/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.finset.lattice /-! # The powerset of a finset -/ namespace finset open function multiset variables {α : Type*} {s t : finset α} /-! ### powerset -/ section powerset /-- When `s` is a finset, `s.powerset` is the finset of all subsets of `s` (seen as finsets). -/ def powerset (s : finset α) : finset (finset α) := ⟨s.1.powerset.pmap finset.mk $ λ t h, nodup_of_le (mem_powerset.1 h) s.nodup, s.nodup.powerset.pmap $ λ a ha b hb, congr_arg finset.val⟩ @[simp] theorem mem_powerset {s t : finset α} : s ∈ powerset t ↔ s ⊆ t := by cases s; simp only [powerset, mem_mk, mem_pmap, mem_powerset, exists_prop, exists_eq_right]; rw ← val_le_iff @[simp, norm_cast] lemma coe_powerset (s : finset α) : (s.powerset : set (finset α)) = coe ⁻¹' (s : set α).powerset := by { ext, simp } @[simp] theorem empty_mem_powerset (s : finset α) : ∅ ∈ powerset s := mem_powerset.2 (empty_subset _) @[simp] lemma mem_powerset_self (s : finset α) : s ∈ powerset s := mem_powerset.2 subset.rfl lemma powerset_nonempty (s : finset α) : s.powerset.nonempty := ⟨∅, empty_mem_powerset _⟩ @[simp] theorem powerset_mono {s t : finset α} : powerset s ⊆ powerset t ↔ s ⊆ t := ⟨λ h, (mem_powerset.1 $ h $ mem_powerset_self _), λ st u h, mem_powerset.2 $ subset.trans (mem_powerset.1 h) st⟩ lemma powerset_injective : injective (powerset : finset α → finset (finset α)) := injective_of_le_imp_le _ $ λ s t, powerset_mono.1 @[simp] lemma powerset_inj : powerset s = powerset t ↔ s = t := powerset_injective.eq_iff @[simp] lemma powerset_empty : (∅ : finset α).powerset = {∅} := rfl @[simp] lemma powerset_eq_singleton_empty : s.powerset = {∅} ↔ s = ∅ := by rw [←powerset_empty, powerset_inj] /-- **Number of Subsets of a Set** -/ @[simp] theorem card_powerset (s : finset α) : card (powerset s) = 2 ^ card s := (card_pmap _ _ _).trans (card_powerset s.1) lemma not_mem_of_mem_powerset_of_not_mem {s t : finset α} {a : α} (ht : t ∈ s.powerset) (h : a ∉ s) : a ∉ t := by { apply mt _ h, apply mem_powerset.1 ht } lemma powerset_insert [decidable_eq α] (s : finset α) (a : α) : powerset (insert a s) = s.powerset ∪ s.powerset.image (insert a) := begin ext t, simp only [exists_prop, mem_powerset, mem_image, mem_union, subset_insert_iff], by_cases h : a ∈ t, { split, { exact λH, or.inr ⟨_, H, insert_erase h⟩ }, { intros H, cases H, { exact subset.trans (erase_subset a t) H }, { rcases H with ⟨u, hu⟩, rw ← hu.2, exact subset.trans (erase_insert_subset a u) hu.1 } } }, { have : ¬ ∃ (u : finset α), u ⊆ s ∧ insert a u = t, by simp [ne.symm (ne_insert_of_not_mem _ _ h)], simp [finset.erase_eq_of_not_mem h, this] } end /-- For predicate `p` decidable on subsets, it is decidable whether `p` holds for any subset. -/ instance decidable_exists_of_decidable_subsets {s : finset α} {p : Π t ⊆ s, Prop} [Π t (h : t ⊆ s), decidable (p t h)] : decidable (∃ t (h : t ⊆ s), p t h) := decidable_of_iff (∃ t (hs : t ∈ s.powerset), p t (mem_powerset.1 hs)) ⟨(λ ⟨t, _, hp⟩, ⟨t, _, hp⟩), (λ ⟨t, hs, hp⟩, ⟨t, mem_powerset.2 hs, hp⟩)⟩ /-- For predicate `p` decidable on subsets, it is decidable whether `p` holds for every subset. -/ instance decidable_forall_of_decidable_subsets {s : finset α} {p : Π t ⊆ s, Prop} [Π t (h : t ⊆ s), decidable (p t h)] : decidable (∀ t (h : t ⊆ s), p t h) := decidable_of_iff (∀ t (h : t ∈ s.powerset), p t (mem_powerset.1 h)) ⟨(λ h t hs, h t (mem_powerset.2 hs)), (λ h _ _, h _ _)⟩ /-- A version of `finset.decidable_exists_of_decidable_subsets` with a non-dependent `p`. Typeclass inference cannot find `hu` here, so this is not an instance. -/ def decidable_exists_of_decidable_subsets' {s : finset α} {p : finset α → Prop} (hu : Π t (h : t ⊆ s), decidable (p t)) : decidable (∃ t (h : t ⊆ s), p t) := @finset.decidable_exists_of_decidable_subsets _ _ _ hu /-- A version of `finset.decidable_forall_of_decidable_subsets` with a non-dependent `p`. Typeclass inference cannot find `hu` here, so this is not an instance. -/ def decidable_forall_of_decidable_subsets' {s : finset α} {p : finset α → Prop} (hu : Π t (h : t ⊆ s), decidable (p t)) : decidable (∀ t (h : t ⊆ s), p t) := @finset.decidable_forall_of_decidable_subsets _ _ _ hu end powerset section ssubsets variables [decidable_eq α] /-- For `s` a finset, `s.ssubsets` is the finset comprising strict subsets of `s`. -/ def ssubsets (s : finset α) : finset (finset α) := erase (powerset s) s @[simp] lemma mem_ssubsets {s t : finset α} : t ∈ s.ssubsets ↔ t ⊂ s := by rw [ssubsets, mem_erase, mem_powerset, ssubset_iff_subset_ne, and.comm] lemma empty_mem_ssubsets {s : finset α} (h : s.nonempty) : ∅ ∈ s.ssubsets := by { rw [mem_ssubsets, ssubset_iff_subset_ne], exact ⟨empty_subset s, h.ne_empty.symm⟩, } /-- For predicate `p` decidable on ssubsets, it is decidable whether `p` holds for any ssubset. -/ instance decidable_exists_of_decidable_ssubsets {s : finset α} {p : Π t ⊂ s, Prop} [Π t (h : t ⊂ s), decidable (p t h)] : decidable (∃ t h, p t h) := decidable_of_iff (∃ t (hs : t ∈ s.ssubsets), p t (mem_ssubsets.1 hs)) ⟨(λ ⟨t, _, hp⟩, ⟨t, _, hp⟩), (λ ⟨t, hs, hp⟩, ⟨t, mem_ssubsets.2 hs, hp⟩)⟩ /-- For predicate `p` decidable on ssubsets, it is decidable whether `p` holds for every ssubset. -/ instance decidable_forall_of_decidable_ssubsets {s : finset α} {p : Π t ⊂ s, Prop} [Π t (h : t ⊂ s), decidable (p t h)] : decidable (∀ t h, p t h) := decidable_of_iff (∀ t (h : t ∈ s.ssubsets), p t (mem_ssubsets.1 h)) ⟨(λ h t hs, h t (mem_ssubsets.2 hs)), (λ h _ _, h _ _)⟩ /-- A version of `finset.decidable_exists_of_decidable_ssubsets` with a non-dependent `p`. Typeclass inference cannot find `hu` here, so this is not an instance. -/ def decidable_exists_of_decidable_ssubsets' {s : finset α} {p : finset α → Prop} (hu : Π t (h : t ⊂ s), decidable (p t)) : decidable (∃ t (h : t ⊂ s), p t) := @finset.decidable_exists_of_decidable_ssubsets _ _ _ _ hu /-- A version of `finset.decidable_forall_of_decidable_ssubsets` with a non-dependent `p`. Typeclass inference cannot find `hu` here, so this is not an instance. -/ def decidable_forall_of_decidable_ssubsets' {s : finset α} {p : finset α → Prop} (hu : Π t (h : t ⊂ s), decidable (p t)) : decidable (∀ t (h : t ⊂ s), p t) := @finset.decidable_forall_of_decidable_ssubsets _ _ _ _ hu end ssubsets section powerset_len /-- Given an integer `n` and a finset `s`, then `powerset_len n s` is the finset of subsets of `s` of cardinality `n`. -/ def powerset_len (n : ℕ) (s : finset α) : finset (finset α) := ⟨(s.1.powerset_len n).pmap finset.mk $ λ t h, nodup_of_le (mem_powerset_len.1 h).1 s.2, s.2.powerset_len.pmap $ λ a ha b hb, congr_arg finset.val⟩ /-- **Formula for the Number of Combinations** -/ theorem mem_powerset_len {n} {s t : finset α} : s ∈ powerset_len n t ↔ s ⊆ t ∧ card s = n := by cases s; simp [powerset_len, val_le_iff.symm]; refl @[simp] theorem powerset_len_mono {n} {s t : finset α} (h : s ⊆ t) : powerset_len n s ⊆ powerset_len n t := λ u h', mem_powerset_len.2 $ and.imp (λ h₂, subset.trans h₂ h) id (mem_powerset_len.1 h') /-- **Formula for the Number of Combinations** -/ @[simp] theorem card_powerset_len (n : ℕ) (s : finset α) : card (powerset_len n s) = nat.choose (card s) n := (card_pmap _ _ _).trans (card_powerset_len n s.1) @[simp] lemma powerset_len_zero (s : finset