/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebraic_geometry.presheafed_space import category_theory.limits.final import topology.sheaves.stalks /-! # Stalks for presheaved spaces This file lifts constructions of stalks and pushforwards of stalks to work with the category of presheafed spaces. Additionally, we prove that restriction of presheafed spaces does not change the stalks. -/ noncomputable theory universes v u v' u' open category_theory open category_theory.limits category_theory.category category_theory.functor open algebraic_geometry open topological_space open opposite variables {C : Type u} [category.{v} C] [has_colimits C] local attribute [tidy] tactic.op_induction' open Top.presheaf namespace algebraic_geometry.PresheafedSpace /-- The stalk at `x` of a `PresheafedSpace`. -/ abbreviation stalk (X : PresheafedSpace C) (x : X) : C := X.presheaf.stalk x /-- A morphism of presheafed spaces induces a morphism of stalks. -/ def stalk_map {X Y : PresheafedSpace.{v} C} (α : X ⟶ Y) (x : X) : Y.stalk (α.base x) ⟶ X.stalk x := (stalk_functor C (α.base x)).map (α.c) ≫ X.presheaf.stalk_pushforward C α.base x @[simp, elementwise, reassoc] lemma stalk_map_germ {X Y : PresheafedSpace.{v} C} (α : X ⟶ Y) (U : opens Y.carrier) (x : (opens.map α.base).obj U) : Y.presheaf.germ ⟨α.base x, x.2⟩ ≫ stalk_map α ↑x = α.c.app (op U) ≫ X.presheaf.germ x := by rw [stalk_map, stalk_functor_map_germ_assoc, stalk_pushforward_germ] section restrict /-- For an open embedding `f : U ⟶ X` and a point `x : U`, we get an isomorphism between the stalk of `X` at `f x` and the stalk of the restriction of `X` along `f` at t `x`. -/ def restrict_stalk_iso {U : Top} (X : PresheafedSpace.{v} C) {f : U ⟶ (X : Top.{v})} (h : open_embedding f) (x : U) : (X.restrict h).stalk x ≅ X.stalk (f x) := begin -- As a left adjoint, the functor `h.is_open_map.functor_nhds x` is initial. haveI := initial_of_adjunction (h.is_open_map.adjunction_nhds x), -- Typeclass resolution knows that the opposite of an initial functor is final. The result -- follows from the general fact that postcomposing with a final functor doesn't change colimits. exact final.colimit_iso (h.is_open_map.functor_nhds x).op ((open_nhds.inclusion (f x)).op ⋙ X.presheaf), end @[simp, elementwise, reassoc] lemma restrict_stalk_iso_hom_eq_germ {U : Top} (X : PresheafedSpace.{v} C) {f : U ⟶ (X : Top.{v})} (h : open_embedding f) (V : opens U) (x : U) (hx : x ∈ V) : (X.restrict h).presheaf.germ ⟨x, hx⟩ ≫ (restrict_stalk_iso X h x).hom = X.presheaf.germ ⟨f x, show f x ∈ h.is_open_map.functor.obj V, from ⟨x, hx, rfl⟩⟩ := colimit.ι_pre ((open_nhds.inclusion (f x)).op ⋙ X.presheaf) (h.is_open_map.functor_nhds x).op (op ⟨V, hx⟩) @[simp, elementwise, reassoc] lemma restrict_stalk_iso_inv_eq_germ {U : Top} (X : PresheafedSpace.{v} C) {f : U ⟶ (X : Top.{v})} (h : open_embedding f) (V : opens U) (x : U) (hx : x ∈ V) : X.presheaf.germ ⟨f x, show f x ∈ h.is_open_map.functor.obj V, from ⟨x, hx, rfl⟩⟩ ≫ (restrict_stalk_iso X h x).inv = (X.restrict h).presheaf.germ ⟨x, hx⟩ := by rw [← restrict_stalk_iso_hom_eq_germ, category.assoc, iso.hom_inv_id, category.comp_id] lemma restrict_stalk_iso_inv_eq_of_restrict {U : Top} (X : PresheafedSpace.{v} C) {f : U ⟶ (X : Top.{v})} (h : open_embedding f) (x : U) : (X.restrict_stalk_iso h x).inv = stalk_map (X.of_restrict h) x := begin ext V, induction V using opposite.rec, let i : (h.is_open_map.functor_nhds x).obj ((open_nhds.map f x).obj V) ⟶ V := hom_of_le (set.image_preimage_subset f _), erw [iso.comp_inv_eq, colimit.ι_map_assoc, colimit.ι_map_assoc, colimit.ι_pre], simp_rw category.assoc, erw colimit.ι_pre ((open_nhds.inclusion (f x)).op ⋙ X.presheaf) (h.is_open_map.functor_nhds x).op, erw ← X.presheaf.map_comp_assoc, exact (colimit.w ((open_nhds.inclusion (f x)).op ⋙ X.presheaf) i.op).symm, end instance of_restrict_stalk_map_is_iso {U : Top} (X : PresheafedSpace.{v} C) {f : U ⟶ (X : Top.