import analysis.normed_space.banach import analysis.mean_inequalities_pow import normed_group.normed_with_aut /-! # p-Banach spaces A `p`-Banach space is just like an ordinary Banach space, except that the axiom `∥c • v∥ = ∥c∥ * ∥v∥` is replaced by `∥c • v∥ = ∥c∥^p * ∥v∥`. In other words, a `p`-Banach space is a complete topological vector space whose topology is induced by a `p`-norm. In this file, we define `p`-normed spaces, called `normed_space'`, and we prove that every `p`-normed space is also `p'`-normed, for `0 < p' ≤ p`. -/ noncomputable theory open_locale nnreal section structure has_p_norm (V : Type*) (p : ℝ) [add_comm_group V] [module ℝ V] [uniform_space V] extends has_norm V := (norm_smul : ∀ (α : ℝ) (v : V), ∥α • v∥ = |α|^p • ∥v∥) (triangle : ∀ (v w : V), ∥v+w∥ ≤ ∥v∥ + ∥w∥) (uniformity : uniformity V = ⨅ (ε : ℝ) (H : ε > 0), filter.principal {p : V × V | ∥p.fst - p.snd∥ < ε}) variables (V : Type*) (p : ℝ) [add_comm_group V] [module ℝ V] [uniform_space V] def has_p_norm.seminormed_add_comm_group [fact (0 < p)] (h : has_p_norm V p) : seminormed_add_comm_group V := { to_uniform_space := by apply_instance, uniformity_dist := h.uniformity, to_add_comm_group := by apply_instance, .. @seminormed_add_comm_group.of_core V _ h.to_has_norm $ have hp0 : p ≠ 0 := (fact.out _ : 0 < p).ne', { norm_zero := by simpa only [zero_smul, abs_zero, real.zero_rpow hp0] using h.norm_smul 0 0, triangle := h.triangle, norm_neg := λ v, by simpa only [neg_smul, one_smul, abs_neg, abs_one, real.one_rpow] using h.norm_smul (-1) v } } structure p_banach : Prop := (exists_p_norm : nonempty (has_p_norm V p)) [topological_add_group : topological_add_group V] [continuous_smul : has_continuous_smul ℝ V] [complete : complete_space V] [separated : separated_space V] end structure pBanach (p : ℝ) := (V : Type*) [add_comm_group' : add_comm_group V] [module' : module ℝ V] [uniform_space' : uniform_space V] (p_banach' : p_banach V p) namespace pBanach variables (p : ℝ) (V : pBanach p) instance : has_coe_to_sort (pBanach p) (Type*) := ⟨λ X, X.V⟩ instance : _root_.add_comm_group V := V.add_comm_group' instance : _root_.module ℝ V := V.module' instance : _root_.uniform_space V := V.uniform_space' instance : _root_.topological_add_group V := V.p_banach'.topological_add_group instance : _root_.has_continuous_smul ℝ V := V.p_banach'.continuous_smul instance : _root_.complete_space V := V.p_banach'.complete instance : _root_.separated_space V := V.p_banach'.separated variables {p} /-- Highly non-canonical! -/ def choose_seminormed_add_comm_group [fact (0 < p)] : seminormed_add_comm_group V := (classical.choice V.p_banach'.exists_p_norm).seminormed_add_comm_group V p @[simps] def smul_normed_hom [fact (0 < p)] (x : ℝ) : @normed_add_group_hom V V V.choose_seminormed_add_comm_group V.choose_seminormed_add_comm_group := { to_fun := λ v, x • v, map_add' := λ v₁ v₂, smul_add _ _ _, bound' := ⟨|x|^p, λ v, by rw [has_p_norm.norm_smul, smul_eq_mul]⟩ } /-- Highly non-canonical! -/ def choose_normed_with_aut [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] : normed_with_aut (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ := { T := { hom := smul_normed_hom V x, inv := smul_normed_hom V (x⁻¹), hom_inv_id' := by { ext v, dsimp, rw [← mul_smul, inv_mul_cancel, one_smul], exact_mod_cast (fact.out _ : 0 < x).ne' }, inv_hom_id' := by { ext v, dsimp, rw [← mul_smul, mul_inv_cancel, one_smul], exact_mod_cast (fact.out _ : 0 < x).ne' } } , norm_T := λ v, by { dsimp, rw [has_p_norm.norm_smul, smul_eq_mul], congr' 2, rw abs_eq_self, exact x.coe_nonneg } } @[simp] lemma choose_normed_with_aut_T_hom [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] (v : V) : (@normed_with_aut.T (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ (V.choose_normed_with_aut x)).hom v = x • v := rfl @[simp] lemma choose_normed_with_aut_T_inv [fact (0 < p)] (x : ℝ≥0) [fact (0 < x)] (v : V) : (@normed_with_aut.T (x ^ p) ⟨V, choose_seminormed_add_comm_group V⟩ (V.choose_normed_with_aut x)).inv v = x⁻¹ • v := rfl end pBanach -- noncomputable -- def pBanach'_is_qBanach' (V: Type*) (p : ℝ) [fact (0 < p)] [fact (p ≤ 1)] (q : ℝ) [fact (0 < q)] -- [fact (q ≤ 1)] [add_comm_group V] [module ℝ V] [uniform_space V] [has_continuous_smul ℝ V] -- [topological_add_group V] [complete_space V] (hp : pBanach' V p) : pBanach' V q := -- begin -- cases hp, -- let Hp_norm := hp.some, -- let ψ := Hp_norm.norm, -- use λ v : V, (ψ v)^(q/p),--[FAE] Why λ v, ((h_p_norm.norm) v)^(q/p) does not work? -- intros α v, -- dsimp only [ψ], -- admit, -- admit, -- rw [Hp_norm.p_norm α v, smul_eq_mul, real.mul_rpow, ← real.rpow_mul, mul_div_cancel'], -- exacts [refl _, ne_of_gt (fact.out _), abs_nonneg α, -- (real.rpow_nonneg_of_nonneg (abs_nonneg α) p), hp_nonneg_norm v, -- (λ _, (real.rpow_nonneg_of_nonneg (hp_nonneg_norm _) _))], -- end section obsolete -- move this lemma real.add_rpow_le {x y r : ℝ} (hx : 0 ≤ x) (hy : 0 ≤ y) (h0r : 0 ≤ r) (hr1 : r ≤ 1) : (x + y)^r ≤ x^r + y^r := begin by_cases hr : 0 = r, { subst r, simp only [zero_le_one, real.rpow_zero, le_add_iff_nonneg_left], }, let x' : ℝ≥0 := ⟨x, hx⟩, let y' : ℝ≥0 := ⟨y, hy⟩, exact_mod_cast ennreal.rpow_add_le_add_rpow x' y' (lt_of_le_of_ne h0r hr) hr1, end set_option extends_priority 920 -- Here, we set a rather high priority for the instance `[normed_space α β] : module α β` -- to take precedence over `semiring.to_module` as this leads to instance paths with better -- unification properties. /-- A normed space over a normed field is a vector space endowed with a norm which satisfies the equality `∥c • x∥ = ∥c∥ ∥x∥`. We require only `∥c • x∥ ≤ ∥c∥ ∥x∥` in the definition, then prove `∥c • x∥ = ∥c∥ ∥x∥` in `norm_smul`. -/ class normed_space' (𝕜 : Type*) (p : out_param ℝ) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [module 𝕜 V] := (norm_smul : ∀ (c:𝕜) (v:V), ∥c • v∥ = ∥c∥^p * ∥v∥) @[priority 100] instance normed_space.normed_space' (𝕜 : Type*) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [normed_space 𝕜 V] : normed_space' 𝕜 1 V := { norm_smul := λ c k, by simp only [real.rpow_one, norm_smul] } /-- A type alias: `as_normed_space' p' V` is a `p'`-normed space over `𝕜`, when `V` is a `p`-normed space over `𝕜` and `0 < p' ≤ p`. -/ @[nolint unused_arguments] def as_normed_space' (p' : ℝ) (V : Type*) := V