import free_pfpng.setup noncomputable theory open_locale classical big_operators open category_theory open opposite universe u instance Condensed_Ab_to_CondensedSet_faithful : faithful Condensed_Ab_to_CondensedSet := { map_injective' := begin intros X Y f g h, ext W t : 4, apply_fun (λ e, e.val.app W t) at h, dsimp at h, exact h end } lemma category_theory.epi_to_colimit_of_exists {J : Type u} [small_category J] {C : Type*} [category.{u} C] {F : J ⥤ C} (T : C) (E : limits.cocone F) (hE : limits.is_colimit E) (f : T ⟶ E.X) (h : ∀ j : J, ∃ (Z : C) (p : Z ⟶ T) (q : Z ⟶ F.obj j) (hq : epi q), q ≫ E.ι.app j = p ≫ f) : epi f := begin constructor, intros W a b hh, apply hE.hom_ext, intros j, specialize h j, obtain ⟨Z,p,q,hq,w⟩ := h, resetI, rw ← cancel_epi q, simp_rw [← category.assoc, w, category.assoc, hh], end lemma epi_Profinite_to_Condensed_map_of_epi {X Y : Profinite.{u}} (f : X ⟶ Y) [hf : epi f] : epi (Profinite_to_Condensed.map f) := begin constructor, intros Z a b h, ext W q : 34, induction W using opposite.rec, have hZ := Z.2, rw is_sheaf_iff_is_sheaf_of_type at hZ, rw Z.val.is_proetale_sheaf_of_types_tfae.out 0 1 at hZ, let q' := q.down, dsimp at q q', dsimp [functor.is_proetale_sheaf_of_types] at hZ, specialize hZ punit W (λ _, Profinite.pullback f q') (λ _, Profinite.pullback.snd _ _) _ _, { intro w, rw Profinite.epi_iff_surjective at hf, obtain ⟨x, hx⟩ := hf (q' w), refine ⟨punit.star, ⟨(x, w), hx⟩, rfl⟩, }, { intros i, dsimp, refine Z.val.map _ (b.val.app (op W) q), refine quiver.hom.op _, exact Profinite.pullback.snd _ _ }, specialize hZ _, { clear hZ, rintro ⟨⟩ ⟨⟩ S g₁ g₂ H, dsimp only at H, apply_fun (λ φ, Z.val.map φ.op (b.val.app (op W) q)) at H, simp only [op_comp, Z.val.map_comp] at H, exact H, }, obtain ⟨t,ht1,ht2⟩ := hZ, have : b.val.app (op W) q = t, { apply ht2, intros i, refl }, rw this, apply ht2, intros i, dsimp, change (a.val.app (op W) ≫ Z.val.map _) q = (b.val.app (op W) ≫ Z.val.map _) q, simp only [← nat_trans.naturality], dsimp, apply_fun (λ e, Profinite_to_Condensed.map (Profinite.pullback.fst f q') ≫ e) at h, apply_fun (λ e, e.val.app (op (Profinite.pullback f q'))) at h, dsimp at h, let i : (Profinite.pullback f q').to_Condensed.val.obj (op (Profinite.pullback f q')) := ulift.up (𝟙 _), apply_fun (λ e, e i) at h, dsimp [ulift_functor] at h, convert h, all_goals { ext1, dsimp [Profinite.to_Condensed], simp only [category.id_comp, Profinite.pullback.condition] }, end /- inductive pmz : set ℤ | neg_one : pmz (-1) | zero : pmz 0 | one : pmz 1 def pmz_eq : pmz = {0,1,-1} := begin ext, split, { intros h, cases h, right, right, simpa, left, simp, right, left, simp }, { intros h, simp at h, rcases h with (rfl|rfl|rfl), apply pmz.zero, apply pmz.one, apply pmz.neg_one } end lemma pmz_finite : set.finite pmz := by simp [pmz_eq] instance fintype_pmz : fintype pmz := pmz_finite.fintype -/ --abbreviation Profinite.pow (S : Profinite.{u}) (n : ℕ) : Profinite.{u} := --Profinite.product (λ i : fin n, S) /-- `S.pmz n` is `(S × {-1,0,1})^n`. -/ def Profinite.pmz (S : Profinite.{u}) (n : ℕ) : Profinite.{u} := Profinite.sigma $ λ (x : ulift.{u} (fin n → sign_type)), S.pow n /-- the canonical map of condensed sets `(S × {-1,0,1})^n ⟶ ℤ[S]` -/ def Profinite.pmz_to_free' (S : Profinite.{u}) (n : ℕ) : (S.pmz n).to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj S.free' := (Profinite.to_Condensed_equiv (S.pmz n) (Condensed_Ab_to_CondensedSet.obj S.free')).symm $ (CondensedSet.val_obj_sigma_equiv (λ (f : ulift.{u} (fin n → sign_type)), S.pow n) (Condensed_Ab_to_CondensedSet.obj S.free')).symm $ λ (f : ulift.{u} (fin n → sign_type)), let e := proetale_topology.to_sheafify (S.to_Condensed.val ⋙ AddCommGroup.free') in e.app (op $ S.pow n) $ ∑ i : fin n, finsupp.single (ulift.up $ Profinite.product.π _ i) (f.down i : ℤ) def Profinite.pmz_functor (n : ℕ) : Profinite.{u} ⥤ Profinite.{u} := { obj := λ S, S.pmz n, map := λ S T f, Profinite.sigma.desc _ $ λ e, (Profinite.product.lift (λ i : fin n, T) (λ i, Profinite.product.