/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.int.gcd import data.list.rotate import tactic.abel /-! # Congruences modulo a natural number This file defines the equivalence relation `a ≡ b [MOD n]` on the natural numbers, and proves basic properties about it such as the Chinese Remainder Theorem `modeq_and_modeq_iff_modeq_mul`. ## Notations `a ≡ b [MOD n]` is notation for `nat.modeq n a b`, which is defined to mean `a % n = b % n`. ## Tags modeq, congruence, mod, MOD, modulo -/ namespace nat /-- Modular equality. `n.modeq a b`, or `a ≡ b [MOD n]`, means that `a - b` is a multiple of `n`. -/ @[derive decidable] def modeq (n a b : ℕ) := a % n = b % n notation a ` ≡ `:50 b ` [MOD `:50 n `]`:0 := modeq n a b variables {m n a b c d : ℕ} namespace modeq @[refl] protected theorem refl (a : ℕ) : a ≡ a [MOD n] := @rfl _ _ protected theorem rfl : a ≡ a [MOD n] := modeq.refl _ instance : is_refl _ (modeq n) := ⟨modeq.refl⟩ @[symm] protected theorem symm : a ≡ b [MOD n] → b ≡ a [MOD n] := eq.symm @[trans] protected theorem trans : a ≡ b [MOD n] → b ≡ c [MOD n] → a ≡ c [MOD n] := eq.trans protected theorem comm : a ≡ b [MOD n] ↔ b ≡ a [MOD n] := ⟨modeq.symm, modeq.symm⟩ end modeq theorem modeq_zero_iff_dvd : a ≡ 0 [MOD n] ↔ n ∣ a := by rw [modeq, zero_mod, dvd_iff_mod_eq_zero] lemma _root_.has_dvd.dvd.modeq_zero_nat (h : n ∣ a) : a ≡ 0 [MOD n] := modeq_zero_iff_dvd.2 h lemma _root_.has_dvd.dvd.zero_modeq_nat (h : n ∣ a) : 0 ≡ a [MOD n] := h.modeq_zero_nat.symm theorem modeq_iff_dvd : a ≡ b [MOD n] ↔ (n:ℤ) ∣ b - a := by rw [modeq, eq_comm, ← int.coe_nat_inj', int.coe_nat_mod, int.coe_nat_mod, int.mod_eq_mod_iff_mod_sub_eq_zero, int.dvd_iff_mod_eq_zero] protected theorem modeq.dvd : a ≡ b [MOD n] → (n:ℤ) ∣ b - a := modeq_iff_dvd.1 theorem modeq_of_dvd : (n:ℤ) ∣ b - a → a ≡ b [MOD n] := modeq_iff_dvd.2 /-- A variant of `modeq_iff_dvd` with `nat` divisibility -/ theorem modeq_iff_dvd' (h : a ≤ b) : a ≡ b [MOD n] ↔ n ∣ b - a := by rw [modeq_iff_dvd, ←int.coe_nat_dvd, int.coe_nat_sub h] theorem mod_modeq (a n) : a % n ≡ a [MOD n] := mod_mod _ _ namespace modeq protected theorem modeq_of_dvd (d : m ∣ n) (h : a ≡ b [MOD n]) : a ≡ b [MOD m] := modeq_of_dvd ((int.coe_nat_dvd.2 d).trans h.dvd) protected theorem mul_left' (c : ℕ) (h : a ≡ b [MOD n]) : c * a ≡ c * b [MOD (c * n)] := by unfold modeq at *; rw [mul_mod_mul_left, mul_mod_mul_left, h] protected theorem mul_left (c : ℕ) (h : a ≡ b [MOD n]) : c * a ≡ c * b [MOD n] := (h.mul_left' _ ).modeq_of_dvd (dvd_mul_left _ _) protected theorem mul_right' (c : ℕ) (h : a ≡ b [MOD n]) : a * c ≡ b * c [MOD (n * c)] := by rw [mul_comm a, mul_comm b, mul_comm n]; exact h.mul_left' c protected theorem mul_right (c : ℕ) (h : a ≡ b [MOD n]) : a * c ≡ b * c [MOD n] := by rw [mul_comm a, mul_comm