/- Copyright (c) 2019 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Benjamin Davidson -/ import data.nat.modeq import algebra.parity /-! # Parity of natural numbers This file contains theorems about the `even` and `odd` predicates on the natural numbers. ## Tags even, odd -/ namespace nat variables {m n : ℕ} @[simp] theorem mod_two_ne_one : ¬ n % 2 = 1 ↔ n % 2 = 0 := by cases mod_two_eq_zero_or_one n with h h; simp [h] @[simp] theorem mod_two_ne_zero : ¬ n % 2 = 0 ↔ n % 2 = 1 := by cases mod_two_eq_zero_or_one n with h h; simp [h] theorem even_iff : even n ↔ n % 2 = 0 := ⟨λ ⟨m, hm⟩, by simp [← two_mul, hm], λ h, ⟨n / 2, (mod_add_div n 2).symm.trans (by simp [← two_mul, h])⟩⟩ theorem odd_iff : odd n ↔ n % 2 = 1 := ⟨λ ⟨m, hm⟩, by norm_num [hm, add_mod], λ h, ⟨n / 2, (mod_add_div n 2).symm.trans (by rw [h, add_comm])⟩⟩ lemma not_even_iff : ¬ even n ↔ n % 2 = 1 := by rw [even_iff, mod_two_ne_zero] lemma not_odd_iff : ¬ odd n ↔ n % 2 = 0 := by rw [odd_iff, mod_two_ne_one] lemma even_iff_not_odd : even n ↔ ¬ odd n := by rw [not_odd_iff, even_iff] @[simp] lemma odd_iff_not_even : odd n ↔ ¬ even n := by rw [not_even_iff, odd_iff] lemma is_compl_even_odd : is_compl {n : ℕ | even n} {n | odd n} := by simp only [←set.compl_set_of, is_compl_compl, odd_iff_not_even] lemma even_or_odd (n : ℕ) : even n ∨ odd n := or.imp_right odd_iff_not_even.2 $ em $ even n lemma even_or_odd' (n : ℕ) : ∃ k, n = 2 * k ∨ n = 2 * k + 1 := by simpa only [← two_mul, exists_or_distrib, ← odd, ← even] using even_or_odd n lemma even_xor_odd (n : ℕ) : xor (even n) (odd n) := begin cases even_or_odd n with h, { exact or.inl ⟨h, even_iff_not_odd.mp h⟩ }, { exact or.inr ⟨h, odd_iff_not_even.mp h⟩ }, end lemma even_xor_odd' (n : ℕ) : ∃ k, xor (n = 2 * k) (n = 2 * k + 1) := begin rcases even_or_odd n with ⟨k, rfl⟩ | ⟨k, rfl⟩; use k, { simpa only [← two_mul, xor, true_and, eq_self_iff_true, not_true, or_false, and_false] using (succ_ne_self (2*k)).symm }, { simp only [xor, add_right_eq_self, false_or, eq_self_iff_true, not_true, not_false_iff, one_ne_zero, and_self] }, end @[simp] theorem two_dvd_ne_zero : ¬ 2 ∣ n ↔ n % 2 = 1 := even_iff_two_dvd.symm.not.trans not_even_iff instance : decidable_pred (even : ℕ → Prop) := λ n, decidable_of_iff _ even_iff.symm instance : decidable_pred (odd : ℕ → Prop) := λ n, decidable_of_iff _ odd_iff_not_even.symm mk_simp_attribute parity_simps "Simp attribute for lemmas about `even`" @[simp] theorem not_even_one : ¬ even 1 := by rw even_iff; norm_num @[parity_simps] theorem even_add : even (m + n) ↔ (even m ↔ even n) := by cases mod_two_eq_zero_or_one m with h₁ h₁; cases mod_two_eq_zero_or_one n with h₂ h₂; simp [even_iff, h₁, h₂, nat.add_mod]; norm_num theorem even_add' : even (m + n) ↔ (odd m ↔ odd n) := by rw [even_add, even_iff_not_odd, even_iff_not_odd, not_iff_not] @[parity_simps] theorem even_add_one : even (n + 1) ↔ ¬ even n := by simp [even_add] @[simp] theorem not_even_bit1 (n : ℕ) : ¬ even (bit1 n) := by simp [bit1] with parity_simps lemma two_not_dvd_two_mul_add_one (n : ℕ) : ¬(2 ∣ 2 * n + 1) := by simp [add_mod] lemma two_not_dvd_two_mul_sub_one : Π {n} (w : 0 < n), ¬(2 ∣ 2 * n - 1) | (n + 1) _ := two_not_dvd_two_mul_add_one n @[parity_simps] theorem even_sub (h : n ≤ m) : even (m - n) ↔ (even m ↔ even n) := begin conv { to_rhs, rw [←tsub_add_cancel_of_le h, even_add] }, by_cases h : even n; simp [h] end theorem even_sub' (h : n ≤ m) : even (m - n) ↔ (odd m ↔ odd n) := by rw [even_sub h, even_iff_not_odd, even_iff_not_odd, not_iff_not] theorem odd.sub_odd (hm : odd m) (hn : odd n) : even (m - n) := (le_total n m).elim (λ h, by simp only [even_sub' h, *]) (λ h, by simp only [tsub_eq_zero_iff_le.mpr h, even_zero]) @[parity_simps] theorem even_mul : even (m * n) ↔ even m ∨ even n := by