π _ i ≫ f)) ≫ Profinite.sigma.ι _ e, map_id' := begin intros X, apply Profinite.sigma.hom_ext, intros e, erw category.comp_id, refl, end, map_comp' := begin intros X Y Z f g, apply Profinite.sigma.hom_ext, intros e, dsimp, simp, erw [Profinite.sigma.ι_desc], refl, end } def Profinite.pmz_diagram (S : Profinite.{u}) (n : ℕ) : discrete_quotient S ⥤ Profinite.{u} := S.diagram ⋙ Profinite.pmz_functor n def Profinite.pmz_cone (S : Profinite.{u}) (n : ℕ) : limits.cone (S.pmz_diagram n) := (Profinite.pmz_functor n).map_cone S.as_limit_cone def Profinite.sigma_functor {J : Type u} [small_category J] (F : J ⥤ Profinite.{u}) (α : Type u) [fintype α] : J ⥤ Profinite.{u} := { obj := λ j, Profinite.sigma (λ a : α, F.obj j), map := λ i j e, Profinite.sigma.desc _ $ λ a, F.map e ≫ Profinite.sigma.ι _ a, map_id' := begin intros j, apply Profinite.sigma.hom_ext, intros a, simp, end, map_comp' := begin intros i j k e f, apply Profinite.sigma.hom_ext, intros a, simp, end } def Profinite.sigma_cone {J : Type u} [small_category J] {F : J ⥤ Profinite.{u}} (α : Type u) [fintype α] (E : limits.cone F) : limits.cone (Profinite.sigma_functor F α) := { X := Profinite.sigma (λ a : α, E.X), π := { app := λ j, Profinite.sigma.desc _ $ λ a, E.π.app j ≫ Profinite.sigma.ι _ a, naturality' := begin intros i j e, dsimp, apply Profinite.sigma.hom_ext, intros a, simp, dsimp [Profinite.sigma_functor], simp, end } } def Profinite.sigma_to_limit {J : Type u} [small_category J] (F : J ⥤ Profinite.{u}) (α : Type u) [fintype α] (E : limits.cone F) : (Profinite.sigma_cone α E).X ⟶ (Profinite.limit_cone (Profinite.sigma_functor F α)).X := Profinite.sigma.desc _ $ λ a, (Profinite.limit_cone_is_limit (Profinite.sigma_functor F α)).lift ⟨E.X, { app := λ j, E.π.app j ≫ Profinite.sigma.ι _ a, naturality' := begin intros i j e, dsimp [Profinite.sigma_functor], simp, end }⟩ lemma Profinite.exists_of_sigma_limit {J : Type u} [small_category J] (F : J ⥤ Profinite.{u}) (α : Type u) [fintype α] [is_cofiltered J] (t : (Profinite.limit_cone (Profinite.sigma_functor F α)).X) : ∃ (a₀ : α) (t₀ : (Profinite.limit_cone F).X), ∀ j : J, Profinite.sigma.ι _ a₀ ((Profinite.limit_cone F).π.app j t₀) = (Profinite.limit_cone (Profinite.sigma_functor F α)).π.app j t := begin rcases t with ⟨t,ht⟩, dsimp at ht, obtain ⟨j₀⟩ : nonempty J := is_cofiltered.nonempty, let a₀ := (t j₀).1, use a₀, have h1 : ∀ ⦃i j : J⦄ (f : i ⟶ j), (t i).1 = (t j).1, { intros i j e, specialize ht e, apply_fun (λ q, q.1) at ht, cases t i, exact ht }, have h2 : ∀ j : J, (t j).1 = a₀, { intros j, let j₁ := is_cofiltered.min j j₀, rw ← h1 (is_cofiltered.min_to_left j j₀), dsimp [a₀], rw ← h1 (is_cofiltered.min_to_right j j₀) }, let t₀ : (Profinite.limit_cone F).X := ⟨_,_⟩, rotate, { intros j, exact (t j).2 }, { intros i j e, specialize ht e, cases (t i), dsimp [Profinite.sigma_functor, Profinite.sigma.desc, Profinite.sigma.ι] at ht, cases t j, erw sigma.mk.inj_iff at ht, exact eq_of_heq ht.2 }, use t₀, intros j, dsimp [Profinite.limit_cone, Profinite.sigma_functor, Profinite.sigma.ι, Profinite.sigma.desc, CompHaus.limit_cone, Top.limit_cone], ext, exact (h2 _).symm, refl, end lemma Profinite.bijective_sigma_to_limit {J : Type u} [small_category J] (F : J ⥤ Profinite.{u}) (α : Type u) [fintype α] (E : limits.cone F) (hE : limits.is_limit E) [is_cofiltered J] : function.bijective (Profinite.sigma_to_limit F α E) := begin split, { rintros ⟨a,x⟩ ⟨b,y⟩ h, dsimp [Profinite.sigma_to_limit, Profinite.sigma.desc, Profinite.limit_cone_is_limit, CompHaus.limit_cone_is_limit, Top.limit_cone_is_limit] at h, apply_fun (λ e, e.1) at h, have hh := h, obtain ⟨j₀⟩ : nonempty J := is_cofiltered.nonempty, apply_fun (λ e, (e j₀).1) at h, dsimp [Profinite.sigma.