/- Copyright (c) 2021 Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Lutz, Oliver Nash -/ /-! # Bracket Notation This file provides notation which can be used for the Lie bracket, for the commutator of two subgroups, and for other similar operations. ## Main Definitions * `has_bracket L M` for a binary operation that takes something in `L` and something in `M` and produces something in `M`. Defining an instance of this structure gives access to the notation `⁅ ⁆` ## Notation We introduce the notation `⁅x, y⁆` for the `bracket` of any `has_bracket` structure. Note that these are the Unicode "square with quill" brackets rather than the usual square brackets. -/ /-- The has_bracket class has three intended uses: 1. for certain binary operations on structures, like the product `⁅x, y⁆` of two elements `x`, `y` in a Lie algebra or the commutator of two elements `x` and `y` in a group. 2. for certain actions of one structure on another, like the action `⁅x, m⁆` of an element `x` of a Lie algebra on an element `m` in one of its modules (analogous to `has_smul` in the associative setting). 3. for binary operations on substructures, like the commutator `⁅H, K⁆` of two subgroups `H` and `K` of a group. -/ class has_bracket (L M : Type*) := (bracket : L → M → M) notation `⁅`x`,` y`⁆` := has_bracket.bracket x y