/- Copyright (c) 2020 Riccardo Brasca. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Riccardo Brasca -/ import data.polynomial.algebra_map import data.polynomial.monic /-! # Polynomials that lift Given semirings `R` and `S` with a morphism `f : R →+* S`, we define a subsemiring `lifts` of `polynomial S` by the image of `ring_hom.of (map f)`. Then, we prove that a polynomial that lifts can always be lifted to a polynomial of the same degree and that a monic polynomial that lifts can be lifted to a monic polynomial (of the same degree). ## Main definition * `lifts (f : R →+* S)` : the subsemiring of polynomials that lift. ## Main results * `lifts_and_degree_eq` : A polynomial lifts if and only if it can be lifted to a polynomial of the same degree. * `lifts_and_degree_eq_and_monic` : A monic polynomial lifts if and only if it can be lifted to a monic polynomial of the same degree. * `lifts_iff_alg` : if `R` is commutative, a polynomial lifts if and only if it is in the image of `map_alg`, where `map_alg : R[X] →ₐ[R] S[X]` is the only `R`-algebra map that sends `X` to `X`. ## Implementation details In general `R` and `S` are semiring, so `lifts` is a semiring. In the case of rings, see `lifts_iff_lifts_ring`. Since we do not assume `R` to be commutative, we cannot say in general that the set of polynomials that lift is a subalgebra. (By `lift_iff` this is true if `R` is commutative.) -/ open_locale classical big_operators polynomial noncomputable theory namespace polynomial universes u v w section semiring variables {R : Type u} [semiring R] {S : Type v} [semiring S] {f : R →+* S} /-- We define the subsemiring of polynomials that lifts as the image of `ring_hom.of (map f)`. -/ def lifts (f : R →+* S) : subsemiring S[X] := ring_hom.srange (map_ring_hom f) lemma mem_lifts (p : S[X]) : p ∈ lifts f ↔ ∃ (q : R[X]), map f q = p := by simp only [coe_map_ring_hom, lifts, ring_hom.mem_srange] lemma lifts_iff_set_range (p : S[X]) : p ∈ lifts f ↔ p ∈ set.range (map f) := by simp only [coe_map_ring_hom, lifts, set.mem_range, ring_hom.mem_srange] lemma lifts_iff_ring_hom_srange (p : S[X]) : p ∈ lifts f ↔ p ∈ (map_ring_hom f).srange := by simp only [coe_map_ring_hom, lifts, set.mem_range, ring_hom.mem_srange] lemma lifts_iff_coeff_lifts (p : S[X]) : p ∈ lifts f ↔ ∀ (n : ℕ), p.coeff n ∈ set.range f := by { rw [lifts_iff_ring_hom_srange, mem_map_srange f], refl } /--If `(r : R)`, then `C (f r)` lifts. -/ lemma C_mem_lifts (f : R →+* S) (r : R) : (C (f r)) ∈ lifts f := ⟨C r, by simp only [coe_map_ring_hom, map_C, set.mem_univ, subsemiring.coe_top, eq_self_iff_true, and_self]⟩ /-- If `(s : S)` is in the image of `f`, then `C s` lifts. -/ lemma C'_mem_lifts {f : R →+* S} {s : S} (h : s ∈ set.range f) : (C s) ∈ lifts f := begin obtain ⟨r, rfl⟩ := set.mem_range.1 h, use C r, simp only [coe_map_ring_hom, map_C, set.mem_univ, subsemiring.coe_top, eq_self_iff_true, and_self] end /-- The polynomial `X` lifts. -/ lemma X_mem_lifts (f : R →+* S) : (X : S[X]) ∈ lifts f := ⟨X, by simp only [coe_map_ring_hom, set.mem_univ, subsemiring.coe_top, eq_self_iff_true, map_X, and_self]⟩ /-- The polynomial `X ^ n` lifts. -/ lemma X_pow_mem_lifts (f : R →+* S) (n : ℕ) : (X ^ n : S[X]) ∈ lifts f := ⟨X ^ n, by simp only [coe_map_ring_hom, map_pow, set.mem_univ, subsemiring.coe_top, eq_self_iff_true, map_X, and_self]⟩ /-- If `p` lifts and `(r : R)` then `r * p` lifts. -/ lemma base_mul_mem_lifts {p : S[X]} (r : R) (hp : p ∈ lifts f) : C (f r) * p ∈ lifts f := begin simp only [lifts, ring_hom.mem_srange] at hp ⊢, obtain ⟨p₁, rfl⟩ := hp, use C r * p₁, simp only [coe_map_ring_hom, map_C, map_mul] end /-- If `(s : S)` is in the image of `f`, then `monomial n s` lifts. -/ lemma monomial_mem_lifts {s : S} (n : ℕ) (h : s ∈ set.range f) : (monomial n s) ∈ lifts f := begin obtain ⟨r, rfl⟩ := set.mem_range.1 h, use monomial n r, simp only [coe_map_ring_hom, set.mem_univ, map_monomial, subsemiring.coe_top, eq_self_iff_true, and_self], end /-- If `p` lifts then `p.erase n` lifts. -/ lemma erase_mem_lifts {p : S[X]} (n : ℕ) (h : p ∈ lifts f) : p.erase n ∈ lifts f := begin rw [lifts_iff_ring_hom_srange, mem_map_srange] at h ⊢, intros k, by_cases hk : k = n, { use 0, simp only [hk, ring_hom.map_zero, erase_same] }, obtain ⟨i, hi⟩ := h k, use i, simp only [hi, hk, erase_ne, ne.def, not_false_iff], end section lift_deg lemma monomial_mem_lifts_and_degree_eq {s : S} {n : ℕ} (hl : monomial n s ∈ lifts f) : ∃ (q : R[X]), map f q = (monomial n s) ∧ q.degree = (monomial n s).degree := begin by_cases hzero : s = 0, { use 0, simp only [hzero, degree_zero, eq_self_iff_true, and_self, monomial_zero_right, polynomial.map_zero] }, rw lifts_iff_set_range at hl, obtain ⟨q, hq⟩ := hl, replace hq := (ext_iff.1 hq) n, have hcoeff : f (q.coeff n) = s, { simp [coeff_monomial] at hq, exact hq }, use (monomial n (q.coeff n)), split, { simp only [hcoeff, map_monomial] }, have hqzero : q.coeff n ≠ 0, { intro habs, simp only [habs, ring_hom.map_zero] at hcoeff, exact hzero hcoeff.symm }, repeat {rw monomial_eq_C_mul_X}, simp only [hzero, hqzero, ne.def, not_false_iff, degree_C_mul_X_pow], end /-- A polynomial lifts if and only if it can be lifted to a polynomial of the same degree. -/ lemma mem_lifts_and_degree_eq {p : S[X]} (hlifts : p ∈ lifts f) : ∃ (q : R[X]), map f q = p ∧ q.degree = p.degree := begin generalize' hd : p.nat_degree = d, revert hd p, apply nat.strong_induction_on d, intros n hn p hlifts hdeg, by_cases erase_zero : p.erase_lead = 0, { rw [← erase_lead_add_monomial_nat_degree_leading_coeff p, erase_zero, zero_add, leading_coeff], exact monomial_mem_lifts_and_degree_eq (monomial_mem_lifts p.nat_degree ((lifts_iff_coeff_lifts p).1 hlifts p.nat_degree)) }, have deg_erase := or.resolve_right (erase_lead_nat_degree_lt_or_erase_lead_eq_zero p) erase_zero, have pzero : p ≠ 0, { intro habs, exfalso, rw [habs, erase_lead_zero, eq_self_iff_true, not_true] at erase_zero, exact erase_zero }, have lead_zero : p.coeff p.nat_degree ≠ 0, { rw [← leading_coeff, ne.def, leading_coeff_eq_zero]; exact pzero }, obtain ⟨lead, hlead⟩ := monomial_mem_lifts_and_degree_eq (monomial_mem_lifts p.nat_degree ((lifts_iff_coeff_lifts p).1 hlifts p.nat_degree)), have deg_lead : lead.degree = p.nat_degree, { rw [hlead.2, monomial_eq_C_mul_X, degree_C_mul_X_pow p.nat_degree lead_zero] }, rw hdeg at deg_erase, obtain ⟨erase, herase⟩ := hn p.erase_lead.nat_degree deg_erase (erase_mem_lifts p.nat_degree hlifts) (refl p.erase_lead.nat_degree), use erase + lead, split, { simp only [hlead, herase, polynomial.map_add], nth_rewrite 0 erase_lead_add_monomial_nat_degree_leading_coeff p }, rw [←hdeg, erase_lead] at deg_erase, replace deg_erase := lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 deg_erase), rw [← deg_lead, ← herase.2] at deg_erase, rw [degree_add_eq_right_of_degree_lt deg_erase, deg_lead, degree_eq_nat_degree pzero] end end lift_deg