namespace as_normed_space' instance (p' : ℝ) (V : Type*) [i : inhabited V] : inhabited (as_normed_space' p' V) := i /-- The identity map `V → as_normed_space' p' V`. -/ def up (p' : ℝ) {V : Type*} (v : V) : as_normed_space' p' V := v /-- The identity map `as_normed_space' p' V → V`. -/ def down {p' : ℝ} {V : Type*} (v : as_normed_space' p' V) : V := v instance (p' : ℝ) (V : Type*) [i : add_comm_group V] : add_comm_group (as_normed_space' p' V) := i instance (p' : ℝ) (𝕜 V : Type*) [ring 𝕜] [add_comm_group V] [i : module 𝕜 V] : module 𝕜 (as_normed_space' p' V) := i @[simp] lemma down_add {p' : ℝ} {V : Type*} [add_comm_group V] (v w : as_normed_space' p' V) : (v+w).down = v.down + w.down := rfl @[simp] lemma down_neg {p' : ℝ} {V : Type*} [add_comm_group V] (v : as_normed_space' p' V) : (-v).down = - v.down := rfl @[simp] lemma down_smul {p' : ℝ} {𝕜 V : Type*} [ring 𝕜] [add_comm_group V] [module 𝕜 V] (c : 𝕜) (v : as_normed_space' p' V) : (c • v).down = c • v.down := rfl /-- The natural `p'`-norm on `as_normed_space' p' V` induced by a `p`-norm on `V`. -/ protected def has_norm (p' p : ℝ) (V : Type*) [has_norm V] : has_norm (as_normed_space' p' V) := ⟨λ v, ∥v.down∥^(p'/p)⟩ lemma norm_def {V : Type*} [has_norm V] (p' p : ℝ) (v : as_normed_space' p' V) : @has_norm.norm _ (as_normed_space'.has_norm p' p V) v = ∥v.down∥^(p'/p) := rfl /-- The natural `p'`-normed group structure on `as_normed_space' p' V` induced by a `p`-normed group structure on `V` -/ protected def normed_add_comm_group (V : Type*) [normed_add_comm_group V] (p' p : ℝ) [fact (0 < p')] [fact (p' ≤ p)] : normed_add_comm_group (as_normed_space' p' V) := @normed_add_comm_group.of_core _ _ (as_normed_space'.has_norm p' p V) $ have hp' : 0 < p' := fact.out _, have hp : 0 < p := lt_of_lt_of_le hp' (fact.out _), have H : 0 < p'/p := div_pos hp' hp, { norm_eq_zero_iff := λ v, show ∥v.down∥^(p'/p) = 0 ↔ v = 0, by simpa only [real.rpow_eq_zero_iff_of_nonneg (norm_nonneg v.down), norm_eq_zero, H.ne', and_true, ne.def, not_false_iff], triangle := λ v w, show ∥(v+w).down∥^(p'/p) ≤ ∥v.down∥^(p'/p) + ∥w.down∥^(p'/p), begin rw [down_add], calc ∥v.down + w.down∥ ^ (p' / p) ≤ (∥v.down∥ + ∥w.down∥) ^ (p' / p) : real.rpow_le_rpow (norm_nonneg _) (norm_add_le _ _) H.le ... ≤ ∥v.down∥ ^ (p' / p) + ∥w.down∥ ^ (p' / p) : real.add_rpow_le (norm_nonneg _) (norm_nonneg _) H.le _, rw [div_le_iff hp, one_mul], exact fact.out _ end, norm_neg := λ v, show ∥(-v).down∥^(p'/p) = ∥v.down∥^(p'/p), by rw [down_neg, norm_neg] } local attribute [instance] as_normed_space'.normed_add_comm_group instance (𝕜 : Type*) (V : Type*) [normed_field 𝕜] [normed_add_comm_group V] [module 𝕜 V] (p' p : ℝ) [fact (0 < p')] [fact (p' ≤ p)] [normed_space' 𝕜 p V] : normed_space' 𝕜 p' (as_normed_space' p' V) := { norm_smul := λ c v, begin have hp' : 0 < p' := fact.out _, have hp : 0 < p := lt_of_lt_of_le hp' (fact.out _), rw [norm_def, norm_def, down_smul, normed_space'.norm_smul, real.mul_rpow, ← real.rpow_mul, mul_div_cancel' _ hp.ne'], { exact norm_nonneg _ }, { exact real.rpow_nonneg_of_nonneg (norm_nonneg _) _ }, { exact norm_nonneg _ }, end } end as_normed_space' end obsolete