b]; exact h.mul_left c protected theorem mul (h₁ : a ≡ b [MOD n]) (h₂ : c ≡ d [MOD n]) : a * c ≡ b * d [MOD n] := (h₂.mul_left _ ).trans (h₁.mul_right _) protected theorem pow (m : ℕ) (h : a ≡ b [MOD n]) : a ^ m ≡ b ^ m [MOD n] := begin induction m with d hd, {refl}, rw [pow_succ, pow_succ], exact h.mul hd, end protected theorem add (h₁ : a ≡ b [MOD n]) (h₂ : c ≡ d [MOD n]) : a + c ≡ b + d [MOD n] := begin rw [modeq_iff_dvd, int.coe_nat_add, int.coe_nat_add, add_sub_add_comm], exact dvd_add h₁.dvd h₂.dvd, end protected theorem add_left (c : ℕ) (h : a ≡ b [MOD n]) : c + a ≡ c + b [MOD n] := modeq.rfl.add h protected theorem add_right (c : ℕ) (h : a ≡ b [MOD n]) : a + c ≡ b + c [MOD n] := h.add modeq.rfl protected theorem add_left_cancel (h₁ : a ≡ b [MOD n]) (h₂ : a + c ≡ b + d [MOD n]) : c ≡ d [MOD n] := begin simp only [modeq_iff_dvd, int.coe_nat_add] at *, rw add_sub_add_comm at h₂, convert _root_.dvd_sub h₂ h₁ using 1, rw add_sub_cancel', end protected theorem add_left_cancel' (c : ℕ) (h : c + a ≡ c + b [MOD n]) : a ≡ b [MOD n] := modeq.rfl.add_left_cancel h protected theorem add_right_cancel (h₁ : c ≡ d [MOD n]) (h₂ : a + c ≡ b + d [MOD n]) : a ≡ b [MOD n] := by { rw [add_comm a, add_comm b] at h₂, exact h₁.add_left_cancel h₂ } protected theorem add_right_cancel' (c : ℕ) (h : a + c ≡ b + c [MOD n]) : a ≡ b [MOD n] := modeq.rfl.add_right_cancel h protected theorem mul_left_cancel' {a b c m : ℕ} (hc : c ≠ 0) : c * a ≡ c * b [MOD c * m] → a ≡ b [MOD m] := by simp [modeq_iff_dvd, ←mul_sub, mul_dvd_mul_iff_left (by simp [hc] : (c : ℤ) ≠ 0)] protected theorem mul_left_cancel_iff' {a b c m : ℕ} (hc : c ≠ 0) : c * a ≡ c * b [MOD c * m] ↔ a ≡ b [MOD m] := ⟨modeq.mul_left_cancel' hc, modeq.mul_left' _⟩ protected theorem mul_right_cancel' {a b c m : ℕ} (hc : c ≠ 0) : a * c ≡ b * c [MOD m * c] → a ≡ b [MOD m] := by simp [modeq_iff_dvd, ←sub_mul, mul_dvd_mul_iff_right (by simp [hc] : (c : ℤ) ≠ 0)] protected theorem mul_right_cancel_iff' {a b c m : ℕ} (hc : c ≠ 0) : a * c ≡ b * c [MOD m * c] ↔ a ≡ b [MOD m] := ⟨modeq.mul_right_cancel' hc, modeq.mul_right' _⟩ theorem of_modeq_mul_left (m : ℕ) (h : a ≡ b [MOD m * n]) : a ≡ b [MOD n] := by { rw [modeq_iff_dvd] at *, exact (dvd_mul_left (n : ℤ) (m : ℤ)).trans h } theorem of_modeq_mul_right (m : ℕ) : a ≡ b [MOD n * m] → a ≡ b [MOD n] := mul_comm m n ▸ of_modeq_mul_left _ end modeq theorem modeq_one : a ≡ b [MOD 1] := modeq_of_dvd (one_dvd _) lemma modeq_sub (h : b ≤ a) : a ≡ b [MOD a - b] := (modeq_of_dvd $ by rw [int.coe_nat_sub h]).symm @[simp] lemma modeq_zero_iff {a b : ℕ} : a ≡ b [MOD 0] ↔ a = b := by rw [nat.modeq, nat.mod_zero, nat.mod_zero] @[simp] lemma add_modeq_left {a n : ℕ} : n + a ≡ a [MOD n] := by rw [nat.modeq, nat.add_mod_left] @[simp] lemma add_modeq_right {a n : ℕ} : a + n ≡ a [MOD n] := by rw [nat.modeq, nat.add_mod_right] namespace modeq lemma le_of_lt_add (h1 : a ≡ b [MOD m]) (h2 : a < b + m) : a ≤ b := (le_total a b).elim id (λ h3, nat.le_of_sub_eq_zero (eq_zero_of_dvd_of_lt ((modeq_iff_dvd' h3).mp h1.symm) ((tsub_lt_iff_left h3).mpr h2))) lemma add_le_of_lt (h1 : a ≡ b [MOD m]) (h2 : a < b) : a + m ≤ b := le_of_lt_add (add_modeq_right.trans h1) (add_lt_add_right h2 m) lemma dvd_iff_of_modeq_of_dvd {a b d m : ℕ} (h : a ≡ b [MOD m]) (hdm : d ∣ m) : d ∣ a ↔ d ∣ b := begin simp only [←modeq_zero_iff_dvd], replace h := h.modeq_of_dvd hdm, exact ⟨h.symm.trans, h.trans⟩, end lemma gcd_eq_of_modeq {a b m : ℕ} (h : a ≡ b [MOD m]) : gcd a m = gcd b m := begin have h1 := gcd_dvd_right a m, have h2 := gcd_dvd_right b m, exact dvd_antisymm (dvd_gcd ((dvd_iff_of_modeq_of_dvd h h1).mp (gcd_dvd_left a m)) h1) (dvd_gcd ((dvd_iff_of_modeq_of_dvd h h2).mpr (gcd_dvd_left b m)) h2), end lemma eq_of_modeq_of_abs_lt {a b m : ℕ} (h : a ≡ b [MOD m]) (h2 : | (b:ℤ) - a | < m) : a = b := begin apply int.coe_nat_inj, rw [eq_comm, ←sub_eq_zero], exact int.eq_zero_of_abs_lt_dvd (modeq_iff_dvd.mp h) h2, end /-- To cancel a common factor `c` from a `modeq` we must divide the modulus `m` by `gcd m c` -/ lemma modeq_cancel_left_div_gcd {a b c m : ℕ} (hm : 0 < m) (h : c * a ≡ c * b [MOD m]) : a ≡ b [MOD m / gcd m c] := begin let d := gcd m c, have hmd := gcd_dvd_left m c, have hcd := gcd_dvd_right m c, rw modeq_iff_dvd, refine int.dvd_of_dvd_mul_right_of_gcd_one _ _, show (m/d : ℤ) ∣ (c/d) * (b - a), { rw [mul_comm, ←int.mul_div_assoc (b - a) (int.coe_nat_dvd.mpr hcd), mul_comm], apply int.div_dvd_div (int.coe_nat_dvd.mpr hmd), rw mul_sub, exact modeq_iff_dvd.mp h }, show int.gcd (m/d) (c/d) = 1, { simp only [←int.coe_nat_div, int.coe_nat_gcd (m / d) (c / d), gcd_div hmd hcd, nat.div_self (gcd_pos_of_pos_left c hm)] }, end lemma modeq_cancel_right_div_gcd {a b c m : ℕ} (hm : 0 < m) (h : a * c ≡ b * c [MOD m]) : a ≡ b [MOD m / gcd m c] := by { apply modeq_cancel_left_div_gcd hm, simpa [mul_comm] using h } lemma modeq_cancel_left_div_gcd' {a b c d m : ℕ} (hm : 0 < m) (hcd : c ≡ d [MOD m]) (h : c * a ≡ d * b [MOD m]) : a ≡ b [MOD m / gcd m c] := modeq_cancel_left_div_gcd hm (h.trans (modeq.mul_right b hcd).symm) lemma modeq_cancel_right_div_gcd' {a b c d m : ℕ} (hm : 0 < m) (hcd : c ≡ d [MOD m]) (h : a * c ≡ b * d [MOD m]) : a ≡ b [MOD m / gcd m c] := by { apply modeq_cancel_left_div_gcd' hm hcd, simpa [mul_comm] using h } /-- A common factor that's coprime with the modulus can be cancelled from a `modeq` -/ lemma modeq_cancel_left_of_coprime {a b c m : ℕ} (hmc : gcd m c = 1) (h : c * a ≡ c * b [MOD m]) : a ≡ b [MOD m] := begin rcases m.eq_zero_or_pos with rfl | hm, { simp only [gcd_zero_left] at hmc, simp