/- Copyright (c) 2022 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import algebraic_topology.simplicial_set /-! # The nerve of a category This file provides the definition of the nerve of a category `C`, which is a simplicial set `nerve C` (see [goerss-jardine-2009], Example I.1.4). ## References * [Paul G. Goerss, John F. Jardine, *Simplical Homotopy Theory*][goerss-jardine-2009] -/ open category_theory.category universes v u namespace category_theory /-- The nerve of a category -/ @[simps] def nerve (C : Type u) [category.{v} C] : sSet.{max u v} := { obj := λ Δ, (simplex_category.to_Cat.obj Δ.unop) ⥤ C, map := λ Δ₁ Δ₂ f x, simplex_category.to_Cat.map f.unop ⋙ x, map_id' := λ Δ, begin rw [unop_id, functor.map_id], ext x, apply functor.id_comp, end, } instance {C : Type*} [category C] {Δ : simplex_categoryᵒᵖ} : category ((nerve C).obj Δ) := (infer_instance : category ((simplex_category.to_Cat.obj Δ.unop) ⥤ C)) /-- The nerve of a category, as a functor `Cat ⥤ sSet` -/ @[simps] def nerve_functor : Cat ⥤ sSet := { obj := λ C, nerve C, map := λ C C' F, { app := λ Δ x, x ⋙ F, }, map_id' := λ C, begin ext Δ x, apply functor.comp_id, end, } end category_theory