import free_pfpng.setup . noncomputable theory open_locale classical open category_theory open opposite universe u lemma Profinite.mono_free'_to_condensed_free_pfpng_aux (S B : Profinite.{u}) (b : B) (T : discrete_quotient S) (t : S.to_Condensed.val.obj (op B) →₀ ℤ) : let e : S.to_Condensed.val.obj (op B) → S.condensed_free_pfpng.val.obj (op B) := λ f, (S.to_condensed_free_pfpng.val.app (op B) f), ι : S.to_Condensed.val.obj (op B) → S := λ f, (ulift.down f).1 b in ((limits.limit.π (S.fintype_diagram ⋙ forget Fintype ⋙ AddCommGroup.free' ⋙ Ab.ulift) T) (S.condensed_free_pfpng_specialize B b (free'_lift e t))).down = t.map_domain (T.proj ∘ ι) := begin dsimp, revert t, rw ← function.funext_iff, dsimp, change ulift.down ∘ _ = _, apply finsupp.fun_ext, { intros, simp only [function.comp_app, map_add, ulift.add_down, eq_self_iff_true, forall_const] }, { intros, simp only [function.comp_app, map_zero, ulift.zero_down, finsupp.map_domain_add] }, { intros, simp only [function.comp_app, finsupp.map_domain_single, free'_lift_eq_finsupp_lift], dsimp [Profinite.condensed_free_pfpng_specialize], simp only [← comp_apply], erw limits.limit.lift_π, simp only [finsupp.sum_single_index, zero_smul, one_zsmul], ext i, dsimp [Profinite.condensed_free_pfpng_specialize_cone, finsupp.single, Profinite.free_pfpng_π, Profinite.to_free_pfpng], erw ProFiltPseuNormGrp₁.limit_π_coe_eq, simp only [← comp_apply, category.assoc], dsimp [Profinite.free_pfpng_level_iso, limits.is_limit.cone_point_unique_up_to_iso], simp only [← comp_apply, category.assoc], erw (limits.is_limit_of_preserves (ProFiltPseuNormGrp₁.level.obj 1) (limits.limit.is_limit (S.fintype_diagram ⋙ free_pfpng_functor))).fac, erw limits.limit.lift_π, refl }, end lemma Profinite.specialization_eq_zero_of_eq_zero (S B : Profinite.{u}) (b : B) (t : S.to_Condensed.val.obj (op B) →₀ ℤ) (ht : free'_lift (S.to_condensed_free_pfpng.val.app (op B)) t = 0) : t.map_domain (λ f, (ulift.down f).1 b) = 0 := begin apply free_pfpng.discrete_quotient_separates_points' S, intros T, apply_fun (λ e, S.condensed_free_pfpng_specialize B b e) at ht, rw add_monoid_hom.map_zero at ht, apply_fun (λ e, limits.limit.π (S.fintype_diagram ⋙ forget Fintype ⋙ AddCommGroup.free' ⋙ Ab.ulift) T e) at ht, rw add_monoid_hom.map_zero at ht, apply_fun ulift.down at ht, dsimp [AddCommGroup.free'], rw ← finsupp.map_domain_comp, have := S.mono_free'_to_condensed_free_pfpng_aux B b T t, dsimp at this, erw ← this, exact ht end lemma Profinite.adj'_hom_equiv_symm_eq_free'_lift (S B : Profinite.{u}) : (((AddCommGroup.adj'.whisker_right Profinite.{u}ᵒᵖ).hom_equiv S.to_Condensed.val S.condensed_free_pfpng.val).symm S.to_condensed_free_pfpng.val).app (op B) = free'_lift (S.to_condensed_free_pfpng.val.app (op B)) := begin ext u v, dsimp [free'_lift], simp only [adjunction.hom_equiv_counit, whiskering_right_obj_map, nat_trans.comp_app, whisker_right_app, adjunction.whisker_right_counit_app_app], end open_locale big_operators lemma finsupp.map_domain_ne_zero_of_ne_zero_of_inj_on {α β γ : Type*} [add_comm_group β] (t : α →₀ β) (ht : t ≠ 0) (f : α → γ) (hinj : set.inj_on f t.support) : t.map_domain f ≠ 0 := begin contrapose! ht, have : ∀ (e : γ) (he : e ∈ (t.map_domain f).support), ∃ (q : α) (hq : q ∈ t.support), f q = e, { intros e he, by_contra c, push_neg at c, simp only [finsupp.mem_support_iff, ne.def] at he, apply he, erw finset.sum_apply', apply finset.sum_eq_zero, intros a ha, dsimp [finsupp.single], rw if_neg, apply c, exact ha }, choose q hq hh using