import for_mathlib.Fintype import pseudo_normed_group.basic import Lbar.nnnorm_add_class /-! # The standard filtration `c : ℝ≥0 ↦ {z : α | ∥z∥₊ ≤ c}` Let `α` be a nnnormed type. We use the naming convention `std_flt` for the function `ℝ≥0 → set α` taking a non-negative real number `c` to the subset of all the terms of `α` of nnnorm at most `c`: ``` ℝ≥0 → set α c ↦ {z : α | ∥z∥₊ ≤ c}. ``` The main construction is `std_flt.to_pseudo_normed_group` asserting that the typeclass `nnnorm_add_class α` (i.e. `α` is a Type with `∥_∥₊, 0, +, -` and compatibilities among them), gives rise to a `pseudo_normed_group α` under the standard filtration. We use `std_flt.to_pseudo_normed_group` to give a `pseudo_normed_group` instance on `S → (ℕ →₀ ℤ)`. For a fixed `r : ℝ≥0`, the nnnorm on `S → (ℕ →₀ ℤ)` is `∥(s ↦ (n ↦ F s n))∥₊ = ∑ s : S, ∑ n in F.support, ∥F s n∥₊ * r⁻¹ ^ n`, where the sum is "really" a finite sum, extending over all `s : S` and over `n : ℕ` contained in the (finite) support of `F n`. The reason for this choice of nnnorm is that it arises as the nnnorm on the "non-positive tails" of Laurent series, the kernel of the projection map from Laurent series to the series of their terms of strictly positive degree. ## Warning/Formalization note We use the `nnnorm_add_class` instance on `S → (ℕ →₀ ℤ)` to prove that the standard filtration determined a `pseudo_normed_group (S → (ℕ →₀ ℤ))`. Note that the `seminormed_add_comm_group` instance on the same type is *not* the same: the norm on finitely indexed finsupps for the `seminormed_add_comm_group` is the `sup`norm and not the `sum_nnnorm`. -/ open finset finsupp open_locale nnreal big_operators lemma mem_union_support_of_mem_support_add {α β : Type*} [add_zero_class β] [decidable_eq α] {k : α} (F G : α →₀ β) (hk : k ∈ (F + G).support) : k ∈ F.support ∪ G.support := begin simp only [finset.mem_union, finsupp.mem_support_iff, finsupp.coe_add, pi.add_apply] at ⊢ hk, contrapose! hk, simp only [hk, add_zero], end noncomputable theory section std_flt_lemmas variables (α : Type*) [has_nnnorm α] lemma std_flt_mono ⦃c d : ℝ≥0⦄ (cd : c ≤ d) : {z : α | ∥z∥₊ ≤ c} ⊆ {z : α | ∥z∥₊ ≤ d} := λ x (hx : ∥x∥₊ ≤ c), hx.trans cd lemma std_flt_zero_mem [has_zero α] (n0 : ∥(0 : α)∥₊ = 0) (c : ℝ≥0) : (0 : α) ∈ {z : α | ∥z∥₊ ≤ c} := by simp only [n0, set.mem_set_of_eq, zero_le'] lemma std_flt_neg_mem [has_neg α] (nn : ∀ {x : α}, ∥- x∥₊ = ∥x∥₊) ⦃c : ℝ≥0⦄ ⦃x : α⦄ (xc : x ∈ {z : α | ∥z∥₊ ≤ c}) : - x ∈ {z : α | ∥z∥₊ ≤ c} := by simpa only [nn, set.mem_set_of_eq] using xc lemma std_flt_add_mem [has_add α] (n_le : ∀ {x y : α}, ∥x + y∥₊ ≤ ∥x∥₊ + ∥y∥₊) ⦃c d : ℝ≥0⦄ ⦃x y : α⦄ (xc : x ∈ {z : α | ∥z∥₊ ≤ c}) (yd : y ∈ {z : α | ∥z∥₊ ≤ d}) : x + y ∈ {z : α | ∥z∥₊ ≤ c + d} := n_le.trans (add_le_add xc yd) open nnnorm_add_class variable {α} /-- Given a type `α` with a `nnnorm_add_class` instance, `std_flt.to_pseudo_normed_group` shows that the standard filtration `λ c, {z : α | ∥z∥₊ ≤ c}` endows `α` with a `pseudo_normed_group` class. -/ def std_flt.to_pseudo_normed_group [add_comm_group