cases mod_two_eq_zero_or_one m with h₁ h₁; cases mod_two_eq_zero_or_one n with h₂ h₂; simp [even_iff, h₁, h₂, nat.mul_mod]; norm_num theorem odd_mul : odd (m * n) ↔ odd m ∧ odd n := by simp [not_or_distrib] with parity_simps theorem odd.of_mul_left (h : odd (m * n)) : odd m := (odd_mul.mp h).1 theorem odd.of_mul_right (h : odd (m * n)) : odd n := (odd_mul.mp h).2 /-- If `m` and `n` are natural numbers, then the natural number `m^n` is even if and only if `m` is even and `n` is positive. -/ @[parity_simps] theorem even_pow : even (m ^ n) ↔ even m ∧ n ≠ 0 := by { induction n with n ih; simp [*, pow_succ', even_mul], tauto } theorem even_pow' (h : n ≠ 0) : even (m ^ n) ↔ even m := even_pow.trans $ and_iff_left h theorem even_div : even (m / n) ↔ m % (2 * n) / n = 0 := by rw [even_iff_two_dvd, dvd_iff_mod_eq_zero, nat.div_mod_eq_mod_mul_div, mul_comm] @[parity_simps] theorem odd_add : odd (m + n) ↔ (odd m ↔ even n) := by rw [odd_iff_not_even, even_add, not_iff, odd_iff_not_even] theorem odd_add' : odd (m + n) ↔ (odd n ↔ even m) := by rw [add_comm, odd_add] lemma ne_of_odd_add (h : odd (m + n)) : m ≠ n := λ hnot, by simpa [hnot] with parity_simps using h @[parity_simps] theorem odd_sub (h : n ≤ m) : odd (m - n) ↔ (odd m ↔ even n) := by rw [odd_iff_not_even, even_sub h, not_iff, odd_iff_not_even] theorem odd.sub_even (h : n ≤ m) (hm : odd m) (hn : even n) : odd (m - n) := (odd_sub h).mpr $ iff_of_true hm hn theorem odd_sub' (h : n ≤ m) : odd (m - n) ↔ (odd n ↔ even m) := by rw [odd_iff_not_even, even_sub h, not_iff, not_iff_comm, odd_iff_not_even] theorem even.sub_odd (h : n ≤ m) (hm : even m) (hn : odd n) : odd (m - n) := (odd_sub' h).mpr $ iff_of_true hn hm lemma even_mul_succ_self (n : ℕ) : even (n * (n + 1)) := begin rw even_mul, convert n.even_or_odd, simp with parity_simps end lemma even_mul_self_pred (n : ℕ) : even (n * (n - 1)) := begin cases n, { exact even_zero }, { rw mul_comm, apply even_mul_succ_self } end lemma even_sub_one_of_prime_ne_two {p : ℕ} (hp : prime p) (hodd : p ≠ 2) : even (p - 1) := odd.sub_odd (odd_iff.2 $ hp.eq_two_or_odd.resolve_left hodd) (odd_iff.2 rfl) lemma two_mul_div_two_of_even : even n → 2 * (n / 2) = n := λ h, nat.mul_div_cancel_left' (even_iff_two_dvd.mp h) lemma div_two_mul_two_of_even : even n → n / 2 * 2 = n := --nat.div_mul_cancel λ h, nat.div_mul_cancel (even_iff_two_dvd.mp h) lemma two_mul_div_two_add_one_of_odd (h : odd n) : 2 * (n / 2) + 1 = n := by { rw mul_comm, convert nat.div_add_mod' n 2, rw odd_iff.mp h } lemma div_two_mul_two_add_one_of_odd (h : odd n) : n / 2 * 2 + 1 = n := by { convert nat.div_add_mod' n 2, rw odd_iff.mp h } lemma one_add_div_two_mul_two_of_odd (h : odd n) : 1 + n / 2 * 2 = n := by { rw add_comm, convert nat.div_add_mod' n 2, rw odd_iff.mp h } lemma bit0_div_two : bit0 n / 2 = n := by rw [←nat.bit0_eq_bit0, bit0_eq_two_mul, two_mul_div_two_of_even (even_bit0 n)] lemma bit1_div_two : bit1 n / 2 = n := by rw [←nat.bit1_eq_bit1, bit1, bit0_eq_two_mul, nat.two_mul_div_two_add_one_of_odd (odd_bit1 n)] @[simp] lemma bit0_div_bit0 : bit0 n / bit0 m = n / m := by rw [bit0_eq_two_mul m, ←nat.div_div_eq_div_mul, bit0_div_two] @[simp] lemma bit1_div_bit0 : bit1 n / bit0 m = n / m := by rw [bit0_eq_two_mul, ←nat.div_div_eq_div_mul, bit1_div_two] -- Here are examples of how `parity_simps` can be used with `nat`. example (m n : ℕ) (h : even m) : ¬ even (n + 3) ↔ even (m^2 + m + n) := by simp [*, (dec_trivial : ¬ 2 = 0)] with parity_simps example : ¬ even 25394535 := by simp end nat open nat variables {R : Type*} [monoid R] [has_distrib_neg R] {n : ℕ} lemma neg_one_pow_eq_one_iff_even (h : (-1 : R) ≠ 1) : (-1 : R) ^ n = 1 ↔ even n := ⟨λ h', of_not_not $ λ hn, h $ (odd.neg_one_pow $ odd_iff_not_even.mpr hn).symm.trans h', even.neg_one_pow⟩