only [gcd_zero_left, hmc, one_mul, modeq_zero_iff] at h, subst h }, simpa [hmc] using modeq_cancel_left_div_gcd hm h end /-- A common factor that's coprime with the modulus can be cancelled from a `modeq` -/ lemma modeq_cancel_right_of_coprime {a b c m : ℕ} (hmc : gcd m c = 1) (h : a * c ≡ b * c [MOD m]) : a ≡ b [MOD m] := by { apply modeq_cancel_left_of_coprime hmc, simpa [mul_comm] using h } end modeq local attribute [semireducible] int.nonneg /-- The natural number less than `lcm n m` congruent to `a` mod `n` and `b` mod `m` -/ def chinese_remainder' (h : a ≡ b [MOD gcd n m]) : {k // k ≡ a [MOD n] ∧ k ≡ b [MOD m]} := if hn : n = 0 then ⟨a, begin rw [hn, gcd_zero_left] at h, split, refl, exact h end⟩ else if hm : m = 0 then ⟨b, begin rw [hm, gcd_zero_right] at h, split, exact h.symm, refl end⟩ else ⟨let (c, d) := xgcd n m in int.to_nat (((n * c * b + m * d * a) / gcd n m) % lcm n m), begin rw xgcd_val, dsimp [chinese_remainder'._match_1], rw [modeq_iff_dvd, modeq_iff_dvd, int.to_nat_of_nonneg (int.mod_nonneg _ (int.coe_nat_ne_zero.2 (lcm_ne_zero hn hm)))], have hnonzero : (gcd n m : ℤ) ≠ 0 := begin norm_cast, rw [nat.gcd_eq_zero_iff, not_and], exact λ _, hm, end, have hcoedvd : ∀ t, (gcd n m : ℤ) ∣ t * (b - a) := λ t, h.dvd.mul_left _, have := gcd_eq_gcd_ab n m, split; rw [int.mod_def, ← sub_add]; refine dvd_add _ (dvd_mul_of_dvd_left _ _); try {norm_cast}, { rw ← sub_eq_iff_eq_add' at this, rw [← this, sub_mul, ← add_sub_assoc, add_comm, add_sub_assoc, ← mul_sub, int.add_div_of_dvd_left, int.mul_div_cancel_left _ hnonzero, int.mul_div_assoc _ h.dvd, ← sub_sub, sub_self, zero_sub, dvd_neg, mul_assoc], exact dvd_mul_right _ _, norm_cast, exact dvd_mul_right _ _, }, { exact dvd_lcm_left n m, }, { rw ← sub_eq_iff_eq_add at this, rw [← this, sub_mul, sub_add, ← mul_sub, int.sub_div_of_dvd, int.mul_div_cancel_left _ hnonzero, int.mul_div_assoc _ h.dvd, ← sub_add, sub_self, zero_add, mul_assoc], exact dvd_mul_right _ _, exact hcoedvd _ }, { exact dvd_lcm_right n m, }, end⟩ /-- The natural number less than `n*m` congruent to `a` mod `n` and `b` mod `m` -/ def chinese_remainder (co : coprime n m) (a b : ℕ) : {k // k ≡ a [MOD n] ∧ k ≡ b [MOD m]} := chinese_remainder' (by convert modeq_one) lemma chinese_remainder'_lt_lcm (h : a ≡ b [MOD gcd n m]) (hn : n ≠ 0) (hm : m ≠ 0) : ↑(chinese_remainder' h) < lcm n m := begin dsimp only [chinese_remainder'], rw [dif_neg hn, dif_neg hm, subtype.coe_mk, xgcd_val, ←int.to_nat_coe_nat (lcm n m)], have lcm_pos := int.coe_nat_pos.mpr (nat.pos_of_ne_zero (lcm_ne_zero hn hm)), exact (int.to_nat_lt_to_nat lcm_pos).mpr (int.mod_lt_of_pos _ lcm_pos), end lemma chinese_remainder_lt_mul (co : coprime n m) (a b : ℕ) (hn : n ≠ 0) (hm : m ≠ 0) : ↑(chinese_remainder co a b) < n * m := lt_of_lt_of_le (chinese_remainder'_lt_lcm _ hn hm) (le_of_eq co.lcm_eq_mul) lemma modeq_and_modeq_iff_modeq_mul {a b m n : ℕ} (hmn : coprime m n) : a ≡ b [MOD m] ∧ a ≡ b [MOD n] ↔ (a ≡ b [MOD m * n]) := ⟨λ h, begin rw [nat.modeq_iff_dvd, nat.modeq_iff_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd] at h, rw [nat.modeq_iff_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd], exact hmn.mul_dvd_of_dvd_of_dvd h.1 h.2 end, λ h, ⟨h.of_modeq_mul_right _, h.of_modeq_mul_left _⟩⟩ lemma coprime_of_mul_modeq_one (b : ℕ) {a n : ℕ} (h : a * b ≡ 1 [MOD n]) : coprime a n := nat.coprime_of_dvd' (λ k kp ⟨ka, hka⟩ ⟨kb, hkb⟩, int.coe_nat_dvd.1 begin rw [hka, hkb, modeq_iff_dvd] at h, cases h with z hz, rw [sub_eq_iff_eq_add] at hz, rw [hz, int.coe_nat_mul, mul_assoc, mul_assoc, int.coe_nat_mul, ← mul_add], exact dvd_mul_right _ _, end) @[simp] lemma mod_mul_right_mod (a b c : ℕ) : a % (b * c) % b = a % b := (mod_modeq _ _).of_modeq_mul_right _ @[simp] lemma mod_mul_left_mod (a b c : ℕ) : a % (b * c) % c = a % c := (mod_modeq _ _).of_modeq_mul_left _ lemma div_mod_eq_mod_mul_div (a b c : ℕ) : a / b % c = a % (b * c) / b := if hb0 : b = 0 then by simp [hb0] else by rw [← @add_right_cancel_iff _ _ (c * (a / b / c)), mod_add_div, nat.div_div_eq_div_mul, ← nat.mul_right_inj (nat.pos_of_ne_zero hb0),← @add_left_cancel_iff _ _ (a % b), mod_add_div, mul_add, ← @add_left_cancel_iff _ _ (a % (b * c) % b), add_left_comm, ← add_assoc (a % (b * c) % b), mod_add_div, ← mul_assoc, mod_add_div, mod_mul_right_mod] lemma add_mod_add_ite (a b c : ℕ) : (a + b) % c + (if c ≤ a % c + b % c then c else 0) = a % c + b % c := have (a + b) % c = (a % c + b % c) % c, from ((mod_modeq _ _).add $ mod_modeq _ _).symm, if hc0 : c = 0 then by simp [hc0] else begin rw this, split_ifs, { have h2 : (a % c + b % c) / c < 2, from nat.div_lt_of_lt_mul (by rw mul_two; exact add_lt_add (nat.mod_lt _ (nat.pos_of_ne_zero hc0)) (nat.mod_lt _ (nat.pos_of_ne_zero hc0))), have h0 : 0 < (a % c + b % c) / c, from nat.div_pos h (nat.pos_of_ne_zero hc0), rw [← @add_right_cancel_iff _ _ (c * ((a % c + b % c) / c)), add_comm _ c, add_assoc, mod_add_div, le_antisymm (le_of_lt_succ h2) h0, mul_one, add_comm] }, { rw [nat.mod_eq_of_lt (lt_of_not_ge h), add_zero] } end lemma add_mod_of_add_mod_lt {a b c : ℕ} (hc : a % c + b % c < c) : (a + b) % c = a % c + b % c := by rw [← add_mod_add_ite, if_neg (not_le_of_lt hc), add_zero] lemma add_mod_add_of_le_add_mod {a b c : ℕ} (hc : c ≤ a % c + b % c) : (a + b) % c + c = a % c + b % c := by rw [← add_mod_add_ite, if_pos hc] lemma add_div {a b c : ℕ} (hc0 : 0 < c) : (a + b) / c = a / c + b / c + if c ≤ a % c + b % c then 1 else 0 := begin rw [← nat.mul_right_inj hc0, ← @add_left_cancel_iff _ _ ((a + b) % c + a % c + b % c)], suffices : (a + b) % c + c * ((a + b) / c) + a % c + b % c = a % c + c * (a / c) + (b % c + c * (b / c)) + c * (if c ≤ a % c + b % c then 1 else 0) + (a + b) % c, { simpa only [mul_add, add_comm, add_left_comm, add_assoc] }, rw [mod_add_div, mod_add_div, mod_add_div, mul_ite, add_assoc, add_assoc], conv_lhs { rw ← add_mod_add_ite }, simp, ac_refl end lemma add_div_eq_of_add_mod_lt {a b c : ℕ} (hc : a % c + b % c < c) : (a + b) / c = a / c + b / c := if hc0 : c = 0 then by simp [hc0] else by rw [add_div (nat.pos_of_ne_zero hc0), if_neg (not_le_of_lt hc), add_zero] protected lemma add_div_of_dvd_right {a b c : ℕ} (hca : c ∣ a) : (a + b) / c = a / c + b / c := if h : c = 0 then by simp [h] else add_div_eq_of_add_mod_lt begin rw [nat.mod_eq_zero_of_dvd hca, zero_add], exact nat.mod_lt _ (pos_iff_ne_zero.mpr h), end protected lemma add_div_of_dvd_left {a b c : ℕ} (hca : c ∣ b) : (a + b) / c = a / c + b / c := by rwa [add_comm, nat.add_div_of_dvd_right, add_comm] lemma add_div_eq_of_le_mod_add_mod {a b c : ℕ} (hc : c ≤ a % c + b % c) (hc0 : 0 < c) : (a + b) / c = a / c + b / c + 1 := by rw [add_div hc0, if_pos hc] lemma add_div_le_add_div (a b c : ℕ) : a / c + b / c ≤ (a + b) / c := if hc0 : c = 0 then by simp [hc0] else by rw [nat.add_div (nat.pos_of_ne_zero hc0)]; exact nat.le_add_right _ _ lemma le_mod_add_mod_of_dvd_add_of_not_dvd {a b c : ℕ} (h : c ∣ a + b) (ha : ¬ c ∣ a) : c ≤ a % c + b % c := by_contradiction $ λ hc, have (a + b) % c = a % c + b % c, from add_mod_of_add_mod_lt (lt_of_not_ge hc), by simp [dvd_iff_mod_eq_zero, *] at * lemma odd_mul_odd {n m : ℕ} : n % 2 = 1 → m % 2 = 1 → (n * m) % 2 = 1 := by simpa [nat.modeq] using @modeq.mul 2 n 1 m 1 lemma odd_mul_odd_div_two {m n : ℕ} (hm1 : m % 2 = 1) (hn1 : n % 2 = 1) : (m * n) / 2 = m * (n / 2) + m / 2 := have hm0 : 0 < m := nat.pos_of_ne_zero (λ h, by simp * at *), have hn0 : 0 < n := nat.pos_of_ne_zero (λ h, by simp * at *), (nat.mul_right_inj zero_lt_two).1 $ by rw [mul_add, two_mul_odd_div_two hm1, mul_left_comm, two_mul_odd_div_two hn1, two_mul_odd_div_two (nat.odd_mul_odd hm1 hn1), mul_tsub, mul_one, ← add_tsub_assoc_of_le (succ_le_of_lt hm0), tsub_add_cancel_of_le (le_mul_of_one_le_right (nat.zero_le _) hn0)] lemma odd_of_mod_four_eq_one {n : ℕ} : n % 4 = 1 → n % 2 = 1 := by simpa [modeq, show 2 * 2 = 4, by norm_num] using @modeq.of_modeq_mul_left 2 n 1 2 lemma odd_of_mod_four_eq_three {n : ℕ} : n % 4 = 3 → n % 2 = 1 := by simpa [modeq, show 2 * 2 = 4, by norm_num, show 3 % 4 = 3, by norm_num] using @modeq.of_modeq_mul_left 2 n 3 2 /-- A natural number is odd iff it has residue `1` or `3` mod `4`-/ lemma odd_mod_four_iff {n : ℕ} : n % 2 = 1 ↔ n % 4 = 1 ∨ n % 4 = 3 := have help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → m = 1 ∨ m = 3 := dec_trivial, ⟨λ hn, help (n % 4) (mod_lt