this, let ι : (t.map_domain f).support → t.support := λ e, ⟨q e.1 e.2, hq e.1 e.2⟩, have hι : function.surjective ι, { rintros ⟨e,he⟩, use f e, { simp only [finsupp.mem_support_iff, ne.def], rw finsupp.map_domain_apply' _ _ (set.subset.refl _) hinj he, simpa using he }, { ext, dsimp, apply hinj, apply hq, apply he, apply hh } }, have : (t.map_domain f).support = ∅, by simpa using ht, suffices : t.support = ∅, by simpa using this, by_contra c, change _ ≠ _ at c, erw ← finset.nonempty_iff_ne_empty at c, obtain ⟨c,hc⟩ := c, obtain ⟨⟨c,hc⟩,ee⟩ := hι ⟨c,hc⟩, rw this at hc, simpa using hc, end lemma finsupp.lift_map_domain {γ α β : Type*} [add_comm_group β] (f : α → β) (ι : γ → α) : (finsupp.lift _ ℤ _ f) ∘ finsupp.map_domain ι = finsupp.lift _ ℤ _ (f ∘ ι) := begin apply finsupp.fun_ext, { intros x y, dsimp only [function.comp_apply], simp only [finsupp.map_domain_add], erw ((finsupp.lift β ℤ α) f).to_add_monoid_hom.map_add, refl }, { intros x y, erw ((finsupp.lift β ℤ γ) (f ∘ ι)).to_add_monoid_hom.map_add, refl }, { intros x, simp }, end lemma finsupp.lift_map_domain_apply {γ α β : Type*} [add_comm_group β] (f : α → β) (ι : γ → α) (e : γ →₀ ℤ) : (finsupp.lift _ ℤ _ f).to_add_monoid_hom (e.map_domain ι) = finsupp.lift _ ℤ _ (f ∘ ι) e := begin rw ← finsupp.lift_map_domain, refl, end lemma finsupp.card_supp_map_domain_lt {α β γ : Type*} [add_comm_group γ] (f : α → β) (t : α →₀ γ) (u v : α) (huv : u ≠ v) (hu : u ∈ t.support) (hv : v ∈ t.support) (hf : f u = f v) : (t.map_domain f).support.card < t.support.card := begin classical, have key : (finsupp.map_domain f t).support ⊆ _ := finsupp.map_domain_support, have : (finsupp.map_domain f t).support.card ≤ (t.support.image f).card := finset.card_le_of_subset key, refine lt_of_le_of_lt this _, have key' : (t.support.image f).card ≤ t.support.card := finset.card_image_le, apply lt_of_le_of_ne key', change ¬ _, rw finset.card_image_iff, dsimp [set.inj_on], push_neg, use [u, hu, v, hv, hf], end lemma Profinite.mono_free'_to_condensed_free_pfpng_induction_aux (n : ℕ) : ∀ (S B : Profinite.{u}) (t : S.to_Condensed.val.obj (op B) →₀ ℤ), t.support.card ≤ n → (free'_lift (S.to_condensed_free_pfpng.val.app (op B))) t = 0 → (∀ (b : ↥B), finsupp.map_domain (λ f : S.to_Condensed.val.obj (op B), (ulift.down f).1 b) t = 0) → (∃ (α : Type u) [_inst_1 : fintype α] (X : α → Profinite) (π : Π (a : α), X a ⟶ B) (surj : ∀ (b : ↥B), ∃ (a : α) (x : ↥(X a)), (π a) x = b), ∀ (a : α), finsupp.map_domain (S.to_Condensed.val.map (π a).op) t = 0) := begin /- TODO: This proof is very slow. It would be better to pull out a few of the `have` statements into separate lemmas to (hopefully) speed this up. -/ induction n, case nat.zero { intros S B t ht, simp at ht, rw ht, intros h1 h2, use [punit, infer_instance, λ _, B, λ _, 𝟙 _], split, { intros b, use [punit.star, b], refl }, { intros _, rw finsupp.map_domain_zero, } }, case nat.succ : n hn { intros S B t ht1 ht2 H, by_cases ht1' : t.support.card = n+1, swap, { apply hn, exact nat.le_of_lt_succ (nat.lt_of_le_and_ne ht1 ht1'), assumption' }, clear ht1, let F := t.support, let e : F → (B ⟶ S) := λ f, f.1.1, obtain ⟨Q,h1,h2,ee,-⟩ : ∃ (α : Type u) (hα1 : fintype α) (hα2 : linear_order α) (ee : α ≃ F), true, { refine ⟨ulift (fin (fintype.card F)), infer_instance, is_well_order.linear_order well_ordering_rel, equiv.ulift.trans (fintype.equiv_fin _).symm, trivial⟩, }, resetI, let E₀ := { a : Q × Q | a.1 < a.2 }, let X₀ : E₀ → Profinite.{u} := λ i, Profinite.equalizer (e (ee i.1.1)) (e (ee i.1.2)), let π₀ : Π (i : E₀), X₀ i ⟶ B := λ i, Profinite.equalizer.