ι] at h, subst h, ext, refl, apply heq_of_eq, apply limits.concrete.is_limit_ext _ hE, intros jj, apply_fun (λ e, e jj) at hh, erw sigma.mk.inj_iff at hh, exact eq_of_heq hh.2 }, { rintros t, obtain ⟨a,s,ht⟩ := Profinite.exists_of_sigma_limit F α t, use a, let EE : E.X ≅ (Profinite.limit_cone F).X := hE.cone_point_unique_up_to_iso (Profinite.limit_cone_is_limit _), use EE.inv s, dsimp, ext j : 2, convert ht j, ext, refl, apply heq_of_eq, change ((hE.lift (Profinite.limit_cone F)) ≫ E.π.app j) s = _, rw hE.fac, refl } end lemma Profinite.is_iso_lift_sigma_cone {J : Type u} [small_category J] {F : J ⥤ Profinite.{u}} (α : Type u) [fintype α] [is_cofiltered J] (E : limits.cone F) (hE : limits.is_limit E) : is_iso ((Profinite.limit_cone_is_limit _).lift (Profinite.sigma_cone α E)) := begin apply Profinite.is_iso_of_bijective, convert Profinite.bijective_sigma_to_limit F α E hE, symmetry, apply (Profinite.limit_cone_is_limit (Profinite.sigma_functor F α)).uniq, intros j, apply Profinite.sigma.hom_ext, intros a, refl, end def Profinite.sigma_cone_is_limit {J : Type u} [small_category J] {F : J ⥤ Profinite.{u}} (α : Type u) [fintype α] [is_cofiltered J] (E : limits.cone F) (hE : limits.is_limit E) : limits.is_limit (Profinite.sigma_cone α E) := begin haveI : is_iso ((Profinite.limit_cone_is_limit _).lift (Profinite.sigma_cone α E)) := Profinite.is_iso_lift_sigma_cone α E hE, apply limits.is_limit.of_point_iso (Profinite.limit_cone_is_limit _), assumption end def Profinite.pmz_to_limit (S : Profinite.{u}) (n : ℕ) : S.pmz n ⟶ (Profinite.limit_cone (S.pmz_diagram n)).X := Profinite.sigma.desc _ $ λ f, (Profinite.limit_cone_is_limit (S.pmz_diagram n)).lift ⟨S.pow n, { app := λ T, Profinite.map_pow (S.as_limit_cone.π.app T) n ≫ Profinite.sigma.ι _ f, naturality' := begin intros A B e, dsimp [Profinite.pmz_diagram, Profinite.pmz_functor], simpa, end }⟩ def Profinite.pow_functor (n : ℕ) : Profinite.{u} ⥤ Profinite.{u} := { obj := λ S, S.pow n, map := λ S T f, Profinite.map_pow f n, map_id' := begin intros X, apply Profinite.product.hom_ext, intros i, dsimp [Profinite.map_pow], simp, end, map_comp' := begin intros X Y Z f g, apply Profinite.product.hom_ext, intros i, dsimp [Profinite.map_pow], simp, end } def Profinite.pow_cone {J : Type u} [small_category J] {F : J ⥤ Profinite.{u}} (E : limits.cone F) (n : ℕ) : limits.cone (F ⋙ Profinite.pow_functor n) := (Profinite.pow_functor n).map_cone E def Profinite.pow_cone_is_limit {J : Type u} [small_category J] {F : J ⥤ Profinite.{u}} (E : limits.cone F) (hE : limits.is_limit E) (n : ℕ) : limits.is_limit (Profinite.pow_cone E n) := { lift := λ Q, Profinite.product.lift _ $ λ a, hE.lift ⟨Q.X, { app := λ j, Q.π.app j ≫ Profinite.product.π _ a, naturality' := begin intros i j e, dsimp, simp only [category.id_comp, category.assoc], rw ← Q.w e, dsimp [Profinite.pow_functor, Profinite.map_pow], simp, end }⟩, fac' := begin intros Q j, apply Profinite.product.hom_ext, intros i, dsimp [Profinite.pow_cone, Profinite.pow_functor, Profinite.map_pow], simp only [category.assoc, Profinite.product.lift_π, Profinite.product.lift_π_assoc, limits.is_limit.fac], end, uniq' := begin intros Q m hm, apply Profinite.product.hom_ext, intros a, dsimp [Profinite.pow_cone, Profinite.pow_functor, Profinite.map_pow], simp only [Profinite.product.lift_π], apply hE.hom_ext, intros j, simp only [category.assoc, limits.is_limit.fac], rw ← hm, dsimp [Profinite.pow_cone, Profinite.pow_functor, Profinite.map_pow], simp only [category.assoc, Profinite.product.lift_π], end } lemma Profinite.is_iso_pmz_to_limit (S : Profinite.{u}) (n : ℕ) : is_iso (S.pmz_to_limit n) := begin let E := Profinite.sigma_cone (ulift.{u} (fin n → sign_type)) (Profinite.pow_cone S.as_limit_cone n), let hE : limits.is_limit E := Profinite.sigma_cone_is_limit _ _ (Profinite.pow_cone_is_limit _ S.as_limit n), let q : E.X ≅ (Profinite.limit_cone (S.pmz_diagram n)).X := hE.cone_point_unique_up_to_iso (Profinite.limit_cone_is_limit _), have : is_iso q.hom := infer_instance, convert this, apply Profinite.sigma.hom_ext, intros e, apply (Profinite.limit_cone_is_limit _).hom_ext, intros T, refl, end def Profinite.pmz_cone_is_limit (S : Profinite.