import for_mathlib.Profinite.extend import invpoly.basic import pseudo_normed_group.category noncomputable theory universe u open_locale nnreal open category_theory open invpoly variables (r : ℝ≥0) [fact (0 < r)] [fact (r < 1)] open ProFiltPseuNormGrpWithTinv₁ /-- The functor represented by `ℤ[T⁻¹]`, i.e., sending a finite type `S` to the group `S → ℤ[T⁻¹]`, equipped with the filtration coming from the usual `r`-norm, i.e. the one sending `s ↦ ∑aₙ(s)T⁻ⁿ` to `∑_{s,n}∥aₙ(s)∥₊r⁻ⁿ`. We consider this object as a profinitely-filtered normed group equipped with an action of `T⁻¹`, given by multiplication. -/ @[simps] def Fintype_invpoly : Fintype.{u} ⥤ ProFiltPseuNormGrpWithTinv₁.{u} r := { obj := λ S, ⟨invpoly r S, λ F, ⟨∥F∥₊, le_rfl⟩⟩, map := λ S T f, map_hom f, map_id' := λ S, by { ext1, simp only [map_hom, map_id], refl, }, map_comp' := λ S S' S'' f g, by { ext1, simp only [map_hom, map_comp], refl } }