n (by norm_num)) $ (mod_mod_of_dvd n (by norm_num : 2 ∣ 4)).trans hn, λ h, or.dcases_on h odd_of_mod_four_eq_one odd_of_mod_four_eq_three⟩ end nat namespace list variable {α : Type*} lemma nth_rotate : ∀ {l : list α} {n m : ℕ} (hml : m < l.length), (l.rotate n).nth m = l.nth ((m + n) % l.length) | [] n m hml := (nat.not_lt_zero _ hml).elim | l 0 m hml := by simp [nat.mod_eq_of_lt hml] | (a::l) (n+1) m hml := have h₃ : m < list.length (l ++ [a]), by simpa using hml, (lt_or_eq_of_le (nat.le_of_lt_succ $ nat.mod_lt (m + n) (lt_of_le_of_lt (nat.zero_le _) hml))).elim (λ hml', have h₁ : (m + (n + 1)) % ((a :: l : list α).length) = (m + n) % ((a :: l : list α).length) + 1, from calc (m + (n + 1)) % (l.length + 1) = ((m + n) % (l.length + 1) + 1) % (l.length + 1) : add_assoc m n 1 ▸ nat.modeq.add_right 1 (nat.mod_mod _ _).symm ... = (m + n) % (l.length + 1) + 1 : nat.mod_eq_of_lt (nat.succ_lt_succ hml'), have h₂ : (m + n) % (l ++ [a]).length < l.length, by simpa [nat.add_one] using hml', by rw [list.rotate_cons_succ, nth_rotate h₃, list.nth_append h₂, h₁, list.nth]; simp) (λ hml', have h₁ : (m + (n + 1)) % (l.length + 1) = 0, from calc (m + (n + 1)) % (l.length + 1) = (l.length + 1) % (l.length + 1) : add_assoc m n 1 ▸ nat.modeq.add_right 1 (hml'.trans (nat.mod_eq_of_lt (nat.lt_succ_self _)).symm) ... = 0 : by simp, by rw [list.length, list.rotate_cons_succ, nth_rotate h₃, list.length_append, list.length_cons, list.length, zero_add, hml', h₁, list.nth_concat_length]; refl) lemma rotate_eq_self_iff_eq_repeat [hα : nonempty α] : ∀ {l : list α}, (∀ n, l.rotate n = l) ↔ ∃ a, l = list.repeat a l.length | [] := ⟨λ h, nonempty.elim hα (λ a, ⟨a, by simp⟩), by simp⟩ | (a::l) := ⟨λ h, ⟨a, list.ext_le (by simp) $ λ n hn h₁, begin rw [← option.some_inj, ← list.nth_le_nth], conv {to_lhs, rw ← h ((list.length (a :: l)) - n)}, rw [nth_rotate hn, add_tsub_cancel_of_le (le_of_lt hn), nat.mod_self, nth_le_repeat], refl end⟩, λ ⟨a, ha⟩ n, ha.symm ▸ list.ext_le (by simp) (λ m hm h, have hm' : (m + n) % (list.repeat a (list.length (a :: l))).length < list.length (a :: l), by rw list.length_repeat; exact nat.mod_lt _ (nat.succ_pos _), by rw [nth_le_repeat, ← option.some_inj, ← list.nth_le_nth, nth_rotate h, list.nth_le_nth, nth_le_repeat]; simp * at *)⟩ lemma rotate_repeat (a : α) (n : ℕ) (k : ℕ) : (list.repeat a n).rotate k = list.repeat a n := let h : nonempty α := ⟨a⟩ in by exactI rotate_eq_self_iff_eq_repeat.mpr ⟨a, by rw length_repeat⟩ k lemma rotate_one_eq_self_iff_eq_repeat [nonempty α] {l : list α} : l.rotate 1 = l ↔ ∃ a : α, l = list.repeat a l.length := ⟨λ h, rotate_eq_self_iff_eq_repeat.mp (λ n, nat.rec l.rotate_zero (λ n hn, by rwa [nat.succ_eq_add_one, ←l.rotate_rotate, hn]) n), λ h, rotate_eq_self_iff_eq_repeat.mpr h 1⟩ end list