{u}) (n : ℕ) : limits.is_limit (S.pmz_cone n) := begin apply limits.is_limit.of_point_iso (Profinite.limit_cone_is_limit _), convert Profinite.is_iso_pmz_to_limit S n, apply Profinite.sigma.hom_ext, intros a, apply (Profinite.limit_cone_is_limit _).hom_ext, intros j, refl, end -- A finite product of finite discrete sets is discrete. instance Profinite.discrete_topology_pow (S : Profinite.{u}) [discrete_topology S] (n : ℕ) : discrete_topology (S.pow n) := Pi.discrete_topology -- A finite union of finite products of finite discrete sets is discrete. instance Profinite.discrete_topology_pmz (S : Profinite.{u}) [discrete_topology S] (n : ℕ) : discrete_topology (S.pmz n) := sigma.discrete_topology -- move this lemma _root_.sign_type.nnnorm_coe_int_le_one : ∀ i : sign_type, ∥(i : ℤ)∥₊ ≤ 1 | sign_type.zero := by { erw [nnnorm_zero], exact zero_le', } | sign_type.neg := by simp | sign_type.pos := by { erw [nnnorm_one], } def Profinite.pmz_to_level_component (S : Profinite.{u}) (j : nnreal) (T : discrete_quotient S) (e : fin ⌊j⌋₊ → sign_type) : (Profinite.of ↥T).pow ⌊j⌋₊ ⟶ (ProFiltPseuNormGrp₁.level.obj j).obj (free_pfpng_functor.obj (Fintype.of ↥T)) := { to_fun := λ t, { val := ∑ i : fin ⌊j⌋₊, (λ s, if t i = s then (e i : ℤ) else 0), property := begin have : ∑ i : fin ⌊j⌋₊, (∑ s : T, if t i = s then (1 : nnreal) else 0) ≤ j, { calc _ ≤ ∑ i : fin ⌊j⌋₊, (1 : nnreal) : _ ... ≤ j : _, { apply finset.sum_le_sum, rintro i -, apply le_of_eq, erw [finset.sum_eq_single_of_mem (t i : T) (@finset.mem_univ T _ _), if_pos rfl], rintro s - hs, rw [if_neg hs.symm], }, { simp only [finset.sum_const, finset.card_fin, nat.smul_one_eq_coe], exact nat.floor_le zero_le' } }, apply pseudo_normed_group.filtration_mono this, apply pseudo_normed_group.sum_mem_filtration, rintro i -, apply finset.sum_le_sum, rintro s -, dsimp, split_ifs, { apply sign_type.nnnorm_coe_int_le_one }, { rw nnnorm_zero }, end }, continuous_to_fun := continuous_of_discrete_topology } def Profinite.pmz_to_level (S : Profinite.{u}) (j : nnreal) (T : discrete_quotient S) : (Profinite.of T).pmz ⌊j⌋₊ ⟶ (ProFiltPseuNormGrp₁.level.obj j).obj (free_pfpng_functor.obj $ Fintype.of T) := Profinite.sigma.desc _ $ λ e, S.pmz_to_level_component j T (ulift.down e) lemma Profinite.pmz_to_level_nat_trans_aux (S : Profinite.{u}) (j : nnreal) (T₁ T₂ : discrete_quotient S) (f : T₁ ⟶ T₂) (e : fin ⌊j⌋₊ → sign_type) (t : (Profinite.of T₁).pow ⌊j⌋₊) (s : T₂) : (∑ i : fin ⌊j⌋₊, λ s : T₂, ite (S.fintype_diagram.map f (t i) = s) (e i : ℤ) 0) s = (@finset.filter (@bundled.α fintype (S.fintype_diagram.obj T₁)) (λ w : T₁, S.fintype_diagram.map f w = s) (λ (a : @bundled.α fintype (S.fintype_diagram.obj T₁)), classical.prop_decidable _) (@finset.univ (@bundled.α fintype (S.fintype_diagram.obj T₁)) (@Fintype.fintype (S.fintype_diagram.obj T₁)))).sum (∑ (i : fin ⌊j⌋₊), λ s : T₁, @ite ℤ (t i = s) _ ↑(e i) 0) := begin simp only [finset.sum_apply], rw finset.sum_comm, refine finset.sum_congr rfl _, rintro i -, rw finset.sum_ite_eq, simp only [finset.mem_filter, finset.mem_univ, true_and], end def Profinite.pmz_to_level_nat_trans (S : Profinite.{u}) (j : nnreal) : S.pmz_diagram ⌊j⌋₊ ⟶ (S.fintype_diagram ⋙ free_pfpng_functor) ⋙ (ProFiltPseuNormGrp₁.level.obj j) := { app := λ T, S.pmz_to_level j T, naturality' := begin intros T₁ T₂ f, dsimp [Profinite.pmz_diagram, Profinite.pmz_to_level, Profinite.pmz_functor], apply Profinite.sigma.hom_ext, rintro ⟨e⟩, simp only [Profinite.sigma.ι_desc_assoc, category.assoc, Profinite.sigma.ι_desc], ext t s, exact Profinite.pmz_to_level_nat_trans_aux S j T₁ T₂ f e t s, end } def Profinite.pmz_to_free_pfpng (S : Profinite.{u}) (j : nnreal) : S.pmz ⌊j⌋₊ ⟶ (ProFiltPseuNormGrp₁.level.obj j).obj S.free_pfpng := let E := limits.is_limit_of_preserves (ProFiltPseuNormGrp₁.level.obj j) (limits.limit.is_limit (S.fintype_diagram ⋙ free_pfpng_functor)) in E.map (S.pmz_cone _) (S.pmz_to_level_nat_trans j) lemma Profinite.is_limit.surjective_of_surjective {J : Type u} [small_category J] (F G : J ⥤ Profinite.