/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import data.set.finite import algebra.big_operators.basic /-! # Preimage of a `finset` under an injective map. -/ open set function open_locale big_operators universes u v w x variables {α : Type u} {β : Type v} {ι : Sort w} {γ : Type x} namespace finset section preimage /-- Preimage of `s : finset β` under a map `f` injective of `f ⁻¹' s` as a `finset`. -/ noncomputable def preimage (s : finset β) (f : α → β) (hf : set.inj_on f (f ⁻¹' ↑s)) : finset α := (s.finite_to_set.preimage hf).to_finset @[simp] lemma mem_preimage {f : α → β} {s : finset β} {hf : set.inj_on f (f ⁻¹' ↑s)} {x : α} : x ∈ preimage s f hf ↔ f x ∈ s := set.finite.mem_to_finset _ @[simp, norm_cast] lemma coe_preimage {f : α → β} (s : finset β) (hf : set.inj_on f (f ⁻¹' ↑s)) : (↑(preimage s f hf) : set α) = f ⁻¹' ↑s := set.finite.coe_to_finset _ @[simp] lemma preimage_empty {f : α → β} : preimage ∅ f (by simp [inj_on]) = ∅ := finset.coe_injective (by simp) @[simp] lemma preimage_univ {f : α → β} [fintype α] [fintype β] (hf) : preimage univ f hf = univ := finset.coe_injective (by simp) @[simp] lemma preimage_inter [decidable_eq α] [decidable_eq β] {f : α → β} {s t : finset β} (hs : set.inj_on f (f ⁻¹' ↑s)) (ht : set.inj_on f (f ⁻¹' ↑t)) : preimage (s ∩ t) f (λ x₁ hx₁ x₂ hx₂, hs (mem_of_mem_inter_left hx₁) (mem_of_mem_inter_left hx₂)) = preimage s f hs ∩ preimage t f ht := finset.coe_injective (by simp) @[simp] lemma preimage_union [decidable_eq α] [decidable_eq β] {f : α → β} {s t : finset β} (hst) : preimage (s ∪ t) f hst = preimage s f (λ x₁ hx₁ x₂ hx₂, hst (mem_union_left _ hx₁) (mem_union_left _ hx₂)) ∪ preimage t f (λ x₁ hx₁ x₂ hx₂, hst (mem_union_right _ hx₁) (mem_union_right _ hx₂)) := finset.coe_injective (by simp) @[simp] lemma preimage_compl [decidable_eq α] [decidable_eq β] [fintype α] [fintype β] {f : α → β} (s : finset β) (hf : function.injective f) : preimage sᶜ f (hf.inj_on _) = (preimage s f (hf.inj_on _))ᶜ := finset.coe_injective (by simp) lemma monotone_preimage {f : α → β} (h : injective f) : monotone (λ s, preimage s f (h.inj_on _)) := λ s t hst x hx, mem_preimage.2 (hst $ mem_preimage.1 hx) lemma image_subset_iff_subset_preimage [decidable_eq β] {f : α → β} {s : finset α} {t : finset β} (hf : set.inj_on f (f ⁻¹' ↑t)) : s.image f ⊆ t ↔ s ⊆ t.preimage f hf := image_subset_iff.trans $ by simp only [subset_iff, mem_preimage] lemma map_subset_iff_subset_preimage {f : α ↪ β} {s : finset α} {t : finset β} : s.map f ⊆ t ↔ s ⊆ t.preimage f (f.injective.inj_on _) := by classical; rw [map_eq_image, image_subset_iff_subset_preimage] lemma image_preimage [decidable_eq β] (f : α → β) (s : finset β) [Π x, decidable (x ∈ set.range f)] (hf : set.inj_on f (f ⁻¹' ↑s)) : image f (preimage s f hf) = s.filter (λ x, x ∈ set.range f) := finset.coe_inj.1 $ by simp only [coe_image, coe_preimage, coe_filter, set.image_preimage_eq_inter_range, set.sep_mem_eq] lemma image_preimage_of_bij [decidable_eq β] (f : α → β) (s : finset β) (hf : set.bij_on f (f ⁻¹' ↑s) ↑s) : image f (preimage s f hf.inj_on) = s := finset.coe_inj.1 $ by simpa using hf.image_eq lemma preimage_subset {f : α ↪ β} {s : finset β} {t : finset α} (hs : s ⊆ t.map f) : s.preimage f (f.injective.inj_on _) ⊆ t := λ x hx, (mem_map' f).1 (hs (mem_preimage.1 hx)) lemma subset_map_iff {f : α ↪ β} {s : finset β} {t : finset α} : s ⊆ t.map f ↔ ∃ u ⊆ t, s = u.map f := begin classical, refine ⟨λ h, ⟨_, preimage_subset h, _⟩, _⟩, { rw [map_eq_image, image_preimage, filter_true_of_mem (λ x hx, _)], exact coe_map_subset_range _ _ (h hx) }, { rintro ⟨u, hut, rfl⟩, exact map_subset_map.2 hut } end lemma sigma_preimage_mk {β : α → Type*} [decidable_eq α] (s : finset (Σ a, β a)) (t : finset α) : t.sigma (λ a, s.preimage (sigma.mk a) $ sigma_mk_injective.inj_on _) = s.filter (λ a, a.1 ∈ t) := by { ext x, simp [and_comm] } lemma sigma_preimage_mk_of_subset {β : α → Type*} [decidable_eq α] (s : finset (Σ a, β a)) {t : finset α} (ht : s.image sigma.fst ⊆ t) : t.sigma (λ a, s.preimage (sigma.mk a) $ sigma_mk_injective.inj_on _) = s := by rw [sigma_preimage_mk, filter_true_of_mem $ image_subset_iff.1 ht] lemma sigma_image_fst_preimage_mk {β : α → Type*} [decidable_eq α] (s : finset (Σ a, β a)) : (s.image sigma.fst).sigma (λ a, s.preimage (sigma.mk a) $ sigma_mk_injective.inj_on _) = s := s.sigma_preimage_mk_of_subset (subset.refl _) end preimage @[to_additive] lemma prod_preimage' [comm_monoid β] (f : α → γ) [decidable_pred $ λ x, x ∈ set.range f] (s : finset γ) (hf : set.inj_on f (f ⁻¹' ↑s)) (g : γ → β) : ∏ x in s.preimage f hf, g (f x) = ∏ x in s.filter (λ x, x ∈ set.range f), g x := by haveI := classical.dec_eq γ; calc ∏ x in preimage s f hf, g (f x) = ∏ x in image f (preimage s f hf), g x : eq.symm $ prod_image $ by simpa only [mem_preimage, inj_on] using hf ... = ∏ x in s.filter (λ x, x ∈ set.range f), g x : by rw [image_preimage] @[to_additive] lemma prod_preimage [comm_monoid β] (f : α → γ) (s : finset γ) (hf : set.inj_on f (f ⁻¹' ↑s)) (g : γ → β) (hg : ∀ x ∈ s, x ∉ set.range f → g x = 1) : ∏ x in s.preimage f hf, g (f x) = ∏ x in s, g x := by { classical, rw [prod_preimage', prod_filter_of_ne], exact λ x hx, not.imp_symm (hg x hx) } @[to_additive] lemma prod_preimage_of_bij [comm_monoid β] (f : α → γ) (s : finset γ) (hf : set.bij_on f (f ⁻¹' ↑s) ↑s) (g : γ → β) : ∏ x in s.preimage f hf.inj_on, g (f x) = ∏ x in s, g x := prod_preimage _ _ hf.inj_on g $ λ x hxs hxf, (hxf $ hf.subset_range hxs).elim end finset