/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import data.bitvec.core import data.fin.basic import tactic.norm_num import tactic.monotonicity namespace bitvec instance (n : ℕ) : preorder (bitvec n) := preorder.lift bitvec.to_nat /-- convert `fin` to `bitvec` -/ def of_fin {n : ℕ} (i : fin $ 2^n) : bitvec n := bitvec.of_nat _ i.val lemma of_fin_val {n : ℕ} (i : fin $ 2^n) : (of_fin i).to_nat = i.val := by rw [of_fin,to_nat_of_nat,nat.mod_eq_of_lt]; apply i.is_lt /-- convert `bitvec` to `fin` -/ def to_fin {n : ℕ} (i : bitvec n) : fin $ 2^n := @fin.of_nat' _ ⟨pow_pos (by norm_num) _⟩ i.to_nat lemma add_lsb_eq_twice_add_one {x b} : add_lsb x b = 2 * x + cond b 1 0 := by simp [add_lsb,two_mul] lemma to_nat_eq_foldr_reverse {n : ℕ} (v : bitvec n) : v.to_nat = v.to_list.reverse.foldr (flip add_lsb) 0 := by rw [list.foldr_reverse, flip]; refl lemma to_nat_lt {n : ℕ} (v : bitvec n) : v.to_nat < 2^n := begin suffices : v.to_nat + 1 ≤ 2 ^ n, { simpa }, rw to_nat_eq_foldr_reverse, cases v with xs h, dsimp [bitvec.to_nat,bits_to_nat], rw ← list.length_reverse at h, generalize_hyp : xs.reverse = ys at ⊢ h, clear xs, induction ys generalizing n, { simp [← h] }, { simp only [←h, pow_add, flip, list.length, list.foldr, pow_one], rw [add_lsb_eq_twice_add_one], transitivity 2 * list.foldr (λ (x : bool) (y : ℕ), add_lsb y x) 0 ys_tl + 2 * 1, { ac_mono, rw two_mul, mono, cases ys_hd; simp }, { rw ← left_distrib, ac_mono, norm_num, apply ys_ih, refl } }, end lemma add_lsb_div_two {x b} : add_lsb x b / 2 = x := by cases b; simp only [nat.add_mul_div_left, add_lsb, ←two_mul, add_comm, nat.succ_pos', nat.mul_div_right, gt_iff_lt, zero_add, cond]; norm_num lemma to_bool_add_lsb_mod_two {x b} : to_bool (add_lsb x b % 2 = 1) = b := by cases b; simp only [to_bool_iff, nat.add_mul_mod_self_left, add_lsb, ←two_mul, add_comm, bool.to_bool_false, nat.mul_mod_right, zero_add, cond, zero_ne_one]; norm_num lemma of_nat_to_nat {n : ℕ} (v : bitvec n) : bitvec.of_nat _ v.to_nat = v := begin cases v with xs h, ext1, change vector.to_list _ = xs, dsimp [bitvec.to_nat,bits_to_nat], rw ← list.length_reverse at h, rw [← list.reverse_reverse xs,list.foldl_reverse], generalize_hyp : xs.reverse = ys at ⊢ h, clear xs, induction ys generalizing n, { cases h, simp [bitvec.of_nat] }, { simp only [←nat.succ_eq_add_one, list.length] at h, subst n, simp only [bitvec.of_nat, vector.to_list_cons, vector.to_list_nil, list.reverse_cons, vector.to_list_append, list.foldr], erw [add_lsb_div_two, to_bool_add_lsb_mod_two], congr, apply ys_ih, refl } end lemma to_fin_val {n : ℕ} (v : bitvec n) : (to_fin v : ℕ) = v.to_nat := by rw [to_fin, fin.coe_of_nat_eq_mod', nat.mod_eq_of_lt]; apply to_nat_lt lemma to_fin_le_to_fin_of_le {n} {v₀ v₁ : bitvec n} (h : v₀ ≤ v₁) : v₀.to_fin ≤ v₁.to_fin := show (v₀.to_fin : ℕ) ≤ v₁.to_fin, by rw [to_fin_val,to_fin_val]; exact h lemma of_fin_le_of_fin_of_le {n : ℕ} {i j : fin (2^n)} (h : i ≤ j) : of_fin i ≤ of_fin j := show (bitvec.of_nat n i).to_nat ≤ (bitvec.of_nat n j).to_nat, by { simp only [to_nat_of_nat, nat.mod_eq_of_lt, fin.is_lt], exact h } lemma to_fin_of_fin {n} (i : fin $ 2^n) : (of_fin i).to_fin = i := fin.eq_of_veq (by simp [to_fin_val, of_fin, to_nat_of_nat, nat.mod_eq_of_lt, i.is_lt]) lemma of_fin_to_fin {n} (v : bitvec n) : of_fin (to_fin v) = v := by dsimp [of_fin]; rw [to_fin_val, of_nat_to_nat] end bitvec