{u}) (α : F ⟶ G) (cF : limits.cone F) (cG : limits.cone G) (hcF : limits.is_limit cF) (hcG : limits.is_limit cG) [is_cofiltered J] (surj : ∀ (j : J), function.surjective ⇑(α.app j)) : function.surjective ⇑(limits.is_limit.map cF hcG α) := begin have := CompHaus.is_limit.surjective_of_surjective (F ⋙ Profinite_to_CompHaus) (G ⋙ Profinite_to_CompHaus) (whisker_right α _) (Profinite_to_CompHaus.map_cone cF) (Profinite_to_CompHaus.map_cone cG) (limits.is_limit_of_preserves _ hcF) (limits.is_limit_of_preserves _ hcG) surj, change function.surjective (Profinite_to_CompHaus.map (limits.is_limit.map cF hcG α)), convert this, apply hcG.hom_ext, intros j, simp only [limits.is_limit.map_π, iso.trans_hom, iso.symm_hom, functor.map_iso_hom, limits.is_limit.unique_up_to_iso_hom, limits.cone.category_comp_hom, limits.is_limit.lift_cone_morphism_hom, limits.limit.is_limit_lift, limits.cones.functoriality_map_hom, Profinite_to_CompHaus_map], erw [category.assoc, category.assoc], erw hcG.fac, have := (lifted_limit_maps_to_original (limits.limit.is_limit (G ⋙ Profinite_to_CompHaus))).inv.w j, erw this, dsimp, simp only [limits.limit.lift_π, limits.cones.postcompose_obj_π, nat_trans.comp_app, functor.map_cone_π_app, Profinite_to_CompHaus_map, whisker_right_app], refl, end section variables {α : Type*} [decidable_eq α] [nonempty α] open finset -- TODO: Inlining this yields an app-builder exception lemma exists_signed_sum_aux {n : ℕ} (sgn : ℕ → sign_type) (b : α) [decidable_eq α] {f : α → ℤ} ⦃a : α⦄ (g : ℕ → α) (i : ℕ) : ite ((range (n - (f a).nat_abs)).piecewise g (λ _, a) i = b) ((range (n - (f a).nat_abs)).piecewise sgn (λ _, sign (f a)) i : ℤ) 0 = (range (n - (f a).nat_abs)).piecewise (λ j, ite (g j = b) ↑(sgn j) 0) (λ j, ite (a = b) ↑(sign (f a)) 0) i := by { unfold piecewise, split_ifs; refl } lemma exists_signed_sum (s : finset α) (n : ℕ) (f : α → ℤ) (hn : ∑ i in s, (f i).nat_abs ≤ n) : ∃ (sgn : ℕ → sign_type) (g : ℕ → α), (∀ i, g i ∉ s → sgn i = 0) ∧ ∀ a ∈ s, (∑ i in range n, if g i = a then (sgn i : ℤ) else 0) = f a := begin induction s using finset.cons_induction with a s ha ih generalizing n, { exact ⟨0, classical.arbitrary _, λ _ _, rfl, λ _, false.elim⟩ }, rw sum_cons at hn, obtain ⟨sgn, g, hg, hf⟩ := ih _ (le_tsub_of_add_le_left hn), refine ⟨(range $ n - (f a).nat_abs).piecewise sgn (λ _, sign (f a)), (range $ n - (f a).nat_abs).piecewise g (λ _, a), λ i hi, _, λ b hb, _⟩, { by_cases i ∈ range (n - (f a).nat_abs), { rw piecewise_eq_of_mem _ _ _ h at ⊢ hi, exact hg _ (λ h, hi $ subset_cons _ h) }, { rw piecewise_eq_of_not_mem _ _ _ h at hi, exact (hi $ mem_cons_self _ _).elim } }, transitivity ∑ i in range n, (range $ n - (f a).nat_abs).piecewise (λ j, ite (g j = b) (sgn j : ℤ) 0) (λ j, ite (a = b) (sign $ f a) 0) i, { exact sum_congr rfl (λ i _, exists_signed_sum_aux _ _ _ _) }, rw [sum_piecewise, (inter_eq_right_iff_subset _ _).2 (range_mono tsub_le_self)], rw mem_cons at hb, obtain rfl | hb := hb, { rw [sum_eq_zero, zero_add, sum_const, if_pos rfl, card_sdiff (range_mono tsub_le_self), card_range, card_range, tsub_tsub_cancel_of_le (le_of_add_le_left hn), nsmul_eq_mul, mul_comm, ←int.sign_eq_sign, (f b).sign_mul_nat_abs], refine λ i hi, ite_eq_right_iff.2 _, rintro rfl, rw [hg _ ha, sign_type.coe_zero] }, { simp_rw [if_neg (ne_of_mem_of_not_mem hb ha).symm, hf _ hb, sum_const_zero, add_zero] } end lemma Profinite.pmz_to_free_pfpng_epi_aux' [fintype α] (r : nnreal) (f : α → ℤ) (hf : ∑ i : α, ∥f i∥₊ ≤ r) : ∃ (sgn : ℕ → sign_type) (g : ℕ → α), ∀ t, (∑ i in range ⌊r⌋₊, if g i = t then (sgn i : ℤ) else 0) = f t := begin refine Exists₂.imp (λ _ _ h t, _) (exists_signed_sum univ ⌊r⌋₊ f _), { exact h.2 t (mem_univ _) }, refine nat.le_floor _, simp_rw [nat.cast_sum, nnreal.coe_nat_abs], exact hf, end lemma Profinite.pmz_to_free_pfpng_epi_aux [fintype α] (r : nnreal) (f : α → ℤ) (hf : ∑ i : α, ∥f i∥₊ ≤ r) : ∃ (sgn : fin ⌊r⌋₊ → sign_type) (g : fin ⌊r⌋₊ → α), (∑ i : fin ⌊r⌋₊, (λ t : α, if g i = t then (sgn i : ℤ) else 0)) = f := begin obtain ⟨e,g,h⟩ := Profinite.pmz_to_free_pfpng_epi_aux' r f hf, let e' : fin ⌊r⌋₊ → sign_type := λ i, e i.1, let g' : fin ⌊r⌋₊ → α := λ i, g i.1, use [e',g'], ext t, rw ← h, simp only [finset.sum_apply], rw finset.sum_range, refl, end end -- Move this instance discrete_quotient.nonempty (X : Type*) [topological_space X] [h : nonempty X] (T : discrete_quotient X) : nonempty T := ⟨T.proj (nonempty.some h)⟩ instance Profinite.pmz_to_free_pfpng_epi (S : Profinite.{u}) [nonempty S] (j : nnreal) : epi (S.pmz_to_free_pfpng j) := begin rw Profinite.epi_iff_surjective, dsimp only [Profinite.pmz_to_free_pfpng], have := Profinite.is_limit.surjective_of_surjective _ _ (S.pmz_to_level_nat_trans j) (S.pmz_cone _) ((ProFiltPseuNormGrp₁.level.obj j).map_cone (limits.limit.cone _)) (S.pmz_cone_is_limit _) (limits.is_limit_of_preserves _ (limits.limit.is_limit _)), apply this, intros T, rintros ⟨(f : T → ℤ), hf : ∑ i : T, _ ≤ _⟩, obtain ⟨e,t,ht⟩ := Profinite.pmz_to_free_pfpng_epi_aux j f hf, change ∃ a : Σ i, fin ⌊j⌋₊ → T, _, use ulift.up e, use t, apply subtype.ext, dsimp [Profinite.pmz_to_level_nat_trans, Profinite.pmz_to_level, Profinite.sigma.desc, Profinite.pmz_to_level_component], exact ht, end . namespace Profinite.epi_free'_to_condensed_setup variables (S : Profinite.{u}) (j : nnreal) lemma free'_lift_app_eq (A : Condensed.{u} Ab.{u+1}) (η : S.to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj A) (T : Profinite.{u}) : (proetale_topology.to_sheafify _).app _ ≫ (S.free'_lift η).val.app (op T) = free'_lift (η.val.app _) := begin dsimp [Profinite.free'_lift], rw [← nat_trans.comp_app, proetale_topology.to_sheafify_sheafify_lift], dsimp [adjunction.whisker_right, free'_lift], simp, end lemma free'_lift_app_eq' (A : Condensed.{u} Ab.{u+1}) (η : S.to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj A) (T : Profinite.{u}) : (proetale_topology.to_sheafify _).app _ ≫ (S.free'_lift η).val.app (op T) = ((finsupp.lift ↥(A.val.obj (op T)) ℤ (((Sheaf_to_presheaf proetale_topology (Type (u+1))).obj S.to_Condensed).obj (op T))) (η.val.app (op T))).to_add_monoid_hom := begin rw free'_lift_app_eq, rw free'_lift_eq_finsupp_lift, end instance (A : Condensed.{u} Ab.{u+1}) (T) : add_comm_group ((Condensed_Ab_to_CondensedSet.obj A).val.obj T) := show add_comm_group (A.val.obj T), by apply_instance lemma free_pfpng_ext (u v : S.free_pfpng) (huv : ∀ T : discrete_quotient S, S.free_pfpng_π T u = S.free_pfpng_π T v) : u = v := begin let E : limits.cone (S.fintype_diagram ⋙ free_pfpng_functor) := ProFiltPseuNormGrp₁.bounded_cone ⟨Ab.explicit_limit_cone.{u u} _, Ab.explicit_limit_cone_is_limit _⟩, let hE : limits.is_limit E := ProFiltPseuNormGrp₁.bounded_cone_is_limit _, let ee : S.free_pfpng ≅ E.X := (limits.limit.is_limit _).cone_point_unique_up_to_iso hE, apply_fun ee.hom, swap, { intros x y hh, apply_fun ee.inv at hh, simpa using hh }, ext T : 3, exact huv T, end variables (x : S.pmz ⌊j⌋₊) (T : discrete_quotient S) lemma lhs_helper : (S.free_pfpng_π T) ((S.pmz_to_free_pfpng j) x).1 = ∑ i : fin ⌊j⌋₊, pi.single (T.proj (x.2 i)) (x.1.down i : ℤ) := begin change (((S.pmz_to_free_pfpng _) ≫ (ProFiltPseuNormGrp₁.level.obj j).map (S.free_pfpng_π T)) _).val = _, dsimp [Profinite.pmz_to_free_pfpng, Profinite.free_pfpng_π], erw ← comp_apply, erw limits.is_limit.fac, dsimp [Profinite.pmz_to_level_nat_trans, Profinite.pmz_to_level], rcases x with ⟨x1,x2⟩, dsimp [Profinite.pmz_cone, Profinite.sigma.desc, Profinite.pmz_to_level_component, Profinite.pmz_functor, Profinite.product.lift, Profinite.sigma.ι], congr' 1, ext i t, erw pi.single_apply, split_ifs with h1 h2 h3 h4, { refl }, { exact false.elim (h2 h1.symm) }, { exact false.elim (h1 h3.symm) }, { refl } end lemma rhs_helper₁ : (λ (f : ulift (fin ⌊j⌋₊ → sign_type)), ∑ (x : fin ⌊j⌋₊), ((proetale_topology.to_sheafify (S.to_Condensed.val ⋙ AddCommGroup.free')).app (op (S.pow ⌊j⌋₊))) (finsupp.single {down := Profinite.product.