import for_mathlib.Profinite.extend import Lbar.pseudo_normed_group import pseudo_normed_group.category noncomputable theory open_locale nnreal variables (r' : ℝ≥0) [fact (0 < r')] variables {S₁ S₂ : Type*} [fintype S₁] [fintype S₂] namespace Lbar open pseudo_normed_group (filtration level) open category_theory category_theory.limits lemma map_zero (f : S₁ → S₂) : map f (0 : Lbar r' S₁) = 0 := by { ext, simp only [coe_zero, map_to_fun, pi.zero_apply, finset.sum_const_zero], } lemma map_add (f : S₁ → S₂) (x y : Lbar r' S₁) : map f (x + y) = map f x + map f y := by { ext s n, simp only [map_to_fun, pi.add_apply, coe_add, finset.sum_add_distrib], } lemma map_strict (f : S₁ → S₂) ⦃c : ℝ≥0⦄ ⦃x : (Lbar r' S₁)⦄ (hx : x ∈ filtration (Lbar r' S₁) c) : map f x ∈ filtration (Lbar r' S₂) c := Lbar.nnnorm_map_le_of_nnnorm_le f _ hx lemma map_continuous (f : S₁ → S₂) (c : ℝ≥0) : continuous (level (map f) (map_strict r' f) c) := begin let φ := (level (map f) (map_strict r' f) c), rw Lbar_le.continuous_iff, intros M, have : Lbar_le.truncate M ∘ φ = Lbar_bdd.map f ∘ Lbar_le.truncate M, { ext, refl }, rw this, exact continuous_of_discrete_topology.comp Lbar_le.continuous_truncate, end lemma map_Tinv (f : S₁ → S₂) (x : Lbar r' S₁) : map f (Tinv x) = Tinv (map f x) := by ext s ⟨_|n⟩; simp only [map_to_fun, Tinv_zero, Tinv_succ, finset.sum_const_zero] end Lbar open Lbar /-- `Fintype_Lbar r' S` is functorial in the finite type `S`. -/ @[simps] def Fintype_Lbar : Fintype ⥤ ProFiltPseuNormGrpWithTinv₁ r' := { obj := λ S, { M := Lbar r' S, exhaustive' := λ x, ⟨∥x∥₊, by rw Lbar.mem_filtration_iff⟩ }, map := λ S₁ S₂ f, { to_fun := map f, map_zero' := map_zero r' f, map_add' := map_add r' f, strict' := map_strict r' f, continuous' := map_continuous r' f, map_Tinv' := map_Tinv r' f }, map_id' := by { intros, ext1 x, exact map_id x }, map_comp' := by { intros X Y Z f g, ext1 x, exact map_comp f x g } } namespace Lbar open category_theory pseudo_normed_group category_theory.limits example (X : Profinite) : has_limit (X.fintype_diagram ⋙ Fintype_Lbar r') := by apply_instance /-- `Lbar r' S` extends to a functor in `S`, for profinite `S`. -/ def functor : Profinite ⥤ ProFiltPseuNormGrpWithTinv₁ r' := Profinite.extend (Fintype_Lbar r') end Lbar