/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Callum Sutton, Yury Kudryashov -/ import group_theory.perm.basic /-! # Multiplicative and additive group automorphisms This file defines the automorphism group structure on `add_aut R := add_equiv R R` and `mul_aut R := mul_equiv R R`. ## Implementation notes The definition of multiplication in the automorphism groups agrees with function composition, multiplication in `equiv.perm`, and multiplication in `category_theory.End`, but not with `category_theory.comp`. This file is kept separate from `data/equiv/mul_add` so that `group_theory.perm` is free to use equivalences (and other files that use them) before the group structure is defined. ## Tags mul_aut, add_aut -/ variables {A : Type*} {M : Type*} {G : Type*} /-- The group of multiplicative automorphisms. -/ @[reducible, to_additive "The group of additive automorphisms."] def mul_aut (M : Type*) [has_mul M] := M ≃* M namespace mul_aut variables (M) [has_mul M] /-- The group operation on multiplicative automorphisms is defined by `λ g h, mul_equiv.trans h g`. This means that multiplication agrees with composition, `(g*h)(x) = g (h x)`. -/ instance : group (mul_aut M) := by refine_struct { mul := λ g h, mul_equiv.trans h g, one := mul_equiv.refl M, inv := mul_equiv.symm, div := _, npow := @npow_rec _ ⟨mul_equiv.refl M⟩ ⟨λ g h, mul_equiv.trans h g⟩, zpow := @zpow_rec _ ⟨mul_equiv.refl M⟩ ⟨λ g h, mul_equiv.trans h g⟩ ⟨mul_equiv.symm⟩ }; intros; ext; try { refl }; apply equiv.left_inv instance : inhabited (mul_aut M) := ⟨1⟩ @[simp] lemma coe_mul (e₁ e₂ : mul_aut M) : ⇑(e₁ * e₂) = e₁ ∘ e₂ := rfl @[simp] lemma coe_one : ⇑(1 : mul_aut M) = id := rfl lemma mul_def (e₁ e₂ : mul_aut M) : e₁ * e₂ = e₂.trans e₁ := rfl lemma one_def : (1 : mul_aut M) = mul_equiv.refl _ := rfl lemma inv_def (e₁ : mul_aut M) : e₁⁻¹ = e₁.symm := rfl @[simp] lemma mul_apply (e₁ e₂ : mul_aut M) (m : M) : (e₁ * e₂) m = e₁ (e₂ m) := rfl @[simp] lemma one_apply (m : M) : (1 : mul_aut M) m = m := rfl @[simp] lemma apply_inv_self (e : mul_aut M) (m : M) : e (e⁻¹ m) = m := mul_equiv.apply_symm_apply _ _ @[simp] lemma inv_apply_self (e : mul_aut M) (m : M) : e⁻¹ (e m) = m := mul_equiv.apply_symm_apply _ _ /-- Monoid hom from the group of multiplicative automorphisms to the group of permutations. -/ def to_perm : mul_aut M →* equiv.perm M := by refine_struct { to_fun := mul_equiv.to_equiv }; intros; refl /-- The tautological action by `mul_aut M` on `M`. This generalizes `function.End.apply_mul_action`. -/ instance apply_mul_distrib_mul_action {M} [monoid M] : mul_distrib_mul_action (mul_aut M) M := { smul := ($), one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl, smul_one := mul_equiv.map_one, smul_mul := mul_equiv.map_mul } @[simp] protected lemma smul_def {M} [monoid M] (f : mul_aut M) (a : M) : f • a = f a := rfl /-- `mul_aut.apply_mul_action` is faithful. -/ instance apply_has_faithful_smul {M} [monoid M] : has_faithful_smul (mul_aut M) M := ⟨λ _ _, mul_equiv.ext⟩ /-- Group conjugation, `mul_aut.conj g h = g * h * g⁻¹`, as a monoid homomorphism mapping multiplication in `G` into multiplication in the automorphism group `mul_aut G`. See also the type `conj_act G` for any group `G`, which has a `mul_action (conj_act G) G` instance where `conj G` acts on `G` by conjugation. -/ def conj [group G] : G →* mul_aut G := { to_fun := λ g, { to_fun := λ h, g * h * g⁻¹, inv_fun := λ h, g⁻¹ * h * g, left_inv := λ _, by simp [mul_assoc], right_inv := λ _, by simp [mul_assoc], map_mul' := by simp [mul_assoc] }, map_mul' := λ _ _, by ext; simp [mul_assoc], map_one' := by ext; simp [mul_assoc] } @[simp] lemma conj_apply [group G] (g h : G) : conj g h = g * h * g⁻¹ := rfl @[simp] lemma conj_symm_apply [group G] (g h : G) : (conj g).symm h = g⁻¹ * h * g := rfl @[simp] lemma conj_inv_apply [group G] (g h : G) : (conj g)⁻¹ h = g⁻¹ * h * g := rfl end mul_aut namespace add_aut variables (A) [has_add A] /-- The group operation on additive automorphisms is defined by `λ g h, add_equiv.trans h g`. This means that multiplication agrees with composition, `(g*h)(x) = g (h x)`. -/ instance group : group (add_aut A) := by refine_struct { mul := λ g h, add_equiv.trans h g, one := add_equiv.refl A, inv := add_equiv.symm, div := _, npow := @npow_rec _ ⟨add_equiv.refl A⟩ ⟨λ g h, add_equiv.trans h g⟩, zpow := @zpow_rec _ ⟨add_equiv.refl A⟩ ⟨λ g h, add_equiv.trans h g⟩ ⟨add_equiv.symm⟩ }; intros; ext; try { refl }; apply equiv.left_inv instance : inhabited (add_aut A) := ⟨1⟩ @[simp] lemma coe_mul (e₁ e₂ : add_aut A) : ⇑(e₁ * e₂) = e₁ ∘ e₂ := rfl @[simp] lemma coe_one : ⇑(1 : add_aut A) = id := rfl lemma mul_def (e₁ e₂ : add_aut A) : e₁ * e₂ = e₂.trans e₁ := rfl lemma one_def : (1 : add_aut A) = add_equiv.refl _ := rfl lemma inv_def (e₁ : add_aut A) : e₁⁻¹ = e₁.symm := rfl @[simp] lemma mul_apply (e₁ e₂ : add_aut A) (a : A) : (e₁ * e₂) a = e₁ (e₂ a) := rfl @[simp] lemma one_apply (a : A) : (1 : add_aut A) a = a := rfl @[simp] lemma apply_inv_self (e : add_aut A) (a : A) : e⁻¹ (e a) = a := add_equiv.apply_symm_apply _ _ @[simp] lemma inv_apply_self (e : add_aut A) (a : A) : e (e⁻¹ a) = a := add_equiv.apply_symm_apply _ _ /-- Monoid hom from the group of multiplicative automorphisms to the group of permutations. -/ def to_perm : add_aut A →* equiv.perm A := by refine_struct { to_fun := add_equiv.to_equiv }; intros; refl /-- The tautological action by `add_aut A` on `A`. This generalizes `function.End.apply_mul_action`. -/ instance apply_distrib_mul_action {A} [add_monoid A] : distrib_mul_action (add_aut A) A := { smul := ($), smul_zero := add_equiv.map_zero, smul_add := add_equiv.map_add, one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl } @[simp] protected lemma smul_def {A} [add_monoid A] (f : add_aut A) (a : A) : f • a = f a := rfl /-- `add_aut.apply_distrib_mul_action` is faithful. -/ instance apply_has_faithful_smul {A} [add_monoid A] : has_faithful_smul (add_aut A) A := ⟨λ _ _, add_equiv.ext⟩ /-- Additive group conjugation, `add_aut.conj g h = g + h - g`, as an additive monoid homomorphism mapping addition in `G` into multiplication in the automorphism group `add_aut G` (written additively in order to define the map). -/ def conj [add_group G] : G →+ additive (add_aut G) := { to_fun := λ g, @additive.of_mul (add_aut G) { to_fun := λ h, g + h + -g, -- this definition is chosen to match `mul_aut.conj` inv_fun := λ h, -g + h + g, left_inv := λ _, by simp [add_assoc], right_inv := λ _, by simp [add_assoc], map_add' := by simp [add_assoc] }, map_add' := λ _ _, by apply additive.to_mul.injective; ext; simp [add_assoc], map_zero' := by ext; simpa } @[simp] lemma conj_apply [add_group G] (g h : G) : conj g h = g + h + -g := rfl @[simp] lemma conj_symm_apply [add_group G] (g h : G) : (conj g).symm h = -g + h + g := rfl @[simp] lemma conj_inv_apply [add_group G] (g h : G) : (-(conj g)) h = -g + h + g := rfl end add_aut