π (λ (i : fin ⌊j⌋₊), S) x} ↑(f.down x))) = ∑ (x : fin ⌊j⌋₊), (λ f, (proetale_topology.to_sheafify (S.to_Condensed.val ⋙ AddCommGroup.free')).app (op (S.pow ⌊j⌋₊)) $ finsupp.single ⟨Profinite.product.π _ x⟩ (f.down x)) := by { ext, simp } def _root_.CompHausFiltPseuNormGrp.coe_add_monoid_hom (A : CompHausFiltPseuNormGrp.{u}) (T : Profinite.{u}) : (CompHausFiltPseuNormGrp.to_Condensed.obj A).val.obj (op T) →+ T → A := { to_fun := λ f, f.down.1, map_zero' := rfl, map_add' := λ _ _, rfl } lemma _root_.CompHausFiltPseuNormGrp.to_Condensed_app_sum_apply (n : ℕ) (A : CompHausFiltPseuNormGrp.{u}) (T : Profinite.{u}) (g : fin n → (CompHausFiltPseuNormGrp.to_Condensed.obj A).val.obj (op T)) (t : T) : (ulift.down (∑ i : fin n, g i)).1 t = ∑ i : fin n, (ulift.down (g i)).1 t := begin let e := A.coe_add_monoid_hom T, change _ = ∑ (i : fin n), (e (g i)) t, rw [← finset.sum_apply t finset.univ (λ i : fin n, (e (g i))), ← e.map_sum], refl, end lemma Profinite.free'_lift_val_obj_sigma_equiv_symm {α : Type u} [fintype α] (A : Condensed.{u} Ab.{u+1}) (η : S.to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj A) (X : α → Profinite.{u}) (t) : (S.free'_lift η).val.app (op $ Profinite.sigma X) ((Condensed.val_obj_sigma_add_equiv _ _ ).symm t) = (Condensed.val_obj_sigma_add_equiv _ _ ).symm (λ a, (S.free'_lift η).val.app _ (t a)) := begin apply_fun Condensed.val_obj_sigma_add_equiv (λ (a : α), X a) A, simp only [add_equiv.apply_symm_apply], funext a, dsimp, simp only [← comp_apply, ← nat_trans.naturality], simp only [comp_apply], congr' 1, rw ← Condensed.val_obj_sigma_add_equiv_apply_apply, simp only [add_equiv.apply_symm_apply], end -- move and rename def rhs_helper_equiv (A : ProFiltPseuNormGrp₁.{u}) : A ≃ (CompHausFiltPseuNormGrp.to_Condensed.obj (CHFPNG₁_to_CHFPNGₑₗ.obj (PFPNG₁_to_CHFPNG₁ₑₗ.obj A))).val.obj (op Profinite.punit) := { to_fun := λ a, ulift.up $ ⟨λ _, a, begin obtain ⟨c,hc⟩ := ProFiltPseuNormGrp₁.exhaustive _ a, refine ⟨c, λ _, ⟨a,hc⟩, _, rfl⟩, apply continuous_of_discrete_topology end⟩, inv_fun := λ f, f.down.val punit.star, left_inv := λ t, rfl, right_inv := λ t, by { ext ⟨⟩, refl } } -- move and rename def rhs_helper_equiv' : S ≃ S.to_Condensed.val.obj (op Profinite.punit) := { to_fun := λ s, ulift.up $ Profinite.pt s, inv_fun := λ s, (ulift.down s).1 punit.star, left_inv := λ t, rfl, right_inv := λ t, by { ext ⟨⟩, refl } } lemma rhs_helper₄ {α : Type u} [fintype α] (A : ProFiltPseuNormGrp₁.{u}) (X : α → Profinite.{u}) (e : Π (a : α), (CompHausFiltPseuNormGrp.to_Condensed.obj (CHFPNG₁_to_CHFPNGₑₗ.obj (PFPNG₁_to_CHFPNG₁ₑₗ.obj A))).val.obj (op $ X a)) (a₀ : α) (x₀ : X a₀) : ((Condensed.val_obj_sigma_add_equiv X _).symm e).down.val ⟨a₀,x₀⟩ = (e a₀).down.val x₀ := begin let B := Condensed_Ab_to_CondensedSet.obj (CompHausFiltPseuNormGrp.to_Condensed.obj (CHFPNG₁_to_CHFPNGₑₗ.obj (PFPNG₁_to_CHFPNG₁ₑₗ.obj A))) , let e₀ : (X a₀).to_Condensed ⟶ B := (Profinite.to_Condensed_equiv _ B).symm (e a₀), let ee : (Profinite.sigma X).to_Condensed ⟶ B := (Profinite.to_Condensed_equiv _ B).symm ((Condensed.val_obj_sigma_add_equiv X _).symm e), apply_fun rhs_helper_equiv A, let s₀ : (X a₀).to_Condensed.val.obj (op Profinite.punit) := rhs_helper_equiv' _ x₀, have : (rhs_helper_equiv A) ((e a₀).down.val x₀) = e₀.val.app _ s₀, refl, rw this, have : e₀ = (Profinite_to_Condensed.map (Profinite.sigma.ι X a₀)) ≫ ee, { dsimp only [e₀, ee], symmetry, apply _root_.Condensed.val_obj_sigma_add_equiv_symm_apply }, rw this, refl, end lemma rhs_helper₃ (i : fin ⌊j⌋₊) : ((((S.free'_lift S.to_condensed_free_pfpng).val.app (op (S.pmz ⌊j⌋₊))) (((Condensed.val_obj_sigma_add_equiv (λ (f : ulift (fin ⌊j⌋₊ → sign_type)), S.pow ⌊j⌋₊) S.free').symm) (λ (f : ulift (fin ⌊j⌋₊ → sign_type)), ((proetale_topology.to_sheafify (S.to_Condensed.val ⋙ AddCommGroup.free')).app (op (S.pow ⌊j⌋₊))) (finsupp.single {down := Profinite.product.