section monic /-- A monic polynomial lifts if and only if it can be lifted to a monic polynomial of the same degree. -/ lemma lifts_and_degree_eq_and_monic [nontrivial S] {p : S[X]} (hlifts : p ∈ lifts f) (hp : p.monic) : ∃ (q : R[X]), map f q = p ∧ q.degree = p.degree ∧ q.monic := begin casesI subsingleton_or_nontrivial R with hR hR, { obtain ⟨q, hq⟩ := mem_lifts_and_degree_eq hlifts, exact ⟨q, hq.1, hq.2, monic_of_subsingleton _⟩ }, have H : erase p.nat_degree p + X ^ p.nat_degree = p, { simpa only [hp.leading_coeff, C_1, one_mul, erase_lead] using erase_lead_add_C_mul_X_pow p }, by_cases h0 : erase p.nat_degree p = 0, { rw [← H, h0, zero_add], refine ⟨X ^ p.nat_degree, _, _, monic_X_pow p.nat_degree⟩, { rw [polynomial.map_pow, map_X] }, { rw [degree_X_pow, degree_X_pow] } }, obtain ⟨q, hq⟩ := mem_lifts_and_degree_eq (erase_mem_lifts p.nat_degree hlifts), have hdeg : q.degree < (X ^ p.nat_degree).degree, { rw [@degree_X_pow R, hq.2, degree_eq_nat_degree h0, with_bot.coe_lt_coe], exact or.resolve_right (erase_lead_nat_degree_lt_or_erase_lead_eq_zero p) h0, }, refine ⟨q + X ^ p.nat_degree, _, _, (monic_X_pow _).add_of_right hdeg⟩, { rw [polynomial.map_add, hq.1, polynomial.map_pow, map_X, H], }, { rw [degree_add_eq_right_of_degree_lt hdeg, degree_X_pow, degree_eq_nat_degree hp.ne_zero] } end lemma lifts_and_nat_degree_eq_and_monic {p : S[X]} (hlifts : p ∈ lifts f) (hp : p.monic) : ∃ (q : R[X]), map f q = p ∧ q.nat_degree = p.nat_degree ∧ q.monic := begin casesI subsingleton_or_nontrivial S with hR hR, { obtain (rfl : p = 1) := subsingleton.elim _ _, refine ⟨1, subsingleton.elim _ _, by simp, by simp⟩ }, obtain ⟨p', h₁, h₂, h₃⟩ := lifts_and_degree_eq_and_monic hlifts hp, exact ⟨p', h₁, nat_degree_eq_of_degree_eq h₂, h₃⟩ end end monic end semiring section ring variables {R : Type u} [ring R] {S : Type v} [ring S] (f : R →+* S) /-- The subring of polynomials that lift. -/ def lifts_ring (f : R →+* S) : subring S[X] := ring_hom.range (map_ring_hom f) /-- If `R` and `S` are rings, `p` is in the subring of polynomials that lift if and only if it is in the subsemiring of polynomials that lift. -/ lemma lifts_iff_lifts_ring (p : S[X]) : p ∈ lifts f ↔ p ∈ lifts_ring f := by simp only [lifts, lifts_ring, ring_hom.mem_range, ring_hom.mem_srange] end ring section algebra variables {R : Type u} [comm_semiring R] {S : Type v} [semiring S] [algebra R S] /-- The map `polynomial R → S[X]` as an algebra homomorphism. -/ def map_alg (R : Type u) [comm_semiring R] (S : Type v) [semiring S] [algebra R S] : R[X] →ₐ[R] S[X] := @aeval _ S[X] _ _ _ (X : S[X]) /-- `map_alg` is the morphism induced by `R → S`. -/ lemma map_alg_eq_map (p : R[X]) : map_alg R S p = map (algebra_map R S) p := by simp only [map_alg, aeval_def, eval₂, map, algebra_map_apply, ring_hom.coe_comp] /-- A polynomial `p` lifts if and only if it is in the image of `map_alg`. -/ lemma mem_lifts_iff_mem_alg (R : Type u) [comm_semiring R] {S : Type v} [semiring S] [algebra R S] (p : S[X]) :p ∈ lifts (algebra_map R S) ↔ p ∈ (alg_hom.range (@map_alg R _ S _ _)) := by simp only [coe_map_ring_hom, lifts, map_alg_eq_map, alg_hom.mem_range, ring_hom.mem_srange] /-- If `p` lifts and `(r : R)` then `r • p` lifts. -/ lemma smul_mem_lifts {p : S[X]} (r : R) (hp : p ∈ lifts (algebra_map R S)) : r • p ∈ lifts (algebra_map R S) := by { rw mem_lifts_iff_mem_alg at hp ⊢, exact subalgebra.smul_mem (map_alg R S).range hp r } end algebra end polynomial