{v})} (h : open_embedding f) (x : U) : is_iso (stalk_map (X.of_restrict h) x) := by { rw ← restrict_stalk_iso_inv_eq_of_restrict, apply_instance } end restrict namespace stalk_map @[simp] lemma id (X : PresheafedSpace.{v} C) (x : X) : stalk_map (𝟙 X) x = 𝟙 (X.stalk x) := begin dsimp [stalk_map], simp only [stalk_pushforward.id], rw [←map_comp], convert (stalk_functor C x).map_id X.presheaf, tidy, end -- TODO understand why this proof is still gross (i.e. requires using `erw`) @[simp] lemma comp {X Y Z : PresheafedSpace.{v} C} (α : X ⟶ Y) (β : Y ⟶ Z) (x : X) : stalk_map (α ≫ β) x = (stalk_map β (α.base x) : Z.stalk (β.base (α.base x)) ⟶ Y.stalk (α.base x)) ≫ (stalk_map α x : Y.stalk (α.base x) ⟶ X.stalk x) := begin dsimp [stalk_map, stalk_functor, stalk_pushforward], ext U, induction U using opposite.rec, cases U, simp only [colimit.ι_map_assoc, colimit.ι_pre_assoc, colimit.ι_pre, whisker_left_app, whisker_right_app, assoc, id_comp, map_id, map_comp], dsimp, simp only [map_id, assoc, pushforward.comp_inv_app], -- FIXME Why doesn't simp do this: erw [category_theory.functor.map_id], erw [category_theory.functor.map_id], erw [id_comp, id_comp], end /-- If `α = β` and `x = x'`, we would like to say that `stalk_map α x = stalk_map β x'`. Unfortunately, this equality is not well-formed, as their types are not _definitionally_ the same. To get a proper congruence lemma, we therefore have to introduce these `eq_to_hom` arrows on either side of the equality. -/ lemma congr {X Y : PresheafedSpace.{v} C} (α β : X ⟶ Y) (h₁ : α = β) (x x': X) (h₂ : x = x') : stalk_map α x ≫ eq_to_hom (show X.stalk x = X.stalk x', by rw h₂) = eq_to_hom (show Y.stalk (α.base x) = Y.stalk (β.base x'), by rw [h₁, h₂]) ≫ stalk_map β x' := stalk_hom_ext _ $ λ U hx, by { subst h₁, subst h₂, simp } lemma congr_hom {X Y : PresheafedSpace.{v} C} (α β : X ⟶ Y) (h : α = β) (x : X) : stalk_map α x = eq_to_hom (show Y.stalk (α.base x) = Y.stalk (β.base x), by rw h) ≫ stalk_map β x := by rw [← stalk_map.congr α β h x x rfl, eq_to_hom_refl, category.comp_id] lemma congr_point {X Y : PresheafedSpace.{v} C} (α : X ⟶ Y) (x x' : X) (h : x = x') : stalk_map α x ≫ eq_to_hom (show X.stalk x = X.stalk x', by rw h) = eq_to_hom (show Y.stalk (α.base x) = Y.stalk (α.base x'), by rw h) ≫ stalk_map α x' := by rw stalk_map.congr α α rfl x x' h instance is_iso {X Y : PresheafedSpace.{v} C} (α : X ⟶ Y) [is_iso α] (x : X) : is_iso (stalk_map α x) := { out := begin let β : Y ⟶ X := category_theory.inv α, have h_eq : (α ≫ β).base x = x, { rw [is_iso.hom_inv_id α, id_base, Top.id_app] }, -- Intuitively, the inverse of the stalk map of `α` at `x` should just be the stalk map of `β` -- at `α x`. Unfortunately, we have a problem with dependent type theory here: Because `x` -- is not *definitionally* equal to `β (α x)`, the map `stalk_map β (α x)` has not the correct -- type for an inverse. -- To get a proper inverse, we need to compose with the `eq_to_hom` arrow -- `X.stalk x ⟶ X.stalk ((α ≫ β).base x)`. refine ⟨eq_to_hom (show X.stalk x = X.stalk ((α ≫ β).base x), by rw h_eq) ≫ (stalk_map β (α.base x) : _), _, _⟩, { rw [← category.assoc, congr_point α x ((α ≫ β).base x) h_eq.symm, category.assoc], erw ← stalk_map.comp β α (α.base x), rw [congr_hom _ _ (is_iso.inv_hom_id α), stalk_map.id, eq_to_hom_trans_assoc, eq_to_hom_refl, category.id_comp] }, { rw [category.assoc, ← stalk_map.comp, congr_hom _ _ (is_iso.hom_inv_id α), stalk_map.id, eq_to_hom_trans_assoc, eq_to_hom_refl, category.id_comp] }, end } /-- An isomorphism between presheafed spaces induces an isomorphism of stalks. -/ def stalk_iso {X Y : PresheafedSpace.{v} C} (α : X ≅ Y) (x : X) : Y.stalk (α.hom.base x) ≅ X.stalk x := as_iso (stalk_map α.hom x) @[simp, reassoc, elementwise] lemma stalk_specializes_stalk_map {X Y : PresheafedSpace.{v} C} (f : X ⟶ Y) {x y : X} (h : x ⤳ y) : Y.presheaf.stalk_specializes (f.base.map_specializes h) ≫ stalk_map f x = stalk_map f y ≫ X.presheaf.stalk_specializes h := by { delta PresheafedSpace.stalk_map, simp [stalk_map] } end stalk_map end algebraic_geometry.PresheafedSpace