π (λ (i : fin ⌊j⌋₊), S) i} ↑(f.down i))))).down).1 x = (x.1.down i : ℤ) • (S.to_free_pfpng (x.2 i)).1 := begin erw Profinite.free'_lift_val_obj_sigma_equiv_symm, simp only [← comp_apply], erw [free'_lift_app_eq'], simp only [continuous_map.to_fun_eq_coe, linear_map.to_add_monoid_hom_coe, finsupp.lift_apply, Profinite.to_condensed_free_pfpng_app, finsupp.sum_single_index, zero_smul, subtype.val_eq_coe], -- This is now very close... let Q := Condensed.val_obj_sigma_add_equiv (λ (a : ulift (fin ⌊j⌋₊ → sign_type)), S.pow ⌊j⌋₊) S.condensed_free_pfpng, change (Q.symm _).down.1 _ = _, cases x with x1 x2, erw rhs_helper₄, refl, end lemma rhs_helper₂ (i : fin ⌊j⌋₊) : (S.free_pfpng_π T) (((((S.free'_lift S.to_condensed_free_pfpng).val.app (op (S.pmz ⌊j⌋₊))) (((Condensed.val_obj_sigma_add_equiv (λ (f : ulift (fin ⌊j⌋₊ → sign_type)), S.pow ⌊j⌋₊) S.free').symm) (λ (f : ulift (fin ⌊j⌋₊ → sign_type)), ((proetale_topology.to_sheafify (S.to_Condensed.val ⋙ AddCommGroup.free')).app (op (S.pow ⌊j⌋₊))) (finsupp.single {down := Profinite.product.π (λ (i : fin ⌊j⌋₊), S) i} ↑(f.down i))))).down).1 x) = pi.single (T.proj (x.snd i)) ↑(x.fst.down i) := begin rw rhs_helper₃, erw (S.free_pfpng_π T).to_add_monoid_hom.map_zsmul, change _ • (((S.to_free_pfpng) ≫ (ProFiltPseuNormGrp₁.level.obj 1).map (S.free_pfpng_π T)) _).val = _, dsimp [Profinite.to_free_pfpng, Profinite.free_pfpng_π, Profinite.free_pfpng_level_iso], dsimp [limits.is_limit.cone_point_unique_up_to_iso], erw ← comp_apply, erw ← comp_apply, erw limits.is_limit.fac, erw limits.is_limit.fac, dsimp [Fintype.free_pfpng_unit, Profinite.as_limit_cone], ext t, erw pi.single_apply, split_ifs; simp, { intros hh, exact false.elim (hh h.symm) }, { intros hh, exact false.elim (h hh.symm) }, end lemma rhs_helper : (S.free_pfpng_π T) ((((S.free'_lift S.to_condensed_free_pfpng).val.app (op (S.pmz ⌊j⌋₊))) ((S.pmz_to_free' ⌊j⌋₊).val.app (op (S.pmz ⌊j⌋₊)) {down := 𝟙 (S.pmz ⌊j⌋₊)})).1.1 x) = ∑ i : fin ⌊j⌋₊, pi.single (T.proj (x.2 i)) (x.1.down i : ℤ) := begin dsimp [Profinite.pmz_to_free'], rw [category_theory.functor.map_id, id_apply], simp only [add_monoid_hom.map_sum], rw [rhs_helper₁], rw [add_equiv.map_sum, add_monoid_hom.map_sum], have := _root_.CompHausFiltPseuNormGrp.to_Condensed_app_sum_apply ⌊j⌋₊ _ _ _ x, dsimp at this, erw this, clear this, erw (S.free_pfpng_π T).to_add_monoid_hom.map_sum, congr' 1, funext i, dsimp, erw rhs_helper₂, end lemma key (j : (ulift.{u+1} nnreal)) : Profinite_to_Condensed.map (S.pmz_to_free_pfpng j.down) ≫ (CHFPNG₁_to_CHFPNGₑₗ.obj (PFPNG₁_to_CHFPNG₁ₑₗ.obj S.free_pfpng)).level_Condensed_diagram_cocone.ι.app j = S.pmz_to_free' ⌊j.down⌋₊ ≫ Condensed_Ab_to_CondensedSet.map S.free'_to_condensed_free_pfpng := begin apply_fun Profinite.to_Condensed_equiv _ _, ext x : 3, dsimp at x, dsimp [CompHausFiltPseuNormGrp.level_Condensed_diagram_cocone, Profinite.free'_to_condensed_free_pfpng], apply free_pfpng_ext, intros T, erw lhs_helper, erw rhs_helper, end end Profinite.epi_free'_to_condensed_setup instance Profinite.epi_free'_to_condensed_free_pfpng_of_nonempty (S : Profinite.{u}) [nonempty S] : epi S.free'_to_condensed_free_pfpng := begin apply functor.epi_of_epi_map (Condensed_Ab_to_CondensedSet), let E := CompHausFiltPseuNormGrp.level_Condensed_diagram_cocone (CHFPNG₁_to_CHFPNGₑₗ.obj ((PFPNG₁_to_CHFPNG₁ₑₗ.obj S.free_pfpng))), have hh : is_iso (limits.colimit.desc _ E), { change is_iso (CompHausFiltPseuNormGrp.colimit_to_Condensed_obj _), apply_instance }, let hE : limits.is_colimit E := @limits.is_colimit.of_point_iso _ _ _ _ _ _ _ _ hh, -- <-- move this apply category_theory.epi_to_colimit_of_exists _ E hE, intros j, let j' : nnreal := ulift.down j, use [(S.pmz ⌊j'⌋₊).to_Condensed, S.pmz_to_free' ⌊j'⌋₊, Profinite_to_Condensed.map (S.pmz_to_free_pfpng j')], split, { apply epi_Profinite_to_Condensed_map_of_epi }, { apply Profinite.epi_free'_to_condensed_setup.key }, end