/- Copyright (c) 2020 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import ring_theory.polynomial.basic import ring_theory.ideal.local_ring import tactic.ring_exp /-! # Expand a polynomial by a factor of p, so `∑ aₙ xⁿ` becomes `∑ aₙ xⁿᵖ`. -/ universes u v w open_locale classical big_operators polynomial open finset namespace polynomial section comm_semiring variables (R : Type u) [comm_semiring R] {S : Type v} [comm_semiring S] (p q : ℕ) /-- Expand the polynomial by a factor of p, so `∑ aₙ xⁿ` becomes `∑ aₙ xⁿᵖ`. -/ noncomputable def expand : R[X] →ₐ[R] R[X] := { commutes' := λ r, eval₂_C _ _, .. (eval₂_ring_hom C (X ^ p) : R[X] →+* R[X]) } lemma coe_expand : (expand R p : R[X] → R[X]) = eval₂ C (X ^ p) := rfl variables {R} lemma expand_eq_sum {f : R[X]} : expand R p f = f.sum (λ e a, C a * (X ^ p) ^ e) := by { dsimp [expand, eval₂], refl, } @[simp] lemma expand_C (r : R) : expand R p (C r) = C r := eval₂_C _ _ @[simp] lemma expand_X : expand R p X = X ^ p := eval₂_X _ _ @[simp] lemma expand_monomial (r : R) : expand R p (monomial q r) = monomial (q * p) r := by simp_rw [monomial_eq_smul_X, alg_hom.map_smul, alg_hom.map_pow, expand_X, mul_comm, pow_mul] theorem expand_expand (f : R[X]) : expand R p (expand R q f) = expand R (p * q) f := polynomial.induction_on f (λ r, by simp_rw expand_C) (λ f g ihf ihg, by simp_rw [alg_hom.map_add, ihf, ihg]) (λ n r ih, by simp_rw [alg_hom.map_mul, expand_C, alg_hom.map_pow, expand_X, alg_hom.map_pow, expand_X, pow_mul]) theorem expand_mul (f : R[X]) : expand R (p * q) f = expand R p (expand R q f) := (expand_expand p q f).symm @[simp] theorem expand_zero (f : R[X]) : expand R 0 f = C (eval 1 f) := by simp [expand] @[simp] theorem expand_one (f : R[X]) : expand R 1 f = f := polynomial.induction_on f (λ r, by rw expand_C) (λ f g ihf ihg, by rw [alg_hom.map_add, ihf, ihg]) (λ n r ih, by rw [alg_hom.map_mul, expand_C, alg_hom.map_pow, expand_X, pow_one]) theorem expand_pow (f : R[X]) : expand R (p ^ q) f = (expand R p ^[q] f) := nat.rec_on q (by rw [pow_zero, expand_one, function.iterate_zero, id]) $ λ n ih, by rw [function.iterate_succ_apply', pow_succ, expand_mul, ih] theorem derivative_expand (f : R[X]) : (expand R p f).derivative = expand R p f.derivative * (p * X ^ (p - 1)) := by rw [coe_expand, derivative_eval₂_C, derivative_pow, derivative_X, mul_one] theorem coeff_expand {p : ℕ} (hp : 0 < p) (f : R[X]) (n : ℕ) : (expand R p f).coeff n = if p ∣ n then f.coeff (n / p) else 0 := begin simp only [expand_eq_sum], simp_rw [coeff_sum, ← pow_mul, C_mul_X_pow_eq_monomial, coeff_monomial, sum], split_ifs with h, { rw [finset.sum_eq_single (n/p), nat.mul_div_cancel' h, if_pos rfl], { intros b hb1 hb2, rw if_neg, intro hb3, apply hb2, rw [← hb3, nat.mul_div_cancel_left b hp] }, { intro hn, rw not_mem_support_iff.1 hn, split_ifs; refl } }, { rw finset.sum_eq_zero, intros k hk, rw if_neg, exact λ hkn, h ⟨k, hkn.symm⟩, }, end @[simp] theorem coeff_expand_mul {p : ℕ} (hp : 0 < p) (f : R[X]) (n : ℕ) : (expand R p f).coeff (n * p) = f.coeff n := by rw [coeff_expand hp, if_pos (dvd_mul_left _ _), nat.mul_div_cancel _ hp] @[simp] theorem coeff_expand_mul' {p : ℕ} (hp : 0 < p) (f : R[X]) (n : ℕ) : (expand R p f).coeff (p * n) = f.coeff n := by rw [mul_comm, coeff_expand_mul hp] theorem expand_inj {p : ℕ} (hp : 0 < p) {f g : R[X]} : expand R p f = expand R p g ↔ f = g := ⟨λ H, ext $ λ n, by rw [← coeff_expand_mul hp, H, coeff_expand_mul hp], congr_arg _⟩ theorem expand_eq_zero {p : ℕ} (hp : 0 < p) {f : R[X]} : expand R p f = 0 ↔ f = 0 := by rw [← (expand R p).map_zero, expand_inj hp, alg_hom.map_zero] theorem expand_eq_C {p : ℕ} (hp : 0 < p) {f : R[X]} {r : R} : expand R p f = C r ↔ f = C r := by rw [← expand_C, expand_inj hp, expand_C] theorem nat_degree_expand (p : ℕ) (f : R[X]) : (expand R p f).nat_degree = f.nat_degree * p := begin cases p.eq_zero_or_pos with hp hp, { rw [hp, coe_expand, pow_zero, mul_zero, ← C_1, eval₂_hom, nat_degree_C] }, by_cases hf : f = 0, { rw [hf, alg_hom.map_zero, nat_degree_zero, zero_mul] }, have hf1 : expand R p f ≠ 0 := mt (expand_eq_zero hp).1 hf, rw [← with_bot.coe_eq_coe, ← degree_eq_nat_degree hf1], refine le_antisymm ((degree_le_iff_coeff_zero _ _).2 $ λ n hn, _) _, { rw coeff_expand hp, split_ifs with hpn, { rw coeff_eq_zero_of_nat_degree_lt, contrapose! hn, rw [with_bot.coe_le_coe, ← nat.div_mul_cancel hpn], exact nat.mul_le_mul_right p hn }, { refl } }, { refine le_degree_of_ne_zero _, rw [coeff_expand_mul hp, ← leading_coeff], exact mt leading_coeff_eq_zero.1 hf } end lemma monic.expand {p : ℕ} {f : R[X]} (hp : 0 < p) (h : f.monic) : (expand R p f).monic := begin rw [monic.def, leading_coeff, nat_degree_expand, coeff_expand hp], simp [hp, h], end theorem map_expand {p : ℕ} {f : R →+* S} {q : R[X]} : map f (expand R p q) = expand S p (map f q) := begin by_cases hp : p = 0, { simp [hp] }, ext, rw [coeff_map, coeff_expand (nat.pos_of_ne_zero hp), coeff_expand (nat.pos_of_ne_zero hp)], split_ifs; simp, end /-- Expansion is injective. -/ lemma expand_injective {n : ℕ} (hn : 0 < n) : function.injective (expand R n) := λ g g' h, begin ext, have h' : (expand R n g).coeff (n * n_1) = (expand R n g').coeff (n * n_1) := begin apply polynomial.ext_iff.1, exact h, end, rw [polynomial.coeff_expand hn g (n * n_1), polynomial.coeff_expand hn g' (n * n_1)] at h', simp only [if_true, dvd_mul_right] at h', rw (nat.mul_div_right n_1 hn) at h', exact h', end @[simp] lemma expand_eval (p : ℕ) (P : R[X]) (r : R) : eval r (expand R p P) = eval (r ^ p) P := begin refine polynomial.induction_on P (λ a, by simp) (λ f g hf hg, _) (λ n a h, by simp), rw [alg_hom.map_add, eval_add, eval_add, hf, hg] end /-- The opposite of `expand`: sends `∑ aₙ xⁿᵖ` to `∑ aₙ xⁿ`. -/ noncomputable def contract (p : ℕ) (f : R[X]) : R[X] := ∑ n in range (f.nat_degree + 1), monomial n (f.coeff (n * p)) theorem coeff_contract {p : ℕ} (hp : p ≠ 0) (f : R[X]) (n : ℕ) : (contract p f).coeff n = f.coeff (n * p) := begin simp only [contract, coeff_monomial, sum_ite_eq', finset_sum_coeff, mem_range, not_lt, ite_eq_left_iff], assume hn, apply (coeff_eq_zero_of_nat_degree_lt _).symm, calc f.nat_degree < f.nat_degree + 1 : nat.lt_succ_self _ ... ≤ n * 1 : by simpa only [mul_one] using hn ... ≤ n * p : mul_le_mul_of_nonneg_left (show 1 ≤ p, from hp.bot_lt) (zero_le n) end theorem contract_expand {f : R[X]} (hp : p ≠ 0) : contract p (expand R p f) = f := begin ext, simp [coeff_contract hp, coeff_expand hp.bot_lt, nat.mul_div_cancel _ hp.bot_lt] end section char_p variable [char_p R p] theorem expand_contract [no_zero_divisors R] {f : R[X]} (hf : f.derivative = 0) (hp : p ≠ 0) : expand R p (contract p f) = f := begin ext n, rw [coeff_expand hp.bot_lt, coeff_contract hp], split_ifs with h, { rw nat.div_mul_cancel h }, { cases n, { exact absurd (dvd_zero p) h }, have := coeff_derivative f n, rw [hf, coeff_zero, zero_eq_mul] at this, cases this, { rw this }, rw [← nat.cast_succ, char_p.cast_eq_zero_iff R p] at this, exact absurd this h } end variable [hp : fact p.prime] include hp theorem expand_char (f : R[X]) : map (frobenius R p) (expand R p f) = f ^ p := begin refine f.induction_on' (λ a b ha hb, _) (λ n a, _), { rw [alg_hom.map_add, polynomial.map_add, ha, hb, add_pow_char], }, { rw [expand_monomial, map_monomial, monomial_eq_C_mul_X, monomial_eq_C_mul_X, mul_pow, ← C.map_pow, frobenius_def], ring_exp } end theorem map_expand_pow_char (f : R[X]) (n : ℕ) : map ((frobenius R p) ^ n) (expand R (p ^ n) f) = f ^ (p ^ n) := begin induction n, { simp [ring_hom.one_def] }, symmetry, rw [pow_succ', pow_mul, ← n_ih, ← expand_char, pow_succ, ring_hom.mul_def, ← map_map, mul_comm, expand_mul, ← map_expand] end end char_p end comm_semiring section is_domain variables (R : Type u) [comm_ring R] [is_domain R] theorem is_local_ring_hom_expand {p : ℕ} (hp : 0 < p) : is_local_ring_hom (↑(expand R p) : R[X] →+* R[X]) := begin refine ⟨λ f hf1, _⟩, rw ← coe_fn_coe_base at hf1, have hf2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit hf1), rw [coeff_expand hp, if_pos (dvd_zero _), p.zero_div] at hf2, rw [hf2, is_unit_C] at hf1, rw expand_eq_C hp at hf2, rwa [hf2, is_unit_C] end variable {R} theorem of_irreducible_expand {p : ℕ} (hp : p ≠ 0) {f : R[X]} (hf : irreducible (expand R p f)) : irreducible f := let _ := is_local_ring_hom_expand R hp.bot_lt in by exactI of_irreducible_map ↑(expand R p) hf theorem of_irreducible_expand_pow {p : ℕ} (hp : p ≠ 0) {f : R[X]} {n : ℕ} : irreducible (expand R (p ^ n) f) → irreducible f := nat.rec_on n (λ hf, by rwa [pow_zero, expand_one] at hf) $ λ n ih hf, ih $ of_irreducible_expand hp $ by { rw pow_succ at hf, rwa [expand_expand] } end is_domain end polynomial