/- Copyright (c) 2021 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey -/ import algebra.periodic import data.nat.count import data.nat.interval /-! # Periodic Functions on ℕ This file identifies a few functions on `ℕ` which are periodic, and also proves a lemma about periodic predicates which helps determine their cardinality when filtering intervals over them. -/ namespace nat open nat function lemma periodic_gcd (a : ℕ) : periodic (gcd a) a := by simp only [forall_const, gcd_add_self_right, eq_self_iff_true, periodic] lemma periodic_coprime (a : ℕ) : periodic (coprime a) a := by simp only [coprime_add_self_right, forall_const, iff_self, eq_iff_iff, periodic] lemma periodic_mod (a : ℕ) : periodic (λ n, n % a) a := by simp only [forall_const, eq_self_iff_true, add_mod_right, periodic] lemma _root_.function.periodic.map_mod_nat {α : Type*} {f : ℕ → α} {a : ℕ} (hf : periodic f a) : ∀ n, f (n % a) = f n := λ n, by conv_rhs { rw [← nat.mod_add_div n a, mul_comm, ← nat.nsmul_eq_mul, hf.nsmul] } section multiset open multiset /-- An interval of length `a` filtered over a periodic predicate of period `a` has cardinality equal to the number naturals below `a` for which `p a` is true. -/ lemma filter_multiset_Ico_card_eq_of_periodic (n a : ℕ) (p : ℕ → Prop) [decidable_pred p] (pp : periodic p a) : (filter p (Ico n (n+a))).card = a.count p := begin rw [count_eq_card_filter_range, finset.card, finset.filter_val, finset.range_coe, ←multiset_Ico_map_mod n, ←map_count_true_eq_filter_card, ←map_count_true_eq_filter_card, map_map, function.comp], simp only [pp.map_mod_nat], end end multiset section finset open finset /-- An interval of length `a` filtered over a periodic predicate of period `a` has cardinality equal to the number naturals below `a` for which `p a` is true. -/ lemma filter_Ico_card_eq_of_periodic (n a : ℕ) (p : ℕ → Prop) [decidable_pred p] (pp : periodic p a) : ((Ico n (n + a)).filter p).card = a.count p := filter_multiset_Ico_card_eq_of_periodic n a p pp end finset end nat