α] {f : ι → ι' → α} (hf : ∀ i, monotone (f i)) : (⨆ j, ⨅ i, f i j) = ⨅ i, ⨆ j, f i j := by simpa only [infi_univ] using finite_univ.supr_binfi_of_monotone (λ i hi, hf i) lemma _root_.supr_infi_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι'] [is_directed ι' (swap (≤))] [order.frame α] {f : ι → ι' → α} (hf : ∀ i, antitone (f i)) : (⨆ j, ⨅ i, f i j) = ⨅ i, ⨆ j, f i j := @supr_infi_of_monotone ι ι'ᵒᵈ α _ _ _ _ _ _ (λ i, (hf i).dual_left) lemma _root_.infi_supr_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι'] [is_directed ι' (swap (≤))] [order.coframe α] {f : ι → ι' → α} (hf : ∀ i, monotone (f i)) : (⨅ j, ⨆ i, f i j) = ⨆ i, ⨅ j, f i j := supr_infi_of_antitone (λ i, (hf i).dual_right) lemma _root_.infi_supr_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [nonempty ι'] [is_directed ι' (≤)] [order.coframe α] {f : ι → ι' → α} (hf : ∀ i, antitone (f i)) : (⨅ j, ⨆ i, f i j) = ⨆ i, ⨅ j, f i j := supr_infi_of_monotone (λ i, (hf i).dual_right) /-- An increasing union distributes over finite intersection. -/ lemma Union_Inter_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (≤)] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, monotone (s i)) : (⋃ j : ι', ⋂ i : ι, s i j) = ⋂ i : ι, ⋃ j : ι', s i j := supr_infi_of_monotone hs /-- A decreasing union distributes over finite intersection. -/ lemma Union_Inter_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (swap (≤))] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, antitone (s i)) : (⋃ j : ι', ⋂ i : ι, s i j) = ⋂ i : ι, ⋃ j : ι', s i j := supr_infi_of_antitone hs /-- An increasing intersection distributes over finite union. -/ lemma Inter_Union_of_monotone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (swap (≤))] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, monotone (s i)) : (⋂ j : ι', ⋃ i : ι, s i j) = ⋃ i : ι, ⋂ j : ι', s i j := infi_supr_of_monotone hs /-- A decreasing intersection distributes over finite union. -/ lemma Inter_Union_of_antitone {ι ι' α : Type*} [finite ι] [preorder ι'] [is_directed ι' (≤)] [nonempty ι'] {s : ι → ι' → set α} (hs : ∀ i, antitone (s i)) : (⋂ j : ι', ⋃ i : ι, s i j) = ⋃ i : ι, ⋂ j : ι', s i j := infi_supr_of_antitone hs lemma Union_pi_of_monotone {ι ι' : Type*} [linear_order ι'] [nonempty ι'] {α : ι → Type*} {I : set ι} {s : Π i, ι' → set (α i)} (hI : I.finite) (hs : ∀ i ∈ I, monotone (s i)) : (⋃ j : ι', I.pi (λ i, s i j)) = I.pi (λ i, ⋃ j, s i j) := begin simp only [pi_def, bInter_eq_Inter, preimage_Union], haveI := hI.fintype, exact Union_Inter_of_monotone (λ i j₁ j₂ h, preimage_mono $ hs i i.2 h) end lemma Union_univ_pi_of_monotone {ι ι' : Type*} [linear_order ι'] [nonempty ι'] [finite ι] {α : ι → Type*} {s : Π i, ι' → set (α i)} (hs : ∀ i, monotone (s i)) : (⋃ j : ι', pi univ (λ i, s i j)) = pi univ (λ i, ⋃ j, s i j) := Union_pi_of_monotone finite_univ (λ i _, hs i) lemma finite_range_find_greatest {P : α → ℕ → Prop} [∀ x, decidable_pred (P x)] {b : ℕ} : (range (λ x, nat.find_greatest (P x) b)).finite := (finite_le_nat b).subset $ range_subset_iff.2 $ λ x, nat.find_greatest_le _ lemma finite.exists_maximal_wrt [partial_order β] (f : α → β) (s : set α) (h : set.finite s) : s.nonempty → ∃ a ∈ s, ∀ a' ∈ s, f a ≤ f a' → f a = f a' := begin refine h.induction_on _ _, { exact λ h, absurd h empty_not_nonempty }, intros a s his _ ih _, cases s.eq_empty_or_nonempty with h h, { use a, simp [h] }, rcases ih h with ⟨b, hb, ih⟩, by_cases f b ≤ f a, { refine ⟨a, set.mem_insert _ _, λ c hc hac, le_antisymm hac _⟩, rcases set.mem_insert_iff.1 hc with rfl | hcs, { refl }, { rwa [← ih c hcs (le_trans h hac)] } }, { refine ⟨b, set.mem_insert_of_mem _ hb, λ c hc hbc, _⟩, rcases set.mem_insert_iff.1 hc with rfl | hcs, { exact (h hbc).elim }, { exact ih c hcs hbc } } end section variables [semilattice_sup α] [nonempty α] {s : set α} /--A finite set is bounded above.-/ protected lemma finite.bdd_above (hs : s.finite) : bdd_above s := finite.induction_on hs bdd_above_empty $ λ a s _ _ h, h.insert a /--A finite union of sets which are all bounded above is still bounded above.-/ lemma finite.bdd_above_bUnion {I : set β} {S : β → set α} (H : I.finite) : (bdd_above (⋃i∈I, S i)) ↔ (∀i ∈ I, bdd_above (S i)) := finite.induction_on H (by simp only [bUnion_empty, bdd_above_empty, ball_empty_iff]) (λ a s ha _ hs, by simp only [bUnion_insert, ball_insert_iff, bdd_above_union, hs]) lemma infinite_of_not_bdd_above : ¬ bdd_above s → s.infinite := begin contrapose!, rw not_infinite, apply finite.bdd_above, end end section variables [semilattice_inf α] [nonempty α] {s : set α} /--A finite set is bounded below.-/ protected lemma finite.bdd_below (hs : s.finite) : bdd_below s := @finite.bdd_above αᵒᵈ _ _ _ hs /--A finite union of sets which are all bounded below is still bounded below.-/ lemma finite.bdd_below_bUnion {I : set β} {S : β → set α} (H : I.finite) : bdd_below (⋃ i ∈ I, S i) ↔ ∀ i ∈ I, bdd_below (S i) := @finite.bdd_above_bUnion αᵒᵈ _ _ _ _ _ H lemma infinite_of_not_bdd_below : ¬ bdd_below s → s.infinite := begin contrapose!, rw not_infinite, apply finite.bdd_below, end end end set namespace finset /-- A finset is bounded above. -/ protected lemma bdd_above [semilattice_sup α] [nonempty α] (s : finset α) : bdd_above (↑s : set α) := s.finite_to_set.bdd_above /-- A finset is bounded below. -/ protected lemma bdd_below [semilattice_inf α] [nonempty α] (s : finset α) : bdd_below (↑s : set α) := s.finite_to_set.bdd_below end finset /-- If a set `s` does not contain any elements between any pair of elements `x, z ∈ s` with `x ≤ z` (i.e if given `x, y, z ∈ s` such that `x ≤ y ≤ z`, then `y` is either `x` or `z`), then `s` is finite. -/ lemma set.finite_of_forall_between_eq_endpoints {α : Type*} [linear_order α] (s : set α) (h : ∀ (x ∈ s) (y ∈ s) (z ∈ s), x ≤ y → y ≤ z → x = y ∨ y = z) : set.finite s := begin by_contra hinf, change s.infinite at hinf, rcases hinf.exists_subset_card_eq 3 with ⟨t, hts, ht⟩, let f := t.order_iso_of_fin ht, let x := f 0, let y := f 1, let z := f 2, have := h x (hts x.2) y (hts y.2) z (hts z.2) (f.monotone $ by dec_trivial) (f.monotone $ by dec_trivial), have key₁ : (0 : fin 3) ≠ 1 := by dec_trivial, have key₂ : (1 : fin 3) ≠ 2 := by dec_trivial, cases this, { dsimp only [x, y] at this, exact key₁ (f.injective $ subtype.coe_injective this) }, { dsimp only [y, z] at this, exact key₂ (f.injective $ subtype.coe_injective this) } end