ι _ _, have surj₀ : ∀ (b : B), ∃ (e₀ : E₀) (x : X₀ e₀), π₀ _ x = b, { intro b, specialize H b, contrapose! H, have key : ∀ (i j : Q) (h : i < j), e (ee i) b ≠ e (ee j) b, { intros i j h, specialize H ⟨⟨i,j⟩, h⟩, intro c, specialize H, dsimp [X₀] at H, specialize H ⟨b, c⟩, apply H, refl }, apply finsupp.map_domain_ne_zero_of_ne_zero_of_inj_on, { intro c, rw c at ht1', simpa using ht1' }, { intros x hx y hy hxy, dsimp at hxy, let i : Q := ee.symm ⟨x,hx⟩, let j : Q := ee.symm ⟨y,hy⟩, rcases lt_trichotomy i j with (hhh|hhh|hhh), { specialize key i j hhh, contrapose hxy, convert key, { dsimp [i], rw ee.apply_symm_apply, refl }, { dsimp [j], rw ee.apply_symm_apply, refl } }, { apply_fun (λ q, (ee q).1) at hhh, dsimp [i,j] at hhh, simp_rw ee.apply_symm_apply at hhh, exact hhh }, { specialize key j i hhh, contrapose hxy, convert key.symm, { dsimp [j], rw ee.apply_symm_apply, refl }, { dsimp [i], rw ee.apply_symm_apply, refl } } } }, let f₀ : Π (i : E₀), S.to_Condensed.val.obj (op B) → S.to_Condensed.val.obj (op (X₀ i)) := λ i, S.to_Condensed.val.map (π₀ i).op, let t₀ : Π (i : E₀), S.to_Condensed.val.obj (op (X₀ i)) →₀ ℤ := λ i, t.map_domain (f₀ i), have card₀ : ∀ (i : E₀), (t₀ i).support.card ≤ n, { intros i, suffices : (t₀ i).support.card < n + 1, by exact nat.lt_succ_iff.mp this, rw ← ht1', fapply finsupp.card_supp_map_domain_lt, refine (ee i.1.1).1, refine (ee i.1.2).1, { change ¬ _, erw ← subtype.ext_iff, apply ee.injective.ne, apply ne_of_lt, exact i.2 }, refine (ee i.1.1).2, refine (ee i.1.2).2, { dsimp [f₀, π₀, Profinite.to_Condensed], ext1, dsimp, -- missing Profinite.equalizer.condition ext t, exact t.2 } }, have lift₀ : ∀ (i : E₀), free'_lift (S.to_condensed_free_pfpng.val.app (op (X₀ i))) (t₀ i) = 0, { intros i, rw free'_lift_eq_finsupp_lift, dsimp only [t₀, f₀], apply_fun (λ q, S.condensed_free_pfpng.val.map (π₀ i).op q) at ht2, rw [add_monoid_hom.map_zero, free'_lift_eq_finsupp_lift] at ht2, convert ht2, rw finsupp.lift_map_domain_apply, dsimp [finsupp.lift], rw (S.condensed_free_pfpng.val.map (π₀ i).op).map_finsupp_sum, refl }, have map₀ : ∀ (i : E₀) (b : ↥(X₀ i)), finsupp.map_domain (λ (f : S.to_Condensed.val.obj (op (X₀ i))), f.down.to_fun b) (t₀ i) = 0, { intros i b, dsimp [t₀], rw ← finsupp.map_domain_comp, exact H (π₀ i b) }, have key := λ i, hn S (X₀ i) (t₀ i) (card₀ i) (lift₀ i) (map₀ i), choose A hA X₁ π₁ surj₁ key using key, resetI, let E := Σ (e : E₀), A e, let X : E → Profinite.{u} := λ i, X₁ i.1 i.2, let π : Π (e : E), X e ⟶ B := λ e, π₁ e.1 e.2 ≫ π₀ e.1, use [E, infer_instance, X, π], split, { intros b, obtain ⟨e₀,x,hx⟩ := surj₀ b, obtain ⟨i,q,hq⟩ := surj₁ e₀ x, use [⟨e₀,i⟩,q], dsimp [π], rw [hq, hx] }, { intros a, dsimp [π], rw functor.map_comp, erw finsupp.map_domain_comp, apply key } }, end instance Profinite.mono_free'_to_condensed_free_pfpng (S : Profinite.{u}) : mono S.free'_to_condensed_free_pfpng := begin apply presheaf_to_Condensed_Ab_map_mono_of_exists, intros B t ht, let e : S.to_Condensed.val.obj (op B) → S.condensed_free_pfpng.val.obj (op B) := λ f, (S.to_condensed_free_pfpng.val.app (op B) f), dsimp at t ht, replace ht : free'_lift e t = 0, by rwa ← S.adj'_hom_equiv_symm_eq_free'_lift, let ι : Π b : B, S.to_Condensed.val.obj (op B) → S := λ b f, (ulift.down f).1 b, have aux : ∀ b : B, t.map_domain (ι b) = 0 := λ b, S.specialization_eq_zero_of_eq_zero B b t ht, dsimp, apply Profinite.mono_free'_to_condensed_free_pfpng_induction_aux, refl, assumption', end