α) : finset.powerset_len 0 s = {∅} := begin ext, rw [mem_powerset_len, mem_singleton, card_eq_zero], refine ⟨λ h, h.2, λ h, by { rw h, exact ⟨empty_subset s, rfl⟩ }⟩, end @[simp] theorem powerset_len_empty (n : ℕ) {s : finset α} (h : s.card < n) : powerset_len n s = ∅ := finset.card_eq_zero.mp (by rw [card_powerset_len, nat.choose_eq_zero_of_lt h]) theorem powerset_len_eq_filter {n} {s : finset α} : powerset_len n s = (powerset s).filter (λ x, x.card = n) := by { ext, simp [mem_powerset_len] } lemma powerset_len_succ_insert [decidable_eq α] {x : α} {s : finset α} (h : x ∉ s) (n : ℕ) : powerset_len n.succ (insert x s) = powerset_len n.succ s ∪ (powerset_len n s).image (insert x) := begin rw [powerset_len_eq_filter, powerset_insert, filter_union, ←powerset_len_eq_filter], congr, rw [powerset_len_eq_filter, image_filter], congr' 1, ext t, simp only [mem_powerset, mem_filter, function.comp_app, and.congr_right_iff], intro ht, have : x ∉ t := λ H, h (ht H), simp [card_insert_of_not_mem this, nat.succ_inj'] end lemma powerset_len_nonempty {n : ℕ} {s : finset α} (h : n < s.card) : (powerset_len n s).nonempty := begin classical, induction s using finset.induction_on with x s hx IH generalizing n, { simpa using h }, { cases n, { simp }, { rw [card_insert_of_not_mem hx, nat.succ_lt_succ_iff] at h, rw powerset_len_succ_insert hx, refine nonempty.mono _ ((IH h).image (insert x)), convert (subset_union_right _ _) } } end @[simp] lemma powerset_len_self (s : finset α) : powerset_len s.card s = {s} := begin ext, rw [mem_powerset_len, mem_singleton], split, { exact λ ⟨hs, hc⟩, eq_of_subset_of_card_le hs hc.ge }, { rintro rfl, simp } end lemma powerset_card_bUnion [decidable_eq (finset α)] (s : finset α) : finset.powerset s = (range (s.card + 1)).bUnion (λ i, powerset_len i s) := begin refine ext (λ a, ⟨λ ha, _, λ ha, _ ⟩), { rw mem_bUnion, exact ⟨a.card, mem_range.mpr (nat.lt_succ_of_le (card_le_of_subset (mem_powerset.mp ha))), mem_powerset_len.mpr ⟨mem_powerset.mp ha, rfl⟩⟩ }, { rcases mem_bUnion.mp ha with ⟨i, hi, ha⟩, exact mem_powerset.mpr (mem_powerset_len.mp ha).1, } end lemma powerset_len_sup [decidable_eq α] (u : finset α) (n : ℕ) (hn : n < u.card) : (powerset_len n.succ u).sup id = u := begin apply le_antisymm, { simp_rw [finset.sup_le_iff, mem_powerset_len], rintros x ⟨h, -⟩, exact h }, { rw [sup_eq_bUnion, le_iff_subset, subset_iff], cases (nat.succ_le_of_lt hn).eq_or_lt with h' h', { simp [h'] }, { intros x hx, simp only [mem_bUnion, exists_prop, id.def], obtain ⟨t, ht⟩ : ∃ t, t ∈ powerset_len n (u.erase x) := powerset_len_nonempty _, { refine ⟨insert x t, _, mem_insert_self _ _⟩, rw [←insert_erase hx, powerset_len_succ_insert (not_mem_erase _ _)], exact mem_union_right _ (mem_image_of_mem _ ht) }, { rwa [card_erase_of_mem hx, lt_tsub_iff_right] } } } end @[simp] lemma powerset_len_card_add (s : finset α) {i : ℕ} (hi : 0 < i) : s.powerset_len (s.card + i) = ∅ := finset.powerset_len_empty _ (lt_add_of_pos_right (finset.card s) hi) @[simp] theorem map_val_val_powerset_len (s : finset α) (i : ℕ) : (s.powerset_len i).val.map finset.val = s.1.powerset_len i := by simp [finset.powerset_len, map_pmap, pmap_eq_map, map_id'] theorem powerset_len_map {β : Type*} (f : α ↪ β) (n : ℕ) (s : finset α) : powerset_len n (s.map f) = (powerset_len n s).map (map_embedding f).to_embedding := eq_of_veq $ multiset.map_injective (@eq_of_veq _) $ by simp_rw [map_val_val_powerset_len, map_val, multiset.map_map, function.comp, rel_embedding.coe_fn_to_embedding, map_embedding_apply, map_val, ←multiset.map_map _ val, map_val_val_powerset_len, multiset.powerset_len_map] end powerset_len end finset