α] [nnnorm_add_class α] : pseudo_normed_group α := { filtration := λ c, {z : α | ∥z∥₊ ≤ c}, filtration_mono := std_flt_mono α, zero_mem_filtration := std_flt_zero_mem α nnn_zero, neg_mem_filtration := std_flt_neg_mem α nnn_neg, add_mem_filtration := std_flt_add_mem α nnn_add_le } end std_flt_lemmas /-- Let `r : ℝ≥0` be a non-negative real number. `nnreal.normed r` or `r.normed` is the type of finsupps `ℕ →₀ ℤ` with an extra parameter `r`. The non-negative real number `r` is used in defining a norm on `r.normed`: given `F : ℕ →₀ ℤ`, define `∥F∥₊ = ∑ x in F.support, ∥F x∥₊ * r⁻¹ ^ x`. -/ @[nolint unused_arguments, reducible, derive add_comm_group] def nnreal.normed (r : ℝ≥0) := ℕ →₀ ℤ namespace nnreal.normed variables {r : ℝ≥0} (F G H : r.normed) instance (r : ℝ≥0) : has_nnnorm r.normed := ⟨λ F, ∑ x in F.support, ∥F x∥₊ * r⁻¹ ^ x⟩ @[simp] lemma nnnorm_zero : ∥(0 : r.normed)∥₊ = 0 := by simp only [has_nnnorm.nnnorm, support_zero, sum_empty] @[simp] lemma nnnorm_neg : ∥-F∥₊ = ∥F∥₊ := by simp only [has_nnnorm.nnnorm, pi.neg_apply, finsupp.coe_neg, support_neg, norm_neg] lemma nnnorm_add_le : ∥F + G∥₊ ≤ ∥F∥₊ + ∥G∥₊ := begin unfold nnnorm, rw [sum_subset (subset_union_left F.support G.support), sum_subset (subset_union_right F.support G.support), sum_subset ((λ k, mem_union_support_of_mem_support_add F G) : _ ⊆ F.support ∪ G.support), ← finset.sum_add_distrib], { refine sum_le_sum (λ j hj, _), rw ← add_mul, exact mul_le_mul_of_nonneg_right (nnreal.coe_le_coe.mp (norm_add_le _ _)) (zero_le _) }, repeat { simp only [mem_support_iff, not_not, norm_zero, mul_eq_zero, nonneg.mk_eq_zero, eq_self_iff_true, true_or, implies_true_iff] {contextual := true} } end instance : nnnorm_add_class r.normed := { nnn_zero := nnnorm_zero, nnn_neg := nnnorm_neg, nnn_add_le := nnnorm_add_le, ..(infer_instance : add_comm_group _) } instance : pseudo_normed_group r.normed := std_flt.to_pseudo_normed_group end nnreal.normed open nnnorm_add_class variables {r : ℝ≥0} {α : Type*} [has_nnnorm α] {S : Fintype} instance fintype.sum_nnnorm : has_nnnorm (S → α) := { nnnorm := λ F, ∑ b, ∥F b∥₊ } @[simp] lemma fintype.sum_nnnorm_def (F : S → α) : ∥F∥₊ = ∑ b, ∥F b∥₊ := rfl instance [add_group α] [nnnorm_add_class α] : nnnorm_add_class (S → α) := { nnn_zero := by simp, nnn_neg := λ x, by simp [fintype.sum_nnnorm_def, pi.neg_apply, nnn_neg], nnn_add_le := λ F G, le_trans (sum_le_sum (λ j hj, nnnorm_add_le _ _)) sum_add_distrib.le, ..(infer_instance : add_comm_group _) } /-- Let `r : ℝ≥0` be a non-negative real number and `S : Fintype` a finite type. `invpoly' r S` is the type of `S`-indexed terms of type `r.normed`, that is, finsupps `ℕ →₀ ℤ` with norm defined using `r⁻¹`. -/ @[derive add_comm_group] def invpoly' (r : ℝ≥0) (S : Fintype) := S → r.normed namespace invpoly' instance : inhabited (invpoly' r S) := ⟨0⟩ instance : has_nnnorm (invpoly' r S) := @fintype.sum_nnnorm r.normed ⟨nnnorm⟩ S instance : nnnorm_add_class (invpoly' r S) := pi.nnnorm_add_class instance : pseudo_normed_group (invpoly' r S) := std_flt.